Class: DNN::Layers::RNN
- Inherits:
-
Connection
- Object
- Layer
- HasParamLayer
- Connection
- DNN::Layers::RNN
- Defined in:
- lib/dnn/core/rnn_layers.rb
Overview
Super class of all RNN classes.
Instance Attribute Summary collapse
-
#hidden ⇒ Object
readonly
Returns the value of attribute hidden.
-
#num_nodes ⇒ Object
readonly
Returns the value of attribute num_nodes.
-
#recurrent_weight ⇒ Object
readonly
Returns the value of attribute recurrent_weight.
-
#recurrent_weight_initializer ⇒ Object
readonly
Returns the value of attribute recurrent_weight_initializer.
-
#recurrent_weight_regularizer ⇒ Object
readonly
Returns the value of attribute recurrent_weight_regularizer.
-
#return_sequences ⇒ Object
readonly
Returns the value of attribute return_sequences.
-
#stateful ⇒ Object
readonly
Returns the value of attribute stateful.
Attributes inherited from Connection
#bias, #bias_initializer, #bias_regularizer, #weight, #weight_initializer, #weight_regularizer
Attributes inherited from HasParamLayer
Attributes inherited from Layer
Instance Method Summary collapse
- #backward(dh2s) ⇒ Object
- #build(input_shape) ⇒ Object
- #forward(xs) ⇒ Object
- #get_params ⇒ Object
-
#initialize(num_nodes, stateful: false, return_sequences: true, weight_initializer: Initializers::RandomNormal.new, recurrent_weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, recurrent_weight_regularizer: nil, bias_regularizer: nil, use_bias: true) ⇒ RNN
constructor
A new instance of RNN.
- #load_hash(hash) ⇒ Object
- #output_shape ⇒ Object
- #regularizers ⇒ Object
-
#reset_state ⇒ Object
Reset the state of RNN.
- #to_hash(merge_hash = nil) ⇒ Object
Methods inherited from Connection
Methods inherited from Layer
#built?, #call, call, from_hash
Constructor Details
#initialize(num_nodes, stateful: false, return_sequences: true, weight_initializer: Initializers::RandomNormal.new, recurrent_weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, recurrent_weight_regularizer: nil, bias_regularizer: nil, use_bias: true) ⇒ RNN
Returns a new instance of RNN.
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
# File 'lib/dnn/core/rnn_layers.rb', line 19 def initialize(num_nodes, stateful: false, return_sequences: true, weight_initializer: Initializers::RandomNormal.new, recurrent_weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, recurrent_weight_regularizer: nil, bias_regularizer: nil, use_bias: true) super(weight_initializer: weight_initializer, bias_initializer: bias_initializer, weight_regularizer: weight_regularizer, bias_regularizer: bias_regularizer, use_bias: use_bias) @num_nodes = num_nodes @stateful = stateful @return_sequences = return_sequences @layers = [] @hidden = Param.new @recurrent_weight = Param.new(nil, Xumo::SFloat[0]) @recurrent_weight_initializer = recurrent_weight_initializer @recurrent_weight_regularizer = recurrent_weight_regularizer end |
Instance Attribute Details
#hidden ⇒ Object (readonly)
Returns the value of attribute hidden.
8 9 10 |
# File 'lib/dnn/core/rnn_layers.rb', line 8 def hidden @hidden end |
#num_nodes ⇒ Object (readonly)
Returns the value of attribute num_nodes.
6 7 8 |
# File 'lib/dnn/core/rnn_layers.rb', line 6 def num_nodes @num_nodes end |
#recurrent_weight ⇒ Object (readonly)
Returns the value of attribute recurrent_weight.
7 8 9 |
# File 'lib/dnn/core/rnn_layers.rb', line 7 def recurrent_weight @recurrent_weight end |
#recurrent_weight_initializer ⇒ Object (readonly)
Returns the value of attribute recurrent_weight_initializer.
11 12 13 |
# File 'lib/dnn/core/rnn_layers.rb', line 11 def recurrent_weight_initializer @recurrent_weight_initializer end |
#recurrent_weight_regularizer ⇒ Object (readonly)
Returns the value of attribute recurrent_weight_regularizer.
12 13 14 |
# File 'lib/dnn/core/rnn_layers.rb', line 12 def recurrent_weight_regularizer @recurrent_weight_regularizer end |
#return_sequences ⇒ Object (readonly)
Returns the value of attribute return_sequences.
10 11 12 |
# File 'lib/dnn/core/rnn_layers.rb', line 10 def return_sequences @return_sequences end |
#stateful ⇒ Object (readonly)
Returns the value of attribute stateful.
9 10 11 |
# File 'lib/dnn/core/rnn_layers.rb', line 9 def stateful @stateful end |
Instance Method Details
#backward(dh2s) ⇒ Object
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
# File 'lib/dnn/core/rnn_layers.rb', line 63 def backward(dh2s) unless @return_sequences dh = dh2s dh2s = Xumo::SFloat.zeros(dh.shape[0], @time_length, dh.shape[1]) dh2s[true, -1, false] = dh end dxs = Xumo::SFloat.zeros(@xs_shape) dh = 0 (dh2s.shape[1] - 1).downto(0) do |t| dh2 = dh2s[true, t, false] dx, dh = @layers[t].backward(dh2 + dh) dxs[true, t, false] = dx end dxs end |
#build(input_shape) ⇒ Object
41 42 43 44 45 46 47 |
# File 'lib/dnn/core/rnn_layers.rb', line 41 def build(input_shape) unless input_shape.length == 2 raise DNN_ShapeError, "Input shape is #{input_shape}. But input shape must be 2 dimensional." end super @time_length = @input_shape[0] end |
#forward(xs) ⇒ Object
49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/dnn/core/rnn_layers.rb', line 49 def forward(xs) @xs_shape = xs.shape hs = Xumo::SFloat.zeros(xs.shape[0], @time_length, @num_nodes) h = @stateful && @hidden.data ? @hidden.data : Xumo::SFloat.zeros(xs.shape[0], @num_nodes) xs.shape[1].times do |t| x = xs[true, t, false] @layers[t].trainable = @trainable h = @layers[t].forward(x, h) hs[true, t, false] = h end @hidden.data = h @return_sequences ? hs : h end |
#get_params ⇒ Object
108 109 110 |
# File 'lib/dnn/core/rnn_layers.rb', line 108 def get_params { weight: @weight, recurrent_weight: @recurrent_weight, bias: @bias, hidden: @hidden } end |
#load_hash(hash) ⇒ Object
95 96 97 98 99 100 101 102 103 104 105 106 |
# File 'lib/dnn/core/rnn_layers.rb', line 95 def load_hash(hash) initialize(hash[:num_nodes], stateful: hash[:stateful], return_sequences: hash[:return_sequences], weight_initializer: Initializers::Initializer.from_hash(hash[:weight_initializer]), recurrent_weight_initializer: Initializers::Initializer.from_hash(hash[:recurrent_weight_initializer]), bias_initializer: Initializers::Initializer.from_hash(hash[:bias_initializer]), weight_regularizer: Regularizers::Regularizer.from_hash(hash[:weight_regularizer]), recurrent_weight_regularizer: Regularizers::Regularizer.from_hash(hash[:recurrent_weight_regularizer]), bias_regularizer: Regularizers::Regularizer.from_hash(hash[:bias_regularizer]), use_bias: hash[:use_bias]) end |
#output_shape ⇒ Object
79 80 81 |
# File 'lib/dnn/core/rnn_layers.rb', line 79 def output_shape @return_sequences ? [@time_length, @num_nodes] : [@num_nodes] end |
#regularizers ⇒ Object
117 118 119 120 121 122 123 |
# File 'lib/dnn/core/rnn_layers.rb', line 117 def regularizers regularizers = [] regularizers << @weight_regularizer if @weight_regularizer regularizers << @recurrent_weight_regularizer if @recurrent_weight_regularizer regularizers << @bias_regularizer if @bias_regularizer regularizers end |
#reset_state ⇒ Object
Reset the state of RNN.
113 114 115 |
# File 'lib/dnn/core/rnn_layers.rb', line 113 def reset_state @hidden.data = @hidden.data.fill(0) if @hidden.data end |
#to_hash(merge_hash = nil) ⇒ Object
83 84 85 86 87 88 89 90 91 92 93 |
# File 'lib/dnn/core/rnn_layers.rb', line 83 def to_hash(merge_hash = nil) hash = { num_nodes: @num_nodes, stateful: @stateful, return_sequences: @return_sequences, recurrent_weight_initializer: @recurrent_weight_initializer.to_hash, recurrent_weight_regularizer: @recurrent_weight_regularizer&.to_hash, } hash.merge!(merge_hash) if merge_hash super(hash) end |