Class: DNN::Layers::Conv2DTranspose
- Inherits:
-
Connection
- Object
- Layer
- HasParamLayer
- Connection
- DNN::Layers::Conv2DTranspose
- Includes:
- Conv2DUtils
- Defined in:
- lib/dnn/core/cnn_layers.rb
Instance Attribute Summary collapse
-
#filter_size ⇒ Object
readonly
Returns the value of attribute filter_size.
-
#num_filters ⇒ Object
readonly
Returns the value of attribute num_filters.
-
#padding ⇒ Object
readonly
Returns the value of attribute padding.
-
#strides ⇒ Object
readonly
Returns the value of attribute strides.
Attributes inherited from Connection
#bias, #bias_initializer, #bias_regularizer, #weight, #weight_initializer, #weight_regularizer
Attributes inherited from HasParamLayer
Attributes inherited from Layer
Instance Method Summary collapse
- #backward(dy) ⇒ Object
- #build(input_shape) ⇒ Object
-
#filters ⇒ Numo::SFloat
Convert weight to filter and return.
- #filters=(filters) ⇒ Object
- #forward(x) ⇒ Object
-
#initialize(num_filters, filter_size, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, bias_regularizer: nil, use_bias: true, strides: 1, padding: false) ⇒ Conv2DTranspose
constructor
A new instance of Conv2DTranspose.
- #load_hash(hash) ⇒ Object
- #output_shape ⇒ Object
- #to_hash ⇒ Object
Methods inherited from Connection
#get_params, #regularizers, #use_bias
Methods inherited from HasParamLayer
Methods inherited from Layer
#built?, #call, call, from_hash
Constructor Details
#initialize(num_filters, filter_size, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, bias_regularizer: nil, use_bias: true, strides: 1, padding: false) ⇒ Conv2DTranspose
Returns a new instance of Conv2DTranspose.
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# File 'lib/dnn/core/cnn_layers.rb', line 200 def initialize(num_filters, filter_size, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, bias_regularizer: nil, use_bias: true, strides: 1, padding: false) super(weight_initializer: weight_initializer, bias_initializer: bias_initializer, weight_regularizer: weight_regularizer, bias_regularizer: bias_regularizer, use_bias: use_bias) @num_filters = num_filters @filter_size = filter_size.is_a?(Integer) ? [filter_size, filter_size] : filter_size @strides = strides.is_a?(Integer) ? [strides, strides] : strides @padding = padding.is_a?(Integer) ? [padding, padding] : padding end |
Instance Attribute Details
#filter_size ⇒ Object (readonly)
Returns the value of attribute filter_size.
192 193 194 |
# File 'lib/dnn/core/cnn_layers.rb', line 192 def filter_size @filter_size end |
#num_filters ⇒ Object (readonly)
Returns the value of attribute num_filters.
191 192 193 |
# File 'lib/dnn/core/cnn_layers.rb', line 191 def num_filters @num_filters end |
#padding ⇒ Object (readonly)
Returns the value of attribute padding.
194 195 196 |
# File 'lib/dnn/core/cnn_layers.rb', line 194 def padding @padding end |
#strides ⇒ Object (readonly)
Returns the value of attribute strides.
193 194 195 |
# File 'lib/dnn/core/cnn_layers.rb', line 193 def strides @strides end |
Instance Method Details
#backward(dy) ⇒ Object
246 247 248 249 250 251 252 253 254 255 |
# File 'lib/dnn/core/cnn_layers.rb', line 246 def backward(dy) dy = zero_padding(dy, @pad_size) if @padding col = im2col(dy, *input_shape[0..1], *@filter_size, @strides) if @trainable @weight.grad += col.transpose.dot(@x) @bias.grad += col.reshape(col.shape[0] * @filter_size.reduce(:*), @num_filters).sum(0) if @bias end dx = col.dot(@weight.data) dx.reshape(dy.shape[0], *input_shape) end |
#build(input_shape) ⇒ Object
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
# File 'lib/dnn/core/cnn_layers.rb', line 216 def build(input_shape) unless input_shape.length == 3 raise DNN_ShapeError, "Input shape is #{input_shape}. But input shape must be 3 dimensional." end super prev_h, prev_w, num_prev_filters = *input_shape @weight.data = Xumo::SFloat.new(@filter_size.reduce(:*) * @num_filters, num_prev_filters) @bias.data = Xumo::SFloat.new(@num_filters) if @bias init_weight_and_bias @pad_size = if @padding == true calc_conv2d_transpose_padding_size(prev_h, prev_w, *@filter_size, @strides) elsif @padding.is_a?(Array) @padding else [0, 0] end @out_size = calc_conv2d_transpose_out_size(prev_h, prev_w, *@filter_size, *@pad_size, @strides) end |
#filters ⇒ Numo::SFloat
Returns Convert weight to filter and return.
262 263 264 265 |
# File 'lib/dnn/core/cnn_layers.rb', line 262 def filters num_prev_filters = @input_shape[2] @weight.data.reshape(*@filter_size, @num_filters, num_prev_filters) end |
#filters=(filters) ⇒ Object
268 269 270 271 |
# File 'lib/dnn/core/cnn_layers.rb', line 268 def filters=(filters) num_prev_filters = @input_shape[2] @weight.data = filters.reshape(@filter_size.reduce(:*) * @num_filters, num_prev_filters) end |
#forward(x) ⇒ Object
235 236 237 238 239 240 241 242 243 244 |
# File 'lib/dnn/core/cnn_layers.rb', line 235 def forward(x) bsize = x.shape[0] x = x.reshape(x.shape[0..2].reduce(:*), x.shape[3]) @x = x col = x.dot(@weight.data.transpose) img_shape = [bsize, @out_size[0] + @pad_size[0], @out_size[1] + @pad_size[1], @num_filters] y = col2im(col, img_shape, *input_shape[0..1], *@filter_size, @strides) y += @bias.data if @bias @padding ? zero_padding_bwd(y, @pad_size) : y end |
#load_hash(hash) ⇒ Object
280 281 282 283 284 285 286 287 288 289 |
# File 'lib/dnn/core/cnn_layers.rb', line 280 def load_hash(hash) initialize(hash[:num_filters], hash[:filter_size], weight_initializer: Initializers::Initializer.from_hash(hash[:weight_initializer]), bias_initializer: Initializers::Initializer.from_hash(hash[:bias_initializer]), weight_regularizer: Regularizers::Regularizer.from_hash(hash[:weight_regularizer]), bias_regularizer: Regularizers::Regularizer.from_hash(hash[:bias_regularizer]), use_bias: hash[:use_bias], strides: hash[:strides], padding: hash[:padding]) end |
#output_shape ⇒ Object
257 258 259 |
# File 'lib/dnn/core/cnn_layers.rb', line 257 def output_shape [*@out_size, @num_filters] end |
#to_hash ⇒ Object
273 274 275 276 277 278 |
# File 'lib/dnn/core/cnn_layers.rb', line 273 def to_hash super(num_filters: @num_filters, filter_size: @filter_size, strides: @strides, padding: @padding) end |