Module: SyMath::Operation::DistributiveLaw

Included in:
Value
Defined in:
lib/symath/operation/distributivelaw.rb

Instance Method Summary collapse

Instance Method Details

#combfrac_add_term(sum, t) ⇒ Object



272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
# File 'lib/symath/operation/distributivelaw.rb', line 272

def combfrac_add_term(sum, t)
  c = 1
  dc = 1
  fact = 1.to_m
  divf = 1.to_m

  t.factors.each do |f|
    if f.is_number?
      c *= f.value
      next
    end

    if f == -1
      fact *= -1
      next
    end

    if f.is_divisor_factor?
      if f.base.is_number?
        dc *= (f.base.value**f.exponent.argument.value)
      else
        divf *= f.base
      end
      next
    end

    fact *= f
  end

  if !sum.key?(divf)
    sum[divf] = {}
    sum[divf][:fact] = fact
    sum[divf][:c] = c
    sum[divf][:dc] = dc
    return
  end

  s = sum[divf]
  lcm = dc.lcm(s[:dc])

  if lcm > dc
    c *= lcm/dc
    dc = lcm
  end

  if lcm > s[:dc]
    s[:c] *= lcm/s[:dc]
    s[:dc] = lcm
  end

  if fact.nil?
    fact = c.to_m
  elsif c > 1
    fact = fact.mul(c.to_m)
  end

  if s[:fact].nil?
    fact = fact.add(s[:c].to_m) if s[:c] > 1
  else
    fact = fact.add(s[:c] > 1 ? s[:c].to_m*s[:fact] : s[:fact])
  end
  
  s[:fact] = fact
  s[:c] = 1
end

#combfrac_sumObject



338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# File 'lib/symath/operation/distributivelaw.rb', line 338

def combfrac_sum
  sum = {}

  terms.each do |t|
    combfrac_add_term(sum, t)
  end

  ret = 0.to_m

  sum.keys.each do |divf|
    s = sum[divf]
    if s[:c] > 1
      r = s[:c].to_m.mul(s[:fact])
    else
      r = s[:fact]
    end

    if divf.nil?
      r = r.div(s[:dc]) if s[:dc] > 1
    elsif s[:dc] > 1
      r = r.div(s[:dc].to_m*divf)
    else
      r = r.div(divf)
    end

    ret += r
    return ret
  end
end

#combine_fractionsObject

The combine_fractions() method combines fractions by first determining their least common denominator, then applying the distributive law. Examples:

a/c + b/c   -> (a + b)/c
2/3 + 3/4   -> 17/12
a/2 + 2*a/3 -> 7*a/6
2*a/b + 2*c/(3*b) -> (6*a + 2*c)/(3*b)


264
265
266
267
268
269
270
# File 'lib/symath/operation/distributivelaw.rb', line 264

def combine_fractions()
  if is_sum_exp?
    return combfrac_sum
  end

  return recurse('combine_fractions', nil)
end

#expandObject

The expand() method expands a product using the distributive law over products of sums:

a*(b + c) -> a*b + a*c
a*(b - c) -> a*b - a*c

The transformation iterates until no changes occur. Thus, the expression

(a + b)*(c + d) transforms to a*c + a*d + b*c + b*d


11
12
13
# File 'lib/symath/operation/distributivelaw.rb', line 11

def expand()
  return iterate('expand_single_pass')
end

#expand_product(exp1, exp2) ⇒ Object



51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# File 'lib/symath/operation/distributivelaw.rb', line 51

def expand_product(exp1, exp2)
  sign = 1.to_m

  if exp1.is_a?(SyMath::Minus)
    exp1 = exp1.argument
    sign = -sign
  end

  if exp2.is_a?(SyMath::Minus)
    exp2 = exp2.argument
    sign = -sign
  end

  ret = 0.to_m
    
  exp1.terms.each do |t1|
    exp2.terms.each do |t2|
      ret += sign*t1*t2
    end
  end

  return ret
end

#expand_single_passObject



15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# File 'lib/symath/operation/distributivelaw.rb', line 15

def expand_single_pass
  if is_a?(SyMath::Minus)
    return -argument.expand_single_pass
  end

  if is_a?(SyMath::Power) or is_a?(SyMath::Product)
    ret = 1.to_m

    factors.each do |f|
      if f.is_a?(SyMath::Power)
        if f.exponent.is_number?
          f.exponent.value.times { ret = expand_product(ret, f.base) }
        else
          ret = expand_product(ret, f)
        end
      else
        ret = expand_product(ret, f)
      end
    end

    return ret
  end

  if is_sum_exp?
    ret = 0.to_m
    
    terms.each do |t|
      ret += t.expand_single_pass
    end

    return ret
  end
  
  return self
end

#factorizeObject

The factorize() method factorizes a univariate polynomial expression with integer coefficients.



226
227
228
229
230
231
232
233
234
235
# File 'lib/symath/operation/distributivelaw.rb', line 226

def factorize()
  if (has_fractional_terms?)
    e = combine_fractions
    if e.is_a?(SyMath::Fraction)
      return e.dividend.factorize_integer_poly.div(e.divisor)
    end
  else
    return factorize_integer_poly
  end
end

#factorize_integer_polyObject



237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# File 'lib/symath/operation/distributivelaw.rb', line 237

def factorize_integer_poly()
  dup = SyMath::Poly::DUP.new(self)
  factors = dup.factor
    
  ret = factors[1].map do |f|
    if f[1] != 1
      f[0].to_m.power(f[1])
    else
      f[0].to_m
    end
  end

  if factors[0] != 1
    ret.unshift(factors[0].to_m)
  end

  return ret.inject(:mul)
end

#factorize_simpleObject

Collect factors which occur in each term.



88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# File 'lib/symath/operation/distributivelaw.rb', line 88

def factorize_simple()
  return self if !self.is_sum_exp?

  sfactors = {}
  vfactors = {}
  coeffs = []
  dcoeffs = []
  vectors = []
  
  terms.each_with_index do |t, i|
    c = 1
    dc = 1
    vf = 1.to_m
    
    t.factors.each do |f|
      # Sign
      if f == -1
        c *= -1
        next
      end

      # Constant
      if f.is_number?
        c *= f.value
        next
      end

      if f.is_divisor_factor?
        # Divisor constant
        if f.base.is_number?
          dc *= f.base.value**f.exponent.argument.value
          next
        end

        # Divisor factor
        ex = f.base

        if !sfactors.key?(ex)
          sfactors[ex] = []
        end

        if sfactors[ex][i].nil?
          sfactors[ex][i] = - f.exponent.argument.value
        else
          sfactors[ex][i] -= f.exponent.argument.value
        end
        next
      end

      # Vector factor
      if f.type.is_subtype?(:tensor)
        vf *= f
        next
      end

      # Scalar factor
      if f.exponent.is_number?
        ex = f.base
        n = f.exponent.value
      else
        ex = f
        n = 1
      end
    
      if !sfactors.key?(ex)
        sfactors[ex] = []
      end
    
      sfactors[ex][i] = n.value        
    end
    
    coeffs.push(c)
    dcoeffs.push(dc)
    vectors.push(vf)
  end

  # If there is only one term, there is nothing to factorize
  if coeffs.length == 1
    return self
  end

  # Try to factorize the scalar part
  spart = 1.to_m
  dpart = 1.to_m
  sfactors.each do |ex, pow|
    # Replace nil with 0 and extend array to full length
    pow.map! { |i| i || 0 }
    (coeffs.length - pow.length).times { pow << 0 }

    if pow.max > 0 and pow.min > 0
      f = pow.min
      pow.map! { |i| i - f }
      spart = spart*ex**f
    end
    
    if pow.max < 0 and pow.min < 0
      f = pow.max
      pow.map! { |i| i - f }
      dpart = dpart*ex**(-f)
    end
  end
  
  # Return self if there were no common factors.
  if spart == 1 and dpart == 1
    return self
  end

  # Extract gcd from coeffs and dcoeffs
  gcd_coeffs = coeffs.inject(:gcd)
  gcd_dcoeffs = dcoeffs.inject(:gcd)
  coeffs.map! { |i| i/gcd_coeffs }
  dcoeffs.map! { |i| i/gcd_dcoeffs }
  
  newsum = 0.to_m

  (0..coeffs.length-1).each do |i|
    t = coeffs[i].to_m
    
    sfactors.each do |ex, pow|
      next if pow[i].nil?
      if pow[i] > 0
        t *= ex**pow[i]
      elsif pow[i] < 0
        t /= ex**(-pow[i])
      end
    end

    t /= dcoeffs[i]
    t *= vectors[i]

    newsum += t
  end

  return gcd_coeffs*spart*newsum/(gcd_dcoeffs*dpart)
end

#has_fractional_terms?Boolean

Returns:

  • (Boolean)


75
76
77
78
79
80
81
82
83
84
85
# File 'lib/symath/operation/distributivelaw.rb', line 75

def has_fractional_terms?()
  terms.each do |t|
    t.factors.each do |f|
      if f.is_divisor_factor?
        return true
      end
    end
  end

  return false
end