Class: DNN::Layers::Conv2D
- Inherits:
-
Connection
- Object
- Layer
- HasParamLayer
- Connection
- DNN::Layers::Conv2D
- Includes:
- Conv2DUtils
- Defined in:
- lib/dnn/core/cnn_layers.rb
Instance Attribute Summary collapse
-
#filter_size ⇒ Object
readonly
Returns the value of attribute filter_size.
-
#num_filters ⇒ Object
readonly
Returns the value of attribute num_filters.
-
#padding ⇒ Object
readonly
Returns the value of attribute padding.
-
#strides ⇒ Object
readonly
Returns the value of attribute strides.
Attributes inherited from Connection
#bias, #bias_initializer, #bias_regularizer, #weight, #weight_initializer, #weight_regularizer
Attributes inherited from HasParamLayer
Attributes inherited from Layer
Instance Method Summary collapse
- #backward(dy) ⇒ Object
- #build(input_shape) ⇒ Object
-
#filters ⇒ Numo::SFloat
Convert weight to filter and return.
- #filters=(filters) ⇒ Object
- #forward(x) ⇒ Object
-
#initialize(num_filters, filter_size, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, bias_regularizer: nil, use_bias: true, strides: 1, padding: false) ⇒ Conv2D
constructor
A new instance of Conv2D.
- #load_hash(hash) ⇒ Object
- #output_shape ⇒ Object
- #to_hash ⇒ Object
Methods inherited from Connection
#get_params, #regularizers, #use_bias
Methods inherited from HasParamLayer
Methods inherited from Layer
#built?, #call, call, from_hash
Constructor Details
#initialize(num_filters, filter_size, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, bias_regularizer: nil, use_bias: true, strides: 1, padding: false) ⇒ Conv2D
Returns a new instance of Conv2D.
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
# File 'lib/dnn/core/cnn_layers.rb', line 98 def initialize(num_filters, filter_size, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, bias_regularizer: nil, use_bias: true, strides: 1, padding: false) super(weight_initializer: weight_initializer, bias_initializer: bias_initializer, weight_regularizer: weight_regularizer, bias_regularizer: bias_regularizer, use_bias: use_bias) @num_filters = num_filters @filter_size = filter_size.is_a?(Integer) ? [filter_size, filter_size] : filter_size @strides = strides.is_a?(Integer) ? [strides, strides] : strides @padding = padding.is_a?(Integer) ? [padding, padding] : padding end |
Instance Attribute Details
#filter_size ⇒ Object (readonly)
Returns the value of attribute filter_size.
90 91 92 |
# File 'lib/dnn/core/cnn_layers.rb', line 90 def filter_size @filter_size end |
#num_filters ⇒ Object (readonly)
Returns the value of attribute num_filters.
89 90 91 |
# File 'lib/dnn/core/cnn_layers.rb', line 89 def num_filters @num_filters end |
#padding ⇒ Object (readonly)
Returns the value of attribute padding.
92 93 94 |
# File 'lib/dnn/core/cnn_layers.rb', line 92 def padding @padding end |
#strides ⇒ Object (readonly)
Returns the value of attribute strides.
91 92 93 |
# File 'lib/dnn/core/cnn_layers.rb', line 91 def strides @strides end |
Instance Method Details
#backward(dy) ⇒ Object
142 143 144 145 146 147 148 149 150 151 |
# File 'lib/dnn/core/cnn_layers.rb', line 142 def backward(dy) dy = dy.reshape(dy.shape[0..2].reduce(:*), dy.shape[3]) if @trainable @weight.grad += @col.transpose.dot(dy) @bias.grad += dy.sum(0) if @bias end dcol = dy.dot(@weight.data.transpose) dx = col2im(dcol, @x_shape, *@out_size, *@filter_size, @strides) @padding ? zero_padding_bwd(dx, @pad_size) : dx end |
#build(input_shape) ⇒ Object
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
# File 'lib/dnn/core/cnn_layers.rb', line 114 def build(input_shape) unless input_shape.length == 3 raise DNN_ShapeError, "Input shape is #{input_shape}. But input shape must be 3 dimensional." end super prev_h, prev_w, num_prev_filters = *input_shape @weight.data = Xumo::SFloat.new(@filter_size.reduce(:*) * num_prev_filters, @num_filters) @bias.data = Xumo::SFloat.new(@num_filters) if @bias init_weight_and_bias @pad_size = if @padding == true calc_conv2d_padding_size(prev_h, prev_w, *@filter_size, @strides) elsif @padding.is_a?(Array) @padding else [0, 0] end @out_size = calc_conv2d_out_size(prev_h, prev_w, *@filter_size, *@pad_size, @strides) end |
#filters ⇒ Numo::SFloat
Returns Convert weight to filter and return.
158 159 160 161 |
# File 'lib/dnn/core/cnn_layers.rb', line 158 def filters num_prev_filters = @input_shape[2] @weight.data.reshape(*@filter_size, num_prev_filters, @num_filters) end |
#filters=(filters) ⇒ Object
164 165 166 167 |
# File 'lib/dnn/core/cnn_layers.rb', line 164 def filters=(filters) num_prev_filters = @input_shape[2] @weight.data = filters.reshape(@filter_size.reduce(:*) * num_prev_filters, @num_filters) end |
#forward(x) ⇒ Object
133 134 135 136 137 138 139 140 |
# File 'lib/dnn/core/cnn_layers.rb', line 133 def forward(x) x = zero_padding(x, @pad_size) if @padding @x_shape = x.shape @col = im2col(x, *@out_size, *@filter_size, @strides) y = @col.dot(@weight.data) y += @bias.data if @bias y.reshape(x.shape[0], *@out_size, y.shape[3]) end |
#load_hash(hash) ⇒ Object
176 177 178 179 180 181 182 183 184 185 |
# File 'lib/dnn/core/cnn_layers.rb', line 176 def load_hash(hash) initialize(hash[:num_filters], hash[:filter_size], weight_initializer: Initializers::Initializer.from_hash(hash[:weight_initializer]), bias_initializer: Initializers::Initializer.from_hash(hash[:bias_initializer]), weight_regularizer: Regularizers::Regularizer.from_hash(hash[:weight_regularizer]), bias_regularizer: Regularizers::Regularizer.from_hash(hash[:bias_regularizer]), use_bias: hash[:use_bias], strides: hash[:strides], padding: hash[:padding]) end |
#output_shape ⇒ Object
153 154 155 |
# File 'lib/dnn/core/cnn_layers.rb', line 153 def output_shape [*@out_size, @num_filters] end |
#to_hash ⇒ Object
169 170 171 172 173 174 |
# File 'lib/dnn/core/cnn_layers.rb', line 169 def to_hash super(num_filters: @num_filters, filter_size: @filter_size, strides: @strides, padding: @padding) end |