Class: SyMath::Fraction

Inherits:
Operator show all
Defined in:
lib/symath/fraction.rb

Instance Attribute Summary

Attributes inherited from Operator

#args, #definition

Class Method Summary collapse

Instance Method Summary collapse

Methods inherited from Operator

#<=>, #==, #args_assoc, #arity, #dump, #hash, #is_associative?, #is_commutative?, #is_constant?, #name, #reduce, #replace, #variables

Methods inherited from Value

#*, #**, #+, #-, #-@, #/, #<, #<=, #<=>, #>, #>=, #^, #add, #base, create, #deep_clone, #div, #dump, #exponent, #inspect, #inv, #is_divisor_factor?, #is_finite?, #is_nan?, #is_negative?, #is_negative_number?, #is_number?, #is_positive?, #is_sum_exp?, #is_unit_quaternion?, #is_zero?, #mul, #neg, #power, #reduce, #reduce_modulo_sign, #sign, #sub, #terms, #to_m, #wedge

Methods included from Operation::Exterior

#flat, #hodge, #sharp

Methods included from Operation::Integration

#anti_derivative, #get_linear_constants, initialize, #int_constant, #int_failure, #int_function, #int_inv, #int_pattern, #int_power, #int_product, #int_sum, #integral_bounds

Methods included from Operation::Differential

#_d_wedge, #d, #d_failure, #d_fraction, #d_function, #d_function_def, #d_power, #d_product, initialize

Methods included from Operation

#iterate, #recurse

Methods included from Operation::DistributiveLaw

#combfrac_add_term, #combfrac_sum, #combine_fractions, #expand, #expand_product, #expand_single_pass, #factorize, #factorize_integer_poly, #factorize_simple, #has_fractional_terms?

Methods included from Operation::Normalization

#combine_factors, #compare_factors_and_swap, #normalize, #normalize_matrix, #normalize_power, #normalize_product, #normalize_single_pass, #normalize_sum, #order_product, #product_on_fraction_form, #reduce_constant_factors, #replace_combined_factors, #swap_factors

Methods included from Operation::Match

#build_assoc_op, #match, #match_assoc, #match_replace

Constructor Details

#initialize(dividend, divisor) ⇒ Fraction

Returns a new instance of Fraction.



90
91
92
# File 'lib/symath/fraction.rb', line 90

def initialize(dividend, divisor)
  super('/', [dividend, divisor])
end

Class Method Details

.compose_with_simplify(a, b) ⇒ Object



5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# File 'lib/symath/fraction.rb', line 5

def self.compose_with_simplify(a, b)
  a = a.to_m
  b = b.to_m

  return a if b == 1

  if a.is_finite?() == false or b.is_finite?() == false
    return self.simplify_inf(a, b)
  end
  
  # Divide by zero
  if b.is_zero?
    if SyMath.setting(:complex_arithmetic)
      if a.is_zero?
        return :nan.to_m
      else
        return :oo.to_m
      end
    else
      return :nan.to_m
    end
  end

  if a.is_a?(SyMath::Fraction)
    if b.is_a?(SyMath::Fraction)
      return self.new(a.dividend*b.divisor, a.divisor*b.dividend)
    else
      return self.new(a.dividend, a.divisor*b)
    end
  elsif b.is_a?(SyMath::Fraction)
    return self.new(a*b.divisor, b.dividend)
  end

  return self.new(a, b)
end

.simplify_inf(a, b) ⇒ Object

Divide infinite values



42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# File 'lib/symath/fraction.rb', line 42

def self.simplify_inf(a, b)
  # Indefinite factors
  if a.is_finite?.nil? or b.is_finite?.nil?
    return self.new(a, b)
  end

  # NaN/* = */NaN = NaN
  if a.is_nan? or b.is_nan?
    return :nan.to_m
  end
  
  # oo/oo = oo/-oo = -oo/oo = NaN
  if a.is_finite? == false and b.is_finite? == false
    return :nan.to_m
  end

  # */0 = NaN
  if b.is_zero?
    if SyMath.setting(:complex_arithmetic)
      return :oo.to_m
    else
      return :nan.to_m
    end
  end

  # n/oo = n/-oo = 0
  if a.is_finite?
    return 0.to_m
  end

  # oo/n = -oo/-n = oo, -oo/n = oo/-n = -oo
  if b.is_finite?
    if SyMath.setting(:complex_arithmetic)
      return :oo.to_m
    else
      if a.sign == b.sign
        return :oo.to_m
      else
        return -:oo.to_m
      end
    end
  end

  # :nocov:
  raise 'Internal error'
  # :nocov:
end

Instance Method Details

#dividendObject



94
95
96
# File 'lib/symath/fraction.rb', line 94

def dividend()
  return @args[0]
end

#divisorObject



98
99
100
# File 'lib/symath/fraction.rb', line 98

def divisor()
  return @args[1]
end

#evaluateObject



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# File 'lib/symath/fraction.rb', line 117

def evaluate()
  # Evaluate matrix division by divding elements
  if dividend.is_a?(SyMath::Matrix)
    return dividend.matrix_div(divisor)
  end

  # Evaluate df/dx expression.
  if dividend.is_a?(SyMath::Operator) and
    dividend.definition.is_a?(SyMath::Definition::D)
    # Evaluate if the divisor is a simple dform. The composed form
    # d(x) is accepted as well as the simple dx variable.
    if divisor.is_a?(SyMath::Definition::Variable) and divisor.is_d?
      v = divisor.undiff
    elsif divisor.is_a?(SyMath::Definition::D) and
         divisor.args[0].is_a?(SyMath::Definition::Variable) and
         divisor.args[0].type.is_scalar?
      v = divisor.args[0]
    else
      return super
    end

    diff = dividend.args[0].evaluate.d([v]).normalize
    # Hack: We must divide all terms by dv since the simplification does
    # not recognize factors common to each term
    ret = 0
    dv = v.to_d
    diff.terms.each do |t|
      ret += (t/dv).normalize
    end

    return ret
  end

  return super
end

#factorsObject



106
107
108
109
110
111
112
113
114
115
# File 'lib/symath/fraction.rb', line 106

def factors()
  return Enumerator.new do |f|
    dividend.factors.each { |d1| f << d1 }
    divisor.factors.each { |d2|
      if d2 != 1
        f << d2**-1
      end
    }
  end
end

#is_prod_exp?Boolean

Returns:

  • (Boolean)


102
103
104
# File 'lib/symath/fraction.rb', line 102

def is_prod_exp?()
  return true
end

#to_latexObject



173
174
175
# File 'lib/symath/fraction.rb', line 173

def to_latex()
  return '\frac{' + dividend.to_latex + '}{' + divisor.to_latex + '}'
end

#to_sObject



161
162
163
164
165
166
167
168
169
170
171
# File 'lib/symath/fraction.rb', line 161

def to_s()
  dividend_str = dividend.is_sum_exp? ? '(' + dividend.to_s + ')' : dividend.to_s
  divisor_str = (divisor.is_sum_exp? or divisor.is_prod_exp?) ?
                  '(' + divisor.to_s + ')' :
                  divisor.to_s
  if SyMath.setting(:expl_parentheses)
    return '('.to_s + dividend_str + '/' + divisor_str + ')'.to_s
  else
    return dividend_str + '/' + divisor_str
  end
end

#typeObject



153
154
155
156
157
158
159
# File 'lib/symath/fraction.rb', line 153

def type()
  if dividend.type.is_subtype?('rational')
    return 'rational'.to_t
  else
    return dividend.type
  end
end