Module: SyMath::Operation::Integration

Included in:
Value
Defined in:
lib/symath/operation/integration.rb

Defined Under Namespace

Classes: IntegrationError

Constant Summary collapse

@@functions =

This operation provides methods for calculating some simple indefinite integrals (anti derivatives), and definite integrals from the boundaries of the anti-derivatives. NB: The algorithm is home made and extermely limited. It should be replaced with some of the known integration algorithm

{}

Class Method Summary collapse

Instance Method Summary collapse

Class Method Details

.initializeObject



16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# File 'lib/symath/operation/integration.rb', line 16

def self.initialize()
  # Anti-derivatives of simple functions with one variable
  # FIXME: Clean up formulas
  @@functions = {
    # Logarithm
    :ln  => :a.to_m*fn(:ln, :a.to_m) - :a.to_m,
    # Trigonometric functions
    :sin => - fn(:cos, :a.to_m),
    :cos => fn(:sin, :a.to_m),
    :tan => - fn(:ln, fn(:abs, fn(:cos, :a.to_m))),
    :cot => fn(:ln, fn(:abs, fn(:sin, :a.to_m))),
    :sec => fn(:ln, fn(:abs, fn(:sec, :a.to_m) + fn(:tan, :a.to_m))),
    :csc => - fn(:ln, fn(:abs, fn(:csc, :a.to_m) + fn(:cot, :a.to_m))),
    # Inverse trigonometric functions
    :arcsin => :a.to_m*fn(:arcsin, :a.to_m) + fn(:sqrt, 1.to_m - :a.to_m**2),
    :arccos => :a.to_m*fn(:arccos, :a.to_m) - fn(:sqrt, 1.to_m - :a.to_m**2),
    :arctan => :a.to_m*fn(:arctan, :a.to_m) -
               fn(:ln, fn(:abs, 1.to_m + :a.to_m**2))/2,
    :arccot => :a.to_m*fn(:arccot, :a.to_m) +
               fn(:ln, fn(:abs, 1.to_m + :a.to_m**2))/2,
    :arcsec => :a.to_m*fn(:arcsec, :a.to_m) -
               fn(:ln, fn(:abs, 1.to_m + fn(:sqrt, 1.to_m - :a.to_m**-2))),
    :arccsc => :a.to_m*fn(:arccsc, :a.to_m) +
               fn(:ln, fn(:abs, 1.to_m + fn(:sqrt, 1.to_m - :a.to_m**-2))),
    # Hyperbolic functions
    :sinh => fn(:cosh, :a.to_m),
    :cosh => fn(:sinh, :a.to_m),
    :tanh => fn(:ln, fn(:cosh, :a.to_m)),
    :coth => fn(:ln, fn(:abs, fn(:sinh, :a.to_m))),
    :sech => fn(:arctan, fn(:sinh, :a.to_m)),
    :csch => fn(:ln, fn(:abs, fn(:tanh, :a.to_m/2))),
    # Inverse hyperbolic functions
    :arsinh => :a.to_m*fn(:arsinh, :a.to_m) - fn(:sqrt, :a.to_m**2 + 1),
    :arcosh => :a.to_m*fn(:arcosh, :a.to_m) - fn(:sqrt, :a.to_m**2 - 1),
    :artanh => :a.to_m*fn(:artanh, :a.to_m) + fn(:ln, 1.to_m - :a.to_m**2)/2,
    :arcoth => :a.to_m*fn(:arcoth, :a.to_m) + fn(:ln, :a.to_m**2 - 1)/2,
    :arsech => :a.to_m*fn(:arsech, :a.to_m) + fn(:arcsin, :a.to_m),
    :arcsch => :a.to_m*fn(:arcsch, :a.to_m) + fn(:abs, fn(:arsinh, :a.to_m)),
  }

  @@patterns = {
    # Polynomial functions
    (1 - :a**2)**(-1.to_m/2)   => fn(:arcsin, :a),
    (1 + :a**2)**-1            => fn(:arctan, :a),
    # Logarithmic functions
    fn(:ln, :a)**2             => :a*fn(:ln, :a)**2 - 2*:a*fn(:ln, :a) + 2*:a,
    1/(:a*fn(:ln, :a))         => fn(:ln, fn(:abs, fn(:ln, :a))),
    # Trigonometric functions
    fn(:sin, :a)**2            => (:a - fn(:sin, :a)*fn(:cos, :a))/2,
    fn(:sin, :a)**3            => fn(:cos, 3*:a)/12 - 3*fn(:cos, :a)/4,
    fn(:cos, :a)**2            => (:a + fn(:sin, :a)*fn(:cos, :a))/2,
    fn(:cos, :a)**3            => fn(:sin, 3*:a)/12 + 3*fn(:sin, :a)/4,
    fn(:sec, :a)**2            => fn(:tan, :a),
    fn(:sec, :a)**3            => fn(:sec, :a)*fn(:tan, :a)/2 +
                                  fn(:ln, fn(:abs, fn(:sec, :a) + fn(:tan, :a)))/2,    
    fn(:csc, :a)**2            => - fn(:cot, :a),
    fn(:csc, :a)**3            => - fn(:csc, :a)*fn(:cot, :a)/2 -
                                  fn(:ln, fn(:abs, fn(:csc, :a) + fn(:cot, :a)))/2,
    # Hyperbolic functions
    fn(:sinh, :x)**2           => fn(:sinh, 2*:a)/4 - :a/2,
    fn(:cosh, :x)**2           => fn(:sinh, 2*:a)/4 + :a/2,
    fn(:tanh, :x)**2           => :a - fn(:tanh, :a),
    # Combined trigonometric functions
    fn(:sin, :a)*fn(:cos, :a)     => fn(:sin, :a)**2/2,
    fn(:sec, :a)*fn(:tan, :a)     => fn(:sec, :a),
    fn(:csc, :a)*fn(:cot, :a)     => - fn(:csc, :a),
    1/(fn(:sin, :a)*fn(:cos, :a)) => fn(:ln, fn(:abs, fn(:tan, :a))),
    fn(:sin, fn(:ln, :a))         => :a*(fn(:sin, fn(:ln, :a)) -
                                         fn(:cos, fn(:ln, :a)))/2,
    fn(:cos, fn(:ln, :a))         => :a*(fn(:sin, fn(:ln, :a)) +
                                         fn(:cos, fn(:ln, :a)))/2,
  }
end

Instance Method Details

#anti_derivative(var) ⇒ Object



90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# File 'lib/symath/operation/integration.rb', line 90

def anti_derivative(var)
  raise 'Var is not a differential' if !var.is_d?

  if is_constant?([var.undiff].to_set)
    return int_constant(var)
  end

  if self.is_a?(SyMath::Minus)
    return - self.argument.anti_derivative(var)
  end

  if is_sum_exp?
    return int_sum(var)
  end

  if is_prod_exp?
    return int_product(var)
  end

  if is_a?(SyMath::Operator) and @@functions.key?(name.to_sym)
    return int_function(var)
  end

  return int_power(var)
end

#get_linear_constants(arg, var) ⇒ Object



192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# File 'lib/symath/operation/integration.rb', line 192

def get_linear_constants(arg, var)
  # If arg is on the form c1*var + c2, return the two constants.
  vu = var.undiff
  vset = [vu].to_set
  c1 = 0.to_m
  c2 = 0.to_m

  arg.terms.each do |t|
    if t.is_constant?(vset)
      c2 += t
    else
      # Split term into a constant part and (hopefully) a single factor
      # which equals to var
      prodc = 1.to_m
      has_var = false

      t.factors.each do |f|
        if !f.type.is_subtype?(:scalar)
          # Non-scalar factor. Don't know what to do
          return
        end

        if f.is_constant?(vset)
          prodc *= f
          next
        end

        # Found more than one var. Return negative
        if has_var
          return
        end

        # Factor is var. Remember it, but continue to examine the other
        # factors.
        if f == vu
          has_var = true
          next
        end

        # Factor is a function of var. Return negative
        return
      end

      c1 += prodc
    end

    # Return negative if the whole expression is constant
    return if c1 == 0
  end

  return [c1, c2]
end

#int_constant(var) ⇒ Object



147
148
149
150
# File 'lib/symath/operation/integration.rb', line 147

def int_constant(var)
  # c => c*x
  return mul(var.undiff)
end

#int_failureObject

Raises:



116
117
118
# File 'lib/symath/operation/integration.rb', line 116

def int_failure()    
  raise IntegrationError, 'Cannot find an antiderivative for expression ' + to_s
end

#int_function(var) ⇒ Object



265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# File 'lib/symath/operation/integration.rb', line 265

def int_function(var)
  # At this point exp is a single argument function which we know how
  # to integrate. Check that the argument is a linear function
  arg = args[0]
  (c1, c2) = get_linear_constants(arg, var)
  if c1.nil?
    # Argument is not linear. Try pattern match as a last resort.
    return int_pattern(var)
  else
    # The function argument is linear. Do the integration.
    # int(func(c1*x + c2)) -> Func(c1*x+ c2)/c1
    fexp = @@functions[name.to_sym].deep_clone
    fexp.replace({ :a.to_m =>  arg })
    return c1.inv*fexp
  end
end

#int_inv(var) ⇒ Object



245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# File 'lib/symath/operation/integration.rb', line 245

def int_inv(var)
  # Hack: integrate 1/exp (by convention of the sibling functions,
  # it should have integrated exp)
  xp = exponent
  vu = var.undiff
  vset = [vu].to_set

  if base == vu and xp.is_constant?(vset)
    if xp == 1.to_m
      # 1/x => ln|x|
      return fn(:ln, fn(:abs, vu))
    else
      # 1/x**n => x**(1 - n)/(1 - n)
      return vu**(1.to_m - xp)/(1.to_m - xp)
    end
  end

  (self**-1).int_pattern(var)
end

#int_pattern(var) ⇒ Object



120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# File 'lib/symath/operation/integration.rb', line 120

def int_pattern(var)
  # Try to match expression against various patterns
  vu = var.undiff
  a = :a.to_m

  @@patterns.each do |f, f_int|
    m = match(f, [a])
    next if m.nil?

    m.each do |mi|
      # We must check that variable a maps to c1*x + c2
      (c1, c2) = get_linear_constants(mi[a], var)
      next if c1.nil?

      # We have found a match, and the argument is a linear function.
      # Substitute the argument into the free variable of the pattern
      # function.
      ret = f_int.deep_clone
      ret.replace({ a => mi[a] })
      return c1.inv*ret
    end
  end

  # Give up!
  int_failure
end

#int_power(var) ⇒ Object



282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# File 'lib/symath/operation/integration.rb', line 282

def int_power(var)
  # At this point, exp should not be a constant, a sum or a product.
  vu = var.undiff
  vset = [vu].to_set

  b = base
  xp = exponent

  if b == vu
    if !xp.is_constant?(vset)
      # Cannot integrate x**f(x)
      int_failure
    end

    # x**n => x**(n + 1)/(n + 1)
    return vu**(xp + 1)/(xp + 1)
  end

  # Check exponential functions
  if b.is_constant?(vset)
    (c1, c2) = get_linear_constants(xp, var)
    # b**(c1*x + c2) => b**(c1*x + c2)/(b*ln(c1))
    if c1.nil?
      int_failure
    end

    return b**(xp)/(c1*fn(:ln, b))
  end

  # Try pattern match as last resort
  int_pattern(var)
end

#int_product(var) ⇒ Object



152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# File 'lib/symath/operation/integration.rb', line 152

def int_product(var)
  vu = var.undiff
  vset = [vu].to_set

  prodc = 1.to_m
  proda = []
  diva = []
  
  factors.each do |f|
    if !f.type.is_subtype?(:scalar)
      int_failure
    end

    if f.is_constant?(vset)
      prodc *= f
      next
    end

    if f.is_divisor_factor?
      diva.push f.base**f.exponent.argument
      next
    end

    proda.push f
  end

  # c/exp
  if proda.length == 0 and diva.length == 1
    return prodc*diva[0].int_inv(var)
  end

  # c*exp
  if proda.length == 1 and diva.length == 0
    return prodc*proda[0].anti_derivative(var)
  end

  exp = proda.inject(1.to_m, :*)/diva.inject(1.to_m, :*)
  return prodc*exp.int_pattern(var)
end

#int_sum(var) ⇒ Object



315
316
317
318
319
# File 'lib/symath/operation/integration.rb', line 315

def int_sum(var)
  ret = 0.to_m
  terms.each { |s| ret += s.anti_derivative(var) }
  return ret
end

#integral_bounds(var, a, b) ⇒ Object

This method calculates the difference of two boundary values of an expression (typically used for calculating the definite integral from the anti-derivative, using the fundamental theorem of calculus)



324
325
326
327
328
# File 'lib/symath/operation/integration.rb', line 324

def integral_bounds(var, a, b)
  bexp = deep_clone.replace({ var =>  b })
  aexp = deep_clone.replace({ var =>  a })
  return bexp - aexp
end