Class: DNN::Layers::GRUDense
- Inherits:
-
Object
- Object
- DNN::Layers::GRUDense
- Defined in:
- lib/dnn/core/rnn_layers.rb
Instance Attribute Summary collapse
-
#trainable ⇒ Object
Returns the value of attribute trainable.
Instance Method Summary collapse
- #backward(dh2) ⇒ Object
- #forward(x, h) ⇒ Object
-
#initialize(weight, recurrent_weight, bias) ⇒ GRUDense
constructor
A new instance of GRUDense.
Constructor Details
#initialize(weight, recurrent_weight, bias) ⇒ GRUDense
361 362 363 364 365 366 367 368 369 |
# File 'lib/dnn/core/rnn_layers.rb', line 361 def initialize(weight, recurrent_weight, bias) @weight = weight @recurrent_weight = recurrent_weight @bias = bias @update_sigmoid = Layers::Sigmoid.new @reset_sigmoid = Layers::Sigmoid.new @tanh = Layers::Tanh.new @trainable = true end |
Instance Attribute Details
#trainable ⇒ Object
Returns the value of attribute trainable.
359 360 361 |
# File 'lib/dnn/core/rnn_layers.rb', line 359 def trainable @trainable end |
Instance Method Details
#backward(dh2) ⇒ Object
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
# File 'lib/dnn/core/rnn_layers.rb', line 394 def backward(dh2) dtanh_h = @tanh.backward(dh2 * (1 - @update)) dh = dh2 * @update if @trainable dweight_h = @x.transpose.dot(dtanh_h) dweight2_h = (@h * @reset).transpose.dot(dtanh_h) dbias_h = dtanh_h.sum(0) if @bias end dx = dtanh_h.dot(@weight_h.transpose) dh += dtanh_h.dot(@weight2_h.transpose) * @reset dreset = @reset_sigmoid.backward(dtanh_h.dot(@weight2_h.transpose) * @h) dupdate = @update_sigmoid.backward(dh2 * @h - dh2 * @tanh_h) da = Xumo::SFloat.hstack([dupdate, dreset]) if @trainable dweight_a = @x.transpose.dot(da) dweight2_a = @h.transpose.dot(da) dbias_a = da.sum(0) if @bias end dx += da.dot(@weight_a.transpose) dh += da.dot(@weight2_a.transpose) if @trainable @weight.grad += Xumo::SFloat.hstack([dweight_a, dweight_h]) @recurrent_weight.grad += Xumo::SFloat.hstack([dweight2_a, dweight2_h]) @bias.grad += Xumo::SFloat.hstack([dbias_a, dbias_h]) if @bias end [dx, dh] end |
#forward(x, h) ⇒ Object
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
# File 'lib/dnn/core/rnn_layers.rb', line 371 def forward(x, h) @x = x @h = h num_nodes = h.shape[1] @weight_a = @weight.data[true, 0...(num_nodes * 2)] @weight2_a = @recurrent_weight.data[true, 0...(num_nodes * 2)] a = x.dot(@weight_a) + h.dot(@weight2_a) a += @bias.data[0...(num_nodes * 2)] if @bias @update = @update_sigmoid.forward(a[true, 0...num_nodes]) @reset = @reset_sigmoid.forward(a[true, num_nodes..-1]) @weight_h = @weight.data[true, (num_nodes * 2)..-1] @weight2_h = @recurrent_weight.data[true, (num_nodes * 2)..-1] @tanh_h = if @bias bias_h = @bias.data[(num_nodes * 2)..-1] @tanh.forward(x.dot(@weight_h) + (h * @reset).dot(@weight2_h) + bias_h) else @tanh.forward(x.dot(@weight_h) + (h * @reset).dot(@weight2_h)) end h2 = (1 - @update) * @tanh_h + @update * h h2 end |