Class: DNN::Layers::Dense
Instance Attribute Summary collapse
Attributes inherited from Connection
#bias, #bias_initializer, #bias_regularizer, #weight, #weight_initializer, #weight_regularizer
#trainable
Attributes inherited from Layer
#input_shape, #name
Instance Method Summary
collapse
Methods inherited from Connection
#get_params, #regularizers, #use_bias
#get_params
Methods inherited from Layer
#built?, #call, call, from_hash
Constructor Details
#initialize(num_nodes, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, bias_regularizer: nil, use_bias: true) ⇒ Dense
Returns a new instance of Dense.
231
232
233
234
235
236
237
238
239
240
|
# File 'lib/dnn/core/layers.rb', line 231
def initialize(num_nodes,
weight_initializer: Initializers::RandomNormal.new,
bias_initializer: Initializers::Zeros.new,
weight_regularizer: nil,
bias_regularizer: nil,
use_bias: true)
super(weight_initializer: weight_initializer, bias_initializer: bias_initializer,
weight_regularizer: weight_regularizer, bias_regularizer: bias_regularizer, use_bias: use_bias)
@num_nodes = num_nodes
end
|
Instance Attribute Details
#num_nodes ⇒ Object
Returns the value of attribute num_nodes.
228
229
230
|
# File 'lib/dnn/core/layers.rb', line 228
def num_nodes
@num_nodes
end
|
Instance Method Details
#backward(dy) ⇒ Object
260
261
262
263
264
265
266
|
# File 'lib/dnn/core/layers.rb', line 260
def backward(dy)
if @trainable
@weight.grad += @x.transpose.dot(dy)
@bias.grad += dy.sum(0) if @bias
end
dy.dot(@weight.data.transpose)
end
|
#build(input_shape) ⇒ Object
242
243
244
245
246
247
248
249
250
251
|
# File 'lib/dnn/core/layers.rb', line 242
def build(input_shape)
unless input_shape.length == 1
raise DNN_ShapeError, "Input shape is #{input_shape}. But input shape must be 1 dimensional."
end
super
num_prev_nodes = input_shape[0]
@weight.data = Xumo::SFloat.new(num_prev_nodes, @num_nodes)
@bias.data = Xumo::SFloat.new(@num_nodes) if @bias
init_weight_and_bias
end
|
#forward(x) ⇒ Object
253
254
255
256
257
258
|
# File 'lib/dnn/core/layers.rb', line 253
def forward(x)
@x = x
y = x.dot(@weight.data)
y += @bias.data if @bias
y
end
|
#load_hash(hash) ⇒ Object
#output_shape ⇒ Object
268
269
270
|
# File 'lib/dnn/core/layers.rb', line 268
def output_shape
[@num_nodes]
end
|
#to_hash ⇒ Object
272
273
274
|
# File 'lib/dnn/core/layers.rb', line 272
def to_hash
super(num_nodes: @num_nodes)
end
|