Method List
-
#<< DNN::Layers::InputLayer
-
#<< DNN::Layers::Embedding
-
#>> DNN::Layers::Embedding
-
#>> DNN::Layers::InputLayer
-
#accuracy DNN::Models::Model
-
#activation DNN::Layers::SimpleRNN
-
#add DNN::Models::Sequential
-
#add_callback DNN::Models::Model
-
#after_epoch DNN::Callbacks::CheckPoint
-
#after_epoch DNN::Callbacks::EarlyStopping
-
#after_epoch DNN::Callbacks::Logger
-
#after_train_on_batch DNN::Callbacks::EarlyStopping
-
#after_train_on_batch DNN::Callbacks::NaNStopping
-
#after_train_on_batch DNN::Callbacks::Logger
-
#alpha DNN::Optimizers::RMSProp
-
#alpha DNN::Layers::LeakyReLU
-
#alpha DNN::Optimizers::Adam
-
#alpha DNN::Optimizers::RMSPropGraves
-
#alpha DNN::Layers::ELU
-
#amsgrad DNN::Optimizers::Adam
-
#axis DNN::Layers::BatchNormalization
-
#axis DNN::MergeLayers::Concatenate
-
#backward DNN::Regularizers::L2
-
#backward DNN::Layers::ReLU
-
#backward DNN::Layers::BatchNormalization
-
#backward DNN::Layers::MaxPool2D
-
#backward DNN::Losses::MeanAbsoluteError
-
#backward DNN::Layers::Conv2D
-
#backward DNN::Layers::Layer
-
#backward DNN::Layers::Softsign
-
#backward DNN::Layers::Tanh
-
#backward DNN::Losses::SoftmaxCrossEntropy
-
#backward DNN::MergeLayers::Add
-
#backward DNN::Layers::LSTMDense
-
#backward DNN::Layers::Reshape
-
#backward DNN::Layers::Embedding
-
#backward DNN::MergeLayers::Concatenate
-
#backward DNN::Losses::SigmoidCrossEntropy
-
#backward DNN::Regularizers::L1
-
#backward DNN::Layers::Swish
-
#backward DNN::TwoInputLink
-
#backward DNN::Losses::Hinge
-
#backward DNN::MergeLayers::Mul
-
#backward DNN::Layers::Softplus
-
#backward DNN::Link
-
#backward DNN::Layers::Dense
-
#backward DNN::Losses::MeanSquaredError
-
#backward DNN::Layers::Dropout
-
#backward DNN::Layers::LeakyReLU
-
#backward DNN::Losses::Loss
-
#backward DNN::Layers::RNN
-
#backward DNN::Regularizers::L1L2
-
#backward DNN::Layers::Sigmoid
-
#backward DNN::Layers::SimpleRNNDense
-
#backward DNN::Layers::Flatten
-
#backward DNN::Layers::GRUDense
-
#backward DNN::Layers::InputLayer
-
#backward DNN::Regularizers::Regularizer
-
#backward DNN::Layers::LSTM
-
#backward DNN::Layers::Conv2DTranspose
-
#backward DNN::Layers::AvgPool2D
-
#backward DNN::Layers::ELU
-
#backward DNN::Layers::UnPool2D
-
#backward DNN::Losses::HuberLoss
-
#beta DNN::Layers::BatchNormalization
-
#beta1 DNN::Optimizers::Adam
-
#beta2 DNN::Optimizers::Adam
-
#bias DNN::Layers::Connection
-
#bias_initializer DNN::Layers::Connection
-
#bias_regularizer DNN::Layers::Connection
-
#build DNN::Layers::Dense
-
#build DNN::Layers::UnPool2D
-
#build DNN::Layers::Conv2DTranspose
-
#build DNN::Layers::SimpleRNN
-
#build DNN::Layers::InputLayer
-
#build DNN::Layers::GRU
-
#build DNN::Layers::Layer
-
#build DNN::Layers::Pool2D
-
#build DNN::Layers::LSTM
-
#build DNN::Layers::RNN
-
#build DNN::Layers::Conv2D
-
#build DNN::Layers::BatchNormalization
-
#build DNN::Layers::Embedding
-
#built? DNN::Layers::Layer
-
#built? DNN::Models::Model
-
#call DNN::Models::Sequential
-
#call DNN::Layers::Embedding
-
#call DNN::Layers::InputLayer
-
#call DNN::MergeLayers::MergeLayer
-
call DNN::Layers::Layer
-
#call DNN::Layers::Layer
-
call DNN::MergeLayers::MergeLayer
-
call DNN::Layers::InputLayer
-
#cell DNN::Layers::LSTM
-
#clear_callbacks DNN::Models::Model
-
#clip_norm DNN::Optimizers::Optimizer
-
#const DNN::Initializers::Const
-
#copy DNN::Models::Model
-
#data DNN::Tensor
-
#data DNN::Param
-
download DNN::Downloader
-
#download DNN::Downloader
-
downloads DNN::Iris
-
downloads DNN::CIFAR100
-
downloads DNN::FashionMNIST
-
downloads DNN::MNIST
-
downloads DNN::CIFAR10
-
#dropout_ratio DNN::Layers::Dropout
-
#dump DNN::Optimizers::Optimizer
-
#eps DNN::Losses::SoftmaxCrossEntropy
-
#eps DNN::Layers::BatchNormalization
-
#eps DNN::Optimizers::AdaGrad
-
#eps DNN::Optimizers::RMSPropGraves
-
#eps DNN::Optimizers::RMSProp
-
#eps DNN::Optimizers::Adam
-
#eps DNN::Losses::SigmoidCrossEntropy
-
#eps DNN::Optimizers::AdaDelta
-
#filter_size DNN::Layers::Conv2DTranspose
-
#filter_size DNN::Layers::Conv2D
-
#filters DNN::Layers::Conv2DTranspose
-
#filters DNN::Layers::Conv2D
-
#filters= DNN::Layers::Conv2DTranspose
-
#filters= DNN::Layers::Conv2D
-
#final_lr DNN::Optimizers::AdaBound
-
#foreach DNN::Iterator
-
#forward DNN::Losses::SoftmaxCrossEntropy
-
#forward DNN::Losses::Hinge
-
#forward DNN::Losses::MeanAbsoluteError
-
#forward DNN::Losses::MeanSquaredError
-
#forward DNN::Losses::HuberLoss
-
#forward DNN::Losses::Loss
-
#forward DNN::Layers::Dropout
-
#forward DNN::Layers::BatchNormalization
-
#forward DNN::Layers::LSTM
-
#forward DNN::Layers::Flatten
-
#forward DNN::Layers::Reshape
-
#forward DNN::MergeLayers::Mul
-
#forward DNN::Layers::AvgPool2D
-
#forward DNN::Layers::Dense
-
#forward DNN::Layers::Sigmoid
-
#forward DNN::Layers::InputLayer
-
#forward DNN::Layers::SimpleRNNDense
-
#forward DNN::Layers::MaxPool2D
-
#forward DNN::Regularizers::L1L2
-
#forward DNN::Layers::Swish
-
#forward DNN::Layers::Layer
-
#forward DNN::Layers::LeakyReLU
-
#forward DNN::Layers::Softplus
-
#forward DNN::MergeLayers::Concatenate
-
#forward DNN::MergeLayers::Add
-
#forward DNN::Regularizers::L2
-
#forward DNN::Layers::Tanh
-
#forward DNN::Layers::UnPool2D
-
#forward DNN::Layers::Embedding
-
#forward DNN::Layers::ELU
-
#forward DNN::Layers::Conv2DTranspose
-
#forward DNN::Layers::RNN
-
#forward DNN::Regularizers::L1
-
#forward DNN::Regularizers::Regularizer
-
#forward DNN::Layers::GRUDense
-
#forward DNN::Losses::SigmoidCrossEntropy
-
#forward DNN::Layers::Softsign
-
#forward DNN::Layers::Conv2D
-
#forward DNN::Layers::ReLU
-
#forward DNN::Layers::LSTMDense
-
from_hash DNN::Initializers::Initializer
-
from_hash DNN::Losses::Loss
-
from_hash DNN::Optimizers::Optimizer
-
from_hash DNN::Layers::Layer
-
from_hash DNN::Regularizers::Regularizer
-
#gamma DNN::Layers::BatchNormalization
-
#gamma DNN::Optimizers::AdaBound
-
#get_layer DNN::Models::Model
-
#get_log DNN::Callbacks::Logger
-
#get_params DNN::Layers::Embedding
-
#get_params DNN::Layers::LSTM
-
#get_params DNN::Layers::RNN
-
#get_params DNN::Layers::Connection
-
#get_params DNN::Layers::BatchNormalization
-
#get_params DNN::Layers::HasParamLayer
-
#grad DNN::Param
-
#has_next? DNN::Iterator
-
#has_param_layers DNN::Models::Model
-
hash_to_obj DNN::Utils
-
#hidden DNN::Layers::RNN
-
#init_param DNN::Initializers::He
-
#init_param DNN::Initializers::RandomUniform
-
#init_param DNN::Initializers::RandomNormal
-
#init_param DNN::Initializers::Xavier
-
#init_param DNN::Initializers::Initializer
-
#init_param DNN::Initializers::Const
-
#init_param DNN::Initializers::Zeros
-
#initialize DNN::Layers::Embedding
-
#initialize DNN::Callbacks::Logger
-
#initialize DNN::Callbacks::LambdaCallback
-
#initialize DNN::Callbacks::CheckPoint
-
#initialize DNN::Callbacks::EarlyStopping
-
#initialize DNN::Iterator
-
#initialize DNN::Layers::LeakyReLU
-
#initialize DNN::Optimizers::AdaBound
-
#initialize DNN::Savers::MarshalSaver
-
#initialize DNN::Savers::Saver
-
#initialize DNN::Layers::GRU
-
#initialize DNN::Layers::RNN
-
#initialize DNN::Models::Sequential
-
#initialize DNN::Loaders::Loader
-
#initialize DNN::Downloader
-
#initialize DNN::Initializers::Initializer
-
#initialize DNN::Tensor
-
#initialize DNN::Models::Model
-
#initialize DNN::MergeLayers::Concatenate
-
#initialize DNN::Losses::SigmoidCrossEntropy
-
#initialize DNN::Layers::GRUDense
-
#initialize DNN::Optimizers::RMSProp
-
#initialize DNN::Losses::SoftmaxCrossEntropy
-
#initialize DNN::Layers::BatchNormalization
-
#initialize DNN::Layers::SimpleRNNDense
-
#initialize DNN::Initializers::RandomNormal
-
#initialize DNN::Layers::Dropout
-
#initialize DNN::Layers::Reshape
-
#initialize DNN::Layers::Dense
-
#initialize DNN::Layers::Connection
-
#initialize DNN::Initializers::He
-
#initialize DNN::Layers::ELU
-
#initialize DNN::Layers::InputLayer
-
#initialize DNN::Layers::HasParamLayer
-
#initialize DNN::Layers::Layer
-
#initialize DNN::Param
-
#initialize DNN::Optimizers::AdaDelta
-
#initialize DNN::TwoInputLink
-
#initialize DNN::Initializers::Const
-
#initialize DNN::Link
-
#initialize DNN::Layers::LSTM
-
#initialize DNN::Optimizers::AdaGrad
-
#initialize DNN::Regularizers::L2
-
#initialize DNN::Layers::Conv2DTranspose
-
#initialize DNN::Optimizers::Adam
-
#initialize DNN::Layers::SimpleRNN
-
#initialize DNN::Layers::UnPool2D
-
#initialize DNN::Regularizers::L1L2
-
#initialize DNN::Layers::Pool2D
-
#initialize DNN::Optimizers::Optimizer
-
#initialize DNN::Optimizers::RMSPropGraves
-
#initialize DNN::Initializers::Xavier
-
#initialize DNN::Layers::Conv2D
-
#initialize DNN::Initializers::RandomUniform
-
#initialize DNN::Layers::LSTMDense
-
#initialize DNN::Regularizers::L1
-
#initialize DNN::Optimizers::SGD
-
#initialize DNN::Optimizers::Nesterov
-
#input_length DNN::Layers::Embedding
-
#input_shape DNN::Layers::Layer
-
#l1_lambda DNN::Regularizers::L1
-
#l1_lambda DNN::Regularizers::L1L2
-
#l2_lambda DNN::Regularizers::L1L2
-
#l2_lambda DNN::Regularizers::L2
-
#last_log DNN::Models::Model
-
#last_round_down DNN::Iterator
-
#layer DNN::TwoInputLink
-
#layer DNN::Link
-
#layers DNN::Models::Model
-
learning_phase DNN
-
learning_phase= DNN
-
#link DNN::Tensor
-
load DNN::Iris
-
#load DNN::Loaders::Loader
-
load DNN::Models::Model
-
load DNN::Optimizers::Optimizer
-
load_binary DNN::CIFAR10
-
load_binary DNN::CIFAR100
-
#load_hash DNN::Layers::UnPool2D
-
#load_hash DNN::Regularizers::Regularizer
-
#load_hash DNN::Regularizers::L1
-
#load_hash DNN::Layers::Pool2D
-
#load_hash DNN::Optimizers::AdaBound
-
#load_hash DNN::Layers::Conv2DTranspose
-
#load_hash DNN::Layers::Conv2D
-
#load_hash DNN::Layers::Embedding
-
#load_hash DNN::Optimizers::AdaDelta
-
#load_hash DNN::Optimizers::RMSProp
-
#load_hash DNN::Optimizers::AdaGrad
-
#load_hash DNN::Optimizers::SGD
-
#load_hash DNN::Optimizers::Adam
-
#load_hash DNN::Optimizers::RMSPropGraves
-
#load_hash DNN::Optimizers::Optimizer
-
#load_hash DNN::MergeLayers::Concatenate
-
#load_hash DNN::Initializers::RandomNormal
-
#load_hash DNN::Layers::LeakyReLU
-
#load_hash DNN::Layers::ELU
-
#load_hash DNN::Losses::SigmoidCrossEntropy
-
#load_hash DNN::Initializers::Initializer
-
#load_hash DNN::Initializers::RandomUniform
-
#load_hash DNN::Regularizers::L2
-
#load_hash DNN::Losses::Loss
-
#load_hash DNN::Layers::Dropout
-
#load_hash DNN::Layers::BatchNormalization
-
#load_hash DNN::Layers::Reshape
-
#load_hash DNN::Layers::Dense
-
#load_hash DNN::Regularizers::L1L2
-
#load_hash DNN::Initializers::Const
-
#load_hash DNN::Layers::InputLayer
-
#load_hash DNN::Losses::SoftmaxCrossEntropy
-
#load_hash DNN::Layers::Layer
-
#load_hash DNN::Layers::SimpleRNN
-
#load_hash DNN::Layers::RNN
-
load_test DNN::FashionMNIST
-
load_test DNN::MNIST
-
load_test DNN::CIFAR100
-
load_test DNN::CIFAR10
-
load_train DNN::MNIST
-
load_train DNN::CIFAR100
-
load_train DNN::FashionMNIST
-
load_train DNN::CIFAR10
-
#loss DNN::Losses::Loss
-
#loss_func DNN::Models::Model
-
#lr DNN::Optimizers::RMSPropGraves
-
#lr DNN::Optimizers::RMSProp
-
#lr DNN::Optimizers::AdaGrad
-
#lr DNN::Optimizers::SGD
-
#max DNN::Initializers::RandomUniform
-
#mean DNN::Initializers::RandomNormal
-
#min DNN::Initializers::RandomUniform
-
#model DNN::Callbacks::Callback
-
#momentum DNN::Optimizers::SGD
-
#momentum DNN::Layers::BatchNormalization
-
#name DNN::Param
-
#name DNN::Layers::Layer
-
#next_batch DNN::Iterator
-
#num_datas DNN::Iterator
-
#num_filters DNN::Layers::Conv2DTranspose
-
#num_filters DNN::Layers::Conv2D
-
#num_nodes DNN::Layers::Dense
-
#num_nodes DNN::Layers::RNN
-
#optimizer DNN::Models::Model
-
#output_shape DNN::Layers::UnPool2D
-
#output_shape DNN::Layers::Pool2D
-
#output_shape DNN::Layers::Conv2DTranspose
-
#output_shape DNN::Layers::Conv2D
-
#output_shape DNN::Layers::Reshape
-
#output_shape DNN::Layers::Flatten
-
#output_shape DNN::Layers::Dense
-
#output_shape DNN::Layers::Layer
-
#output_shape DNN::Layers::RNN
-
#padding DNN::Layers::Pool2D
-
#padding DNN::Layers::Conv2DTranspose
-
#padding DNN::Layers::Conv2D
-
#param DNN::Regularizers::Regularizer
-
#pool_size DNN::Layers::Pool2D
-
#predict DNN::Models::Model
-
#predict1 DNN::Models::Model
-
#prev DNN::Link
-
#prev1 DNN::TwoInputLink
-
#prev2 DNN::TwoInputLink
-
read DNN::Image
-
#recurrent_weight DNN::Layers::RNN
-
#recurrent_weight_initializer DNN::Layers::RNN
-
#recurrent_weight_regularizer DNN::Layers::RNN
-
#regularizers DNN::Layers::Embedding
-
#regularizers DNN::Layers::Connection
-
#regularizers DNN::Layers::RNN
-
#regularizers_backward DNN::Losses::Loss
-
#regularizers_forward DNN::Losses::Loss
-
#remove DNN::Models::Sequential
-
#reset DNN::Iterator
-
#reset_state DNN::Layers::LSTM
-
#reset_state DNN::Layers::RNN
-
resize DNN::Image
-
#return_sequences DNN::Layers::RNN
-
#rho DNN::Optimizers::AdaDelta
-
#running_mean DNN::Layers::BatchNormalization
-
#running_var DNN::Layers::BatchNormalization
-
#save DNN::Savers::Saver
-
#save DNN::Models::Model
-
#setup DNN::Models::Model
-
sigmoid DNN::Losses::SigmoidCrossEntropy
-
sigmoid DNN::Utils
-
softmax DNN::Losses::SoftmaxCrossEntropy
-
softmax DNN::Utils
-
#stack DNN::Models::Sequential
-
#stateful DNN::Layers::RNN
-
#status DNN::Optimizers::Optimizer
-
stbi_load DNN::Stb
-
stbi_write_bmp DNN::Stb
-
stbi_write_hdr DNN::Stb
-
stbi_write_jpg DNN::Stb
-
stbi_write_png DNN::Stb
-
stbi_write_tga DNN::Stb
-
stbir_resize_uint8 DNN::Stb
-
stbir_resize_uint8_srgb DNN::Stb
-
stbir_resize_uint8_srgb_edgemode DNN::Stb
-
#std DNN::Initializers::RandomNormal
-
#strides DNN::Layers::Conv2DTranspose
-
#strides DNN::Layers::Conv2D
-
#strides DNN::Layers::Pool2D
-
#test_on_batch DNN::Models::Model
-
to_categorical DNN::Utils
-
to_gray_scale DNN::Image
-
#to_hash DNN::Optimizers::Adam
-
#to_hash DNN::Optimizers::RMSPropGraves
-
#to_hash DNN::Optimizers::AdaDelta
-
#to_hash DNN::Optimizers::RMSProp
-
#to_hash DNN::Optimizers::AdaGrad
-
#to_hash DNN::Optimizers::SGD
-
#to_hash DNN::Optimizers::AdaBound
-
#to_hash DNN::Layers::UnPool2D
-
#to_hash DNN::Layers::Pool2D
-
#to_hash DNN::Optimizers::Optimizer
-
#to_hash DNN::Layers::Conv2DTranspose
-
#to_hash DNN::Layers::Embedding
-
#to_hash DNN::Layers::Conv2D
-
#to_hash DNN::Regularizers::Regularizer
-
#to_hash DNN::Losses::SigmoidCrossEntropy
-
#to_hash DNN::Losses::Loss
-
#to_hash DNN::Layers::Dropout
-
#to_hash DNN::Layers::Reshape
-
#to_hash DNN::Layers::Dense
-
#to_hash DNN::Losses::SoftmaxCrossEntropy
-
#to_hash DNN::Layers::Connection
-
#to_hash DNN::Layers::InputLayer
-
#to_hash DNN::Layers::Layer
-
#to_hash DNN::Layers::BatchNormalization
-
#to_hash DNN::MergeLayers::Concatenate
-
#to_hash DNN::Initializers::RandomNormal
-
#to_hash DNN::Initializers::RandomUniform
-
#to_hash DNN::Initializers::Const
-
#to_hash DNN::Initializers::Initializer
-
#to_hash DNN::Layers::LeakyReLU
-
#to_hash DNN::Layers::ELU
-
#to_hash DNN::Layers::SimpleRNN
-
#to_hash DNN::Layers::RNN
-
#to_hash DNN::Regularizers::L1L2
-
#to_hash DNN::Regularizers::L2
-
#to_hash DNN::Regularizers::L1
-
#to_proc DNN::Layers::Embedding
-
#to_proc DNN::Layers::InputLayer
-
#train DNN::Models::Model
-
#train_by_iterator DNN::Models::Model
-
#train_on_batch DNN::Models::Model
-
#trainable DNN::Layers::HasParamLayer
-
#trainable DNN::Layers::GRUDense
-
#trainable DNN::Layers::LSTMDense
-
#trainable DNN::Layers::SimpleRNNDense
-
trim DNN::Image
-
#unpool_size DNN::Layers::UnPool2D
-
#update DNN::Optimizers::Optimizer
-
#use_bias DNN::Layers::Connection
-
#use_scale DNN::Layers::Dropout
-
#weight DNN::Layers::Embedding
-
#weight DNN::Layers::Connection
-
#weight_initializer DNN::Layers::Embedding
-
#weight_initializer DNN::Layers::Connection
-
#weight_regularizer DNN::Layers::Embedding
-
#weight_regularizer DNN::Layers::Connection
-
write DNN::Image