Class: DNN::Layers::LSTM
- Inherits:
-
RNN
- Object
- Layer
- HasParamLayer
- Connection
- RNN
- DNN::Layers::LSTM
- Defined in:
- lib/dnn/core/rnn_layers.rb
Instance Attribute Summary collapse
-
#cell ⇒ Object
readonly
Returns the value of attribute cell.
Attributes inherited from RNN
#hidden, #num_nodes, #recurrent_weight, #recurrent_weight_initializer, #recurrent_weight_regularizer, #return_sequences, #stateful
Attributes inherited from Connection
#bias, #bias_initializer, #bias_regularizer, #weight, #weight_initializer, #weight_regularizer
Attributes inherited from HasParamLayer
Attributes inherited from Layer
Instance Method Summary collapse
- #backward(dh2s) ⇒ Object
- #build(input_shape) ⇒ Object
- #forward(xs) ⇒ Object
- #get_params ⇒ Object
-
#initialize(num_nodes, stateful: false, return_sequences: true, weight_initializer: Initializers::RandomNormal.new, recurrent_weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, recurrent_weight_regularizer: nil, bias_regularizer: nil, use_bias: true) ⇒ LSTM
constructor
A new instance of LSTM.
- #reset_state ⇒ Object
Methods inherited from RNN
#load_hash, #output_shape, #regularizers, #to_hash
Methods inherited from Connection
#regularizers, #to_hash, #use_bias
Methods inherited from Layer
#built?, #call, call, from_hash, #load_hash, #output_shape, #to_hash
Constructor Details
#initialize(num_nodes, stateful: false, return_sequences: true, weight_initializer: Initializers::RandomNormal.new, recurrent_weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, recurrent_weight_regularizer: nil, bias_regularizer: nil, use_bias: true) ⇒ LSTM
Returns a new instance of LSTM.
283 284 285 286 287 288 289 290 291 292 293 294 295 |
# File 'lib/dnn/core/rnn_layers.rb', line 283 def initialize(num_nodes, stateful: false, return_sequences: true, weight_initializer: Initializers::RandomNormal.new, recurrent_weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, recurrent_weight_regularizer: nil, bias_regularizer: nil, use_bias: true) super @cell = Param.new end |
Instance Attribute Details
#cell ⇒ Object (readonly)
Returns the value of attribute cell.
281 282 283 |
# File 'lib/dnn/core/rnn_layers.rb', line 281 def cell @cell end |
Instance Method Details
#backward(dh2s) ⇒ Object
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
# File 'lib/dnn/core/rnn_layers.rb', line 331 def backward(dh2s) unless @return_sequences dh = dh2s dh2s = Xumo::SFloat.zeros(dh.shape[0], @time_length, dh.shape[1]) dh2s[true, -1, false] = dh end dxs = Xumo::SFloat.zeros(@xs_shape) dh = 0 dc = 0 (dh2s.shape[1] - 1).downto(0) do |t| dh2 = dh2s[true, t, false] dx, dh, dc = @layers[t].backward(dh2 + dh, dc) dxs[true, t, false] = dx end dxs end |
#build(input_shape) ⇒ Object
297 298 299 300 301 302 303 304 305 306 307 |
# File 'lib/dnn/core/rnn_layers.rb', line 297 def build(input_shape) super num_prev_nodes = input_shape[1] @weight.data = Xumo::SFloat.new(num_prev_nodes, @num_nodes * 4) @recurrent_weight.data = Xumo::SFloat.new(@num_nodes, @num_nodes * 4) @bias.data = Xumo::SFloat.new(@num_nodes * 4) if @bias init_weight_and_bias @time_length.times do @layers << LSTMDense.new(@weight, @recurrent_weight, @bias) end end |
#forward(xs) ⇒ Object
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
# File 'lib/dnn/core/rnn_layers.rb', line 309 def forward(xs) @xs_shape = xs.shape hs = Xumo::SFloat.zeros(xs.shape[0], @time_length, @num_nodes) h = nil c = nil if @stateful h = @hidden.data if @hidden.data c = @cell.data if @cell.data end h ||= Xumo::SFloat.zeros(xs.shape[0], @num_nodes) c ||= Xumo::SFloat.zeros(xs.shape[0], @num_nodes) xs.shape[1].times do |t| x = xs[true, t, false] @layers[t].trainable = @trainable h, c = @layers[t].forward(x, h, c) hs[true, t, false] = h end @hidden.data = h @cell.data = c @return_sequences ? hs : h end |
#get_params ⇒ Object
353 354 355 |
# File 'lib/dnn/core/rnn_layers.rb', line 353 def get_params { weight: @weight, recurrent_weight: @recurrent_weight, bias: @bias, hidden: @hidden, cell: @cell } end |
#reset_state ⇒ Object
348 349 350 351 |
# File 'lib/dnn/core/rnn_layers.rb', line 348 def reset_state super() @cell.data = @cell.data.fill(0) if @cell.data end |