Class: DNN::Models::Model
- Inherits:
-
Object
- Object
- DNN::Models::Model
- Defined in:
- lib/dnn/core/models.rb
Overview
This class deals with the model of the network.
Direct Known Subclasses
Instance Attribute Summary collapse
-
#last_log ⇒ Object
readonly
Returns the value of attribute last_log.
-
#loss_func ⇒ Object
Returns the value of attribute loss_func.
-
#optimizer ⇒ Object
Returns the value of attribute optimizer.
Class Method Summary collapse
-
.load(file_name) ⇒ DNN::Models::Model
Load marshal model.
Instance Method Summary collapse
-
#accuracy(x, y, batch_size: 100) ⇒ Array
Evaluate model and get accuracy of test data.
-
#add_callback(callback) ⇒ Object
Add callback function.
-
#built? ⇒ Boolean
If model have already been built then return true.
-
#clear_callbacks ⇒ Object
Clear the callback function registered for each event.
-
#copy ⇒ DNN::Models::Model
Return the copy this model.
-
#get_layer(name) ⇒ DNN::Layers::Layer
Get the layer that the model has.
-
#has_param_layers ⇒ Array
Get the all has param layers.
-
#initialize ⇒ Model
constructor
A new instance of Model.
-
#layers ⇒ Array
Get the all layers.
-
#predict(x, use_loss_activation: true) ⇒ Object
Predict data.
-
#predict1(x, use_loss_activation: true) ⇒ Object
Predict one data.
-
#save(file_name, include_optimizer: true) ⇒ Object
Save the model in marshal format.
-
#setup(optimizer, loss_func) ⇒ Object
Set optimizer and loss_func to model.
-
#test_on_batch(x, y) ⇒ Array
Evaluate once.
-
#train(x, y, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) ⇒ Object
(also: #fit)
Start training.
-
#train_by_iterator(train_iterator, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) ⇒ Object
(also: #fit_by_iterator)
Start training by iterator.
-
#train_on_batch(x, y) ⇒ Float | Numo::SFloat
Training once.
Constructor Details
#initialize ⇒ Model
Returns a new instance of Model.
19 20 21 22 23 24 25 26 27 |
# File 'lib/dnn/core/models.rb', line 19 def initialize @optimizer = nil @loss_func = nil @last_link = nil @built = false @callbacks = [] @layers_cache = nil @last_log = {} end |
Instance Attribute Details
#last_log ⇒ Object (readonly)
Returns the value of attribute last_log.
7 8 9 |
# File 'lib/dnn/core/models.rb', line 7 def last_log @last_log end |
#loss_func ⇒ Object
Returns the value of attribute loss_func.
6 7 8 |
# File 'lib/dnn/core/models.rb', line 6 def loss_func @loss_func end |
#optimizer ⇒ Object
Returns the value of attribute optimizer.
5 6 7 |
# File 'lib/dnn/core/models.rb', line 5 def optimizer @optimizer end |
Class Method Details
.load(file_name) ⇒ DNN::Models::Model
Load marshal model.
12 13 14 15 16 17 |
# File 'lib/dnn/core/models.rb', line 12 def self.load(file_name) model = new loader = Loaders::MarshalLoader.new(model) loader.load(file_name) model end |
Instance Method Details
#accuracy(x, y, batch_size: 100) ⇒ Array
Evaluate model and get accuracy of test data.
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# File 'lib/dnn/core/models.rb', line 177 def accuracy(x, y, batch_size: 100) check_xy_type(x, y) num_test_datas = x.is_a?(Array) ? x[0].shape[0] : x.shape[0] batch_size = batch_size >= num_test_datas[0] ? num_test_datas : batch_size iter = Iterator.new(x, y, random: false) total_correct = 0 sum_loss = Xumo::SFloat[0] max_steps = (num_test_datas.to_f / batch_size).ceil iter.foreach(batch_size) do |x_batch, y_batch| correct, loss_value = test_on_batch(x_batch, y_batch) total_correct += correct sum_loss += loss_value end mean_loss = sum_loss / max_steps acc = total_correct.to_f / num_test_datas @last_log[:test_loss] = mean_loss @last_log[:test_accuracy] = acc [acc, mean_loss] end |
#add_callback(callback) ⇒ Object
Add callback function.
250 251 252 253 |
# File 'lib/dnn/core/models.rb', line 250 def add_callback(callback) callback.model = self @callbacks << callback end |
#built? ⇒ Boolean
Returns If model have already been built then return true.
307 308 309 |
# File 'lib/dnn/core/models.rb', line 307 def built? @built end |
#clear_callbacks ⇒ Object
Clear the callback function registered for each event.
256 257 258 |
# File 'lib/dnn/core/models.rb', line 256 def clear_callbacks @callbacks = [] end |
#copy ⇒ DNN::Models::Model
Return the copy this model.
269 270 271 |
# File 'lib/dnn/core/models.rb', line 269 def copy Marshal.load(Marshal.dump(self)) end |
#get_layer(name) ⇒ DNN::Layers::Layer
Get the layer that the model has.
302 303 304 |
# File 'lib/dnn/core/models.rb', line 302 def get_layer(name) layers.find { |layer| layer.name == name } end |
#has_param_layers ⇒ Array
Get the all has param layers.
295 296 297 |
# File 'lib/dnn/core/models.rb', line 295 def has_param_layers layers.select { |layer| layer.is_a?(Layers::HasParamLayer) } end |
#layers ⇒ Array
Get the all layers.
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
# File 'lib/dnn/core/models.rb', line 275 def layers raise DNN_Error, "This model is not built. You need build this model using predict or train." unless built? return @layers_cache if @layers_cache layers = [] get_layers = -> link do return unless link layers.unshift(link.layer) if link.is_a?(TwoInputLink) get_layers.(link.prev1) get_layers.(link.prev2) else get_layers.(link.prev) end end get_layers.(@last_link) @layers_cache = layers.uniq end |
#predict(x, use_loss_activation: true) ⇒ Object
Predict data.
232 233 234 235 236 237 238 239 |
# File 'lib/dnn/core/models.rb', line 232 def predict(x, use_loss_activation: true) check_xy_type(x) y = forward(x, false) if use_loss_activation && @loss_func.class.respond_to?(:activation) y = @loss_func.class.activation(y) end y end |
#predict1(x, use_loss_activation: true) ⇒ Object
Predict one data.
243 244 245 246 |
# File 'lib/dnn/core/models.rb', line 243 def predict1(x, use_loss_activation: true) check_xy_type(x) predict(x.reshape(1, *x.shape), use_loss_activation: use_loss_activation)[0, false] end |
#save(file_name, include_optimizer: true) ⇒ Object
Save the model in marshal format.
263 264 265 266 |
# File 'lib/dnn/core/models.rb', line 263 def save(file_name, include_optimizer: true) saver = Savers::MarshalSaver.new(self, include_optimizer: include_optimizer) saver.save(file_name) end |
#setup(optimizer, loss_func) ⇒ Object
Set optimizer and loss_func to model.
32 33 34 35 36 37 38 39 40 41 |
# File 'lib/dnn/core/models.rb', line 32 def setup(optimizer, loss_func) unless optimizer.is_a?(Optimizers::Optimizer) raise TypeError, "optimizer:#{optimizer.class} is not an instance of DNN::Optimizers::Optimizer class." end unless loss_func.is_a?(Losses::Loss) raise TypeError, "loss_func:#{loss_func.class} is not an instance of DNN::Losses::Loss class." end @optimizer = optimizer @loss_func = loss_func end |
#test_on_batch(x, y) ⇒ Array
Evaluate once.
201 202 203 204 205 206 207 208 |
# File 'lib/dnn/core/models.rb', line 201 def test_on_batch(x, y) call_callbacks(:before_test_on_batch) x = forward(x, false) correct = evaluate(x, y) loss_value = @loss_func.loss(x, y, layers) call_callbacks(:after_test_on_batch) [correct, loss_value] end |
#train(x, y, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) ⇒ Object Also known as: fit
Start training. Setup the model before use this method.
53 54 55 56 57 58 59 60 61 62 63 64 65 |
# File 'lib/dnn/core/models.rb', line 53 def train(x, y, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) check_xy_type(x, y) train_iterator = Iterator.new(x, y) train_by_iterator(train_iterator, epochs, batch_size: batch_size, initial_epoch: initial_epoch, test: test, verbose: verbose) end |
#train_by_iterator(train_iterator, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) ⇒ Object Also known as: fit_by_iterator
Start training by iterator. Setup the model before use this method.
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
# File 'lib/dnn/core/models.rb', line 78 def train_by_iterator(train_iterator, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) raise DNN_Error, "The model is not optimizer setup complete." unless @optimizer raise DNN_Error, "The model is not loss_func setup complete." unless @loss_func num_train_datas = train_iterator.num_datas num_train_datas = num_train_datas / batch_size * batch_size if train_iterator.last_round_down stopped = catch(:stop) do (initial_epoch..epochs).each do |epoch| @last_log[:epoch] = epoch call_callbacks(:before_epoch) puts "【 epoch #{epoch}/#{epochs} 】" if verbose train_iterator.foreach(batch_size) do |x_batch, y_batch, index| train_step_met = train_step(x_batch, y_batch) num_trained_datas = (index + 1) * batch_size num_trained_datas = num_trained_datas > num_train_datas ? num_train_datas : num_trained_datas log = "\r" 40.times do |i| if i < num_trained_datas * 40 / num_train_datas log << "=" elsif i == num_trained_datas * 40 / num_train_datas log << ">" else log << "_" end end log << " #{num_trained_datas}/#{num_train_datas} " log << metrics_to_str(train_step_met) print log if verbose end if test test_met = test(test[0], test[1], batch_size: batch_size) print " " + metrics_to_str(test_met) if verbose end puts "" if verbose call_callbacks(:after_epoch) end nil end if stopped puts "\n#{stopped}" if verbose end end |
#train_on_batch(x, y) ⇒ Float | Numo::SFloat
Training once. Setup the model before use this method.
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# File 'lib/dnn/core/models.rb', line 156 def train_on_batch(x, y) raise DNN_Error, "The model is not optimizer setup complete." unless @optimizer raise DNN_Error, "The model is not loss_func setup complete." unless @loss_func check_xy_type(x, y) call_callbacks(:before_train_on_batch) x = forward(x, true) loss_value = @loss_func.loss(x, y, layers) dy = @loss_func.backward(x, y) backward(dy) @optimizer.update(layers) @loss_func.regularizers_backward(layers) @last_log[:train_loss] = loss_value call_callbacks(:after_train_on_batch) loss_value end |