Class: SyMath::Matrix

Inherits:
Value
  • Object
show all
Defined in:
lib/symath/matrix.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Methods inherited from Value

#*, #**, #<, #<=, #<=>, #>, #>=, #^, #add, #base, compose_with_simplify, create, #deep_clone, #div, #dump, #evaluate, #exponent, #factors, #inspect, #inv, #is_divisor_factor?, #is_finite?, #is_nan?, #is_negative?, #is_negative_number?, #is_number?, #is_positive?, #is_prod_exp?, #is_sum_exp?, #is_unit_quaternion?, #is_zero?, #mul, #neg, #power, #reduce, #reduce_modulo_sign, #sign, #sub, #terms, #to_m, #wedge

Methods included from Operation::Exterior

#flat, #hodge, #sharp

Methods included from Operation::Integration

#anti_derivative, #get_linear_constants, initialize, #int_constant, #int_failure, #int_function, #int_inv, #int_pattern, #int_power, #int_product, #int_sum, #integral_bounds

Methods included from Operation::Differential

#_d_wedge, #d, #d_failure, #d_fraction, #d_function, #d_function_def, #d_power, #d_product, initialize

Methods included from Operation

#iterate, #recurse

Methods included from Operation::DistributiveLaw

#combfrac_add_term, #combfrac_sum, #combine_fractions, #expand, #expand_product, #expand_single_pass, #factorize, #factorize_integer_poly, #factorize_simple, #has_fractional_terms?

Methods included from Operation::Normalization

#combine_factors, #compare_factors_and_swap, #normalize, #normalize_matrix, #normalize_power, #normalize_product, #normalize_single_pass, #normalize_sum, #order_product, #product_on_fraction_form, #reduce_constant_factors, #replace_combined_factors, #swap_factors

Methods included from Operation::Match

#build_assoc_op, #match, #match_assoc, #match_replace

Constructor Details

#initialize(data) ⇒ Matrix

Returns a new instance of Matrix.



7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# File 'lib/symath/matrix.rb', line 7

def initialize(data)
  raise 'Not an array: ' + data.to_s if !data.is_a?(Array)
  raise 'Array is empty' if data.length == 0

  if data[0].is_a?(Array) then
    # Multidimensional array
    @nrows = data.length
    raise 'Number of columns is zero' if data[0].length == 0
    @ncols = data[0].length
    # Check that all rows contain arrays of the same length
    data.each do |r|
      raise 'Row is not array' if !r.is_a?(Array)
      raise 'Row has invalid length' if r.length != @ncols
    end
    @elements = data.map { |r| r.map { |c| c.to_m } }
  else
    # Simple array. Creates a single row matrix
    @nrows = 1
    @ncols = data.length
    @elements = [data.map { |c| c.to_m }]
  end
end

Instance Attribute Details

#ncolsObject (readonly)

Returns the value of attribute ncols.



5
6
7
# File 'lib/symath/matrix.rb', line 5

def ncols
  @ncols
end

#nrowsObject (readonly)

Returns the value of attribute nrows.



5
6
7
# File 'lib/symath/matrix.rb', line 5

def nrows
  @nrows
end

Instance Method Details

#+(other) ⇒ Object



112
113
114
# File 'lib/symath/matrix.rb', line 112

def +(other)
  return add(other)
end

#-(other) ⇒ Object



128
129
130
# File 'lib/symath/matrix.rb', line 128

def -(other)
  return sub(other)
end

#-@Object



142
143
144
# File 'lib/symath/matrix.rb', line 142

def -@()
  return neg
end

#/(other) ⇒ Object



92
93
94
# File 'lib/symath/matrix.rb', line 92

def /(other)
  return div(other)
end

#==(other) ⇒ Object Also known as: eql?



219
220
221
222
223
224
225
226
227
228
229
230
231
232
# File 'lib/symath/matrix.rb', line 219

def ==(other)
  return false if !other.is_a?(SyMath::Matrix)

  return false if nrows != other.nrows
  return false if ncols != other.ncols

  (0..@nrows - 1).each do |r|
    (0..@ncols - 1).each do |c|
      return false if self[r, c] != other[r, c]
    end
  end

  return true
end

#[](i, j) ⇒ Object



52
53
54
# File 'lib/symath/matrix.rb', line 52

def [](i, j)
  return @elements[i][j]
end

#adjugateObject

The adjugate of a matrix is the transpose of the cofactor matrix



157
158
159
160
161
162
163
# File 'lib/symath/matrix.rb', line 157

def adjugate()
  data = (0..@ncols - 1).map do |c|
    (0..@nrows - 1).map { |r| cofactor(r, c) }
  end

  return SyMath::Matrix.new(data)
end

#cofactor(r, c) ⇒ Object

The cofactor of an element is the minor given by the rows and columns not including the element, multiplied by a sign factor which alternates for each row and column



206
207
208
209
210
211
# File 'lib/symath/matrix.rb', line 206

def cofactor(r, c)
  sign = (-1)**(r + c)
  rows = (0..@nrows - 1).to_a - [r]
  cols = (0..@ncols - 1).to_a - [c]
  return minor(rows, cols)*sign.to_m
end

#col(i) ⇒ Object



48
49
50
# File 'lib/symath/matrix.rb', line 48

def col(i)
  return @elements.map { |r| r[i] }
end

#determinantObject



165
166
167
168
169
# File 'lib/symath/matrix.rb', line 165

def determinant()
  raise 'Matrix is not square' if !is_square?
  
  return minor((0..@nrows - 1).to_a, (0..@ncols - 1).to_a)
end

#hashObject

:nocov:



40
41
42
# File 'lib/symath/matrix.rb', line 40

def hash()
  return [0, 0].hash
end

#inverseObject



150
151
152
153
154
# File 'lib/symath/matrix.rb', line 150

def inverse()
  raise 'Matrix is not square' if !is_square?

  return adjugate.matrix_div(determinant)
end

#is_associative?Boolean

Returns:

  • (Boolean)


35
36
37
# File 'lib/symath/matrix.rb', line 35

def is_associative?()
  return true
end

#is_commutative?Boolean

:nocov:

Returns:

  • (Boolean)


31
32
33
# File 'lib/symath/matrix.rb', line 31

def is_commutative?()
  return false
end

#is_square?Boolean

Returns:

  • (Boolean)


56
57
58
# File 'lib/symath/matrix.rb', line 56

def is_square?()
  return @ncols == @nrows
end

#matrix_add(other) ⇒ Object



96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# File 'lib/symath/matrix.rb', line 96

def matrix_add(other)
  if other.is_a?(SyMath::Minus) and other.argument.is_a?(SyMath::Matrix)
    return self.matrix_sub(other.argument)
  end

  raise 'Invalid dimensions' if @ncols != other.ncols or @nrows != other.nrows

  data = (0..@nrows - 1).map do |r|
    (0..@ncols - 1).map do |c|
      self[r, c] + other[r, c]
    end
  end

  return SyMath::Matrix.new(data)
end

#matrix_div(other) ⇒ Object



82
83
84
85
86
87
88
89
90
# File 'lib/symath/matrix.rb', line 82

def matrix_div(other)
  raise 'Cannot divide matrix by matrix' if other.is_a?(SyMath::Matrix)

  data = (0..@nrows - 1).map do |r|
    (0..@ncols - 1).map { |c| self[r, c]/other }
  end

  return SyMath::Matrix.new(data)
end

#matrix_mul(other) ⇒ Object



60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# File 'lib/symath/matrix.rb', line 60

def matrix_mul(other)
  if !other.is_a?(SyMath::Matrix)
    data = (0..@nrows - 1).map do |r|
      (0..@ncols - 1).map { |c| self[r, c]*other }
    end

    return SyMath::Matrix.new(data)
  end
  
  raise 'Invalid dimensions' if @ncols != other.nrows

  data = (0..@nrows - 1).map do |r|
    (0..other.ncols - 1).map do |c|
      (0..@ncols - 1).map do |c2|
        self[r, c2]*other[c2, c]
      end.inject(:+) 
    end
  end

  return SyMath::Matrix.new(data)
end

#matrix_negObject



132
133
134
135
136
137
138
139
140
# File 'lib/symath/matrix.rb', line 132

def matrix_neg()
  data = @elements.map do |r|
    r.map do |e|
      - e
    end
  end

  return SyMath::Matrix.new(data)
end

#matrix_sub(other) ⇒ Object



116
117
118
119
120
121
122
123
124
125
126
# File 'lib/symath/matrix.rb', line 116

def matrix_sub(other)
  raise 'Invalid dimensions' if @ncols != other.ncols or @nrows != other.nrows

  data = (0..@nrows - 1).map do |r|
    (0..@ncols - 1).map do |c|
      self[r, c] - other[r, c]
    end
  end

  return SyMath::Matrix.new(data)
end

#minor(rows, cols) ⇒ Object

The minor is the determinant of a submatrix. The submatrix is given by the rows and cols which are arrays of indexes to the rows and columns to be included



174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# File 'lib/symath/matrix.rb', line 174

def minor(rows, cols)
  raise 'Not square' if rows.length != cols.length

  # Determinant of a single element is just the element
  if rows.length == 1
    return self[rows[0], cols[0]]
  end

  ret = 0.to_m
  sign = 1
  subrows = rows - [rows[0]]

  # Loop over all elements e in first row. Calculate determinant as:
  #   sum(sign*e*det(rows + cols except the one including e))
  # The sign variable alternates between 1 and -1 for each summand 
  cols.each do |c|
    subcols = cols - [c]
    if (sign > 0)
      ret += self[rows[0], c]*minor(subrows, subcols)
    else
      ret -= self[rows[0], c]*minor(subrows, subcols)
    end

    sign *= -1
  end

  return ret
end

#row(i) ⇒ Object



44
45
46
# File 'lib/symath/matrix.rb', line 44

def row(i)
  return @elements[i]
end

#to_sObject



236
237
238
239
240
# File 'lib/symath/matrix.rb', line 236

def to_s()
  # This will in many cases look rather messy, but we don't have the option
  # to format the matrix over multiple lines.
  return '[' + @elements.map { |r| r.map { |c| c.to_s }.join(', ') }.join('; ') + ']'
end

#traceObject



213
214
215
216
217
# File 'lib/symath/matrix.rb', line 213

def trace()
  raise 'Matrix is not square' if !is_square?
  
  return (0..@nrows - 1).map { |i| self[i, i] }.inject(:+)
end

#transposeObject



146
147
148
# File 'lib/symath/matrix.rb', line 146

def transpose()
  return SyMath::Matrix.new(@elements.transpose)
end

#typeObject



242
243
244
# File 'lib/symath/matrix.rb', line 242

def type()
  return SyMath::Type.new('matrix', dimn: ncols, dimm: nrows)
end