Module: SyMath::Operation::Differential
Defined Under Namespace
Classes: DifferentialError
Class Method Summary collapse
-
.initialize ⇒ Object
Module initialization.
Instance Method Summary collapse
-
#_d_wedge(exp1, exp2) ⇒ Object
Apply wedge product or ordinary product between two expressions, depending on whether or not they have vector parts.
- #d(vars) ⇒ Object
- #d_failure ⇒ Object
- #d_fraction(vars) ⇒ Object
- #d_function(vars) ⇒ Object
- #d_function_def(vars) ⇒ Object
- #d_power(vars) ⇒ Object
-
#d_product(vars) ⇒ Object
For simplicity, just use wedge products all the time.
Methods included from SyMath::Operation
Class Method Details
.initialize ⇒ Object
Module initialization
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
# File 'lib/symath/operation/differential.rb', line 20 def self.initialize() # Map of single argument functions to their derivative. # FIXME: Check whether this still works if the symbol a is defined? @@functions = { # Exponential and trigonometric functions :exp => definition(:exp), :ln => lmd(1.to_m/:a.to_m, :a), # Trigonometric functions :sin => definition(:cos), :cos => lmd(- fn(:sin, :a), :a), :tan => lmd(1.to_m + fn(:tan, :a)**2, :a), :cot => lmd(- (1.to_m + fn(:cot, :a)**2), :a), :sec => lmd(fn(:sec, :a)*fn(:tan, :a), :a), :csc => lmd(- fn(:cot, :a.to_m)*fn(:csc, :a.to_m), :a), # Inverse trigonometric functions :arcsin => lmd(1.to_m/fn(:sqrt, 1.to_m - :a.to_m**2), :a), :arccos => lmd(- 1.to_m/fn(:sqrt, 1.to_m - :a.to_m**2), :a), :arctan => lmd(1.to_m/fn(:sqrt, 1.to_m + :a.to_m**2), :a), :arcsec => lmd(1.to_m/(fn(:abs, :a)*fn(:sqrt, :a.to_m**2 - 1)), :a), :arccsc => lmd(- 1.to_m/(fn(:abs, :a)*fn(:sqrt, :a.to_m**2 - 1)), :a), :arccot => lmd(- 1.to_m/(1.to_m + :a.to_m**2), :a), # Hyperbolic functions :sinh => definition(:cosh), :cosh => definition(:sinh), :tanh => lmd(fn(:sech, :a)**2, :a), :sech => lmd(- fn(:tanh, :a)*fn(:sech, :a), :a), :csch => lmd(- fn(:coth, :a)*fn(:csch, :a), :a), :coth => lmd(- fn(:csch, :a)**2, :a), # Inverse hyperbolic functions :arsinh => lmd(1.to_m/fn(:sqrt, :a.to_m**2 + 1), :a), :arcosh => lmd(1.to_m/fn(:sqrt, :a.to_m**2 - 1), :a), :artanh => lmd(1.to_m/(1.to_m - :a.to_m**2), :a), :arsech => lmd(- 1.to_m/(:a.to_m*fn(:sqrt, 1.to_m - :a.to_m**2)), :a), :arcsch => lmd(- 1.to_m/(fn(:abs, :a.to_m)*fn(:sqrt, :a.to_m**2 + 1)), :a), :arcoth => lmd(1.to_m/(1.to_m - :a.to_m**2), :a), } end |
Instance Method Details
#_d_wedge(exp1, exp2) ⇒ Object
Apply wedge product or ordinary product between two expressions, depending on whether or not they have vector parts.
162 163 164 165 166 |
# File 'lib/symath/operation/differential.rb', line 162 def _d_wedge(exp1, exp2) # The product operator will determine whether this is a scalar # or a wedge product. return (exp1.factors.to_a + exp2.factors.to_a).inject(:*) end |
#d(vars) ⇒ Object
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
# File 'lib/symath/operation/differential.rb', line 58 def d(vars) if self.is_a?(SyMath::Definition::Function) return d_function_def(vars) end # d(c) = 0 for constant c if is_constant?(vars) return 0.to_m end # d(v) = dv for variable v if vars.member?(self) return to_d end # d(a + b + ...) = d(a) + d(b) + ... if is_a?(SyMath::Sum) return term1.d(vars) + term2.d(vars) end # d(-a) = -d(a) if is_a?(SyMath::Minus) return -argument.d(vars) end # Product rule if is_a?(SyMath::Product) return d_product(vars) end # Fraction rule if is_a?(SyMath::Fraction) return d_fraction(vars) end # Power rule if is_a?(SyMath::Power) return d_power(vars) end # Derivative of function return d_function(vars) end |
#d_failure ⇒ Object
102 103 104 |
# File 'lib/symath/operation/differential.rb', line 102 def d_failure() raise DifferentialError, 'Cannot calculate differential of expression ' + to_s end |
#d_fraction(vars) ⇒ Object
113 114 115 116 117 |
# File 'lib/symath/operation/differential.rb', line 113 def d_fraction(vars) return (_d_wedge(dividend.d(vars), divisor) - _d_wedge(dividend, divisor.d(vars))) / (divisor**2) end |
#d_function(vars) ⇒ Object
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# File 'lib/symath/operation/differential.rb', line 142 def d_function(vars) if !self.is_a?SyMath::Operator d_failure end if name != '' and @@functions.key?(name.to_sym) df = @@functions[name.to_sym] dfcall = df.(args[0]).evaluate return _d_wedge(dfcall, args[0].d(vars)) end if !definition.exp.nil? return definition.(*args).evaluate.d(vars) end d_failure end |
#d_function_def(vars) ⇒ Object
128 129 130 131 132 133 134 135 136 137 138 139 140 |
# File 'lib/symath/operation/differential.rb', line 128 def d_function_def(vars) if name != '' and @@functions.key?(name.to_sym) df = @@functions[name.to_sym] dfcall = df.(args[0]).evaluate return _d_wedge(dfcall, args[0].d(vars)) end if !exp.nil? return self.(*args).evaluate.d(vars) end d_failure end |
#d_power(vars) ⇒ Object
119 120 121 122 123 124 125 126 |
# File 'lib/symath/operation/differential.rb', line 119 def d_power(vars) if (exponent.is_constant?(vars)) return _d_wedge(_d_wedge(exponent, base**(exponent - 1)), base.d(vars)) else return _d_wedge(_d_wedge(self, fn(:ln, base)), exponent.d(vars)) + _d_wedge(_d_wedge(exponent, base**(exponent - 1)), base.d(vars)) end end |
#d_product(vars) ⇒ Object
For simplicity, just use wedge products all the time. They will be normalized to scalar products afterwards.
108 109 110 111 |
# File 'lib/symath/operation/differential.rb', line 108 def d_product(vars) return (_d_wedge(factor1.d(vars), factor2) + _d_wedge(factor1, factor2.d(vars))) end |