Module: SyMath::Operation::Exterior

Included in:
Value
Defined in:
lib/symath/operation/exterior.rb

Instance Method Summary collapse

Instance Method Details

#flatObject

Lower indices, transforming vectors to differential forms



9
10
11
12
13
14
15
16
17
18
19
# File 'lib/symath/operation/exterior.rb', line 9

def flat()
  res = recurse('flat', nil)

  if res.is_a?(SyMath::Definition::Variable)
    if res.type.is_subtype?('vector')
      return res.lower_vector
    end
  end
  
  return res
end

#hodgeObject

Calculate hodge star duality



35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# File 'lib/symath/operation/exterior.rb', line 35

def hodge()
  # Recurse down sums and subtractions
  if is_sum_exp?
    return terms.map do |t|
      if t.is_a?(SyMath::Minus)
        - t.argument.hodge
      else
        t.hodge
      end
    end.inject(:+)
  else
    # FIXME: If expression is a product of sums, expand the product first
    # (distributive law), then hodge op on the new sum.
    
    # Replace nvectors and nforms with their hodge dual
    s = []
    v = []
    factors.each do |f|
      if f.type.is_vector? or f.type.is_dform?
        v.push f
      else
        s.push f
      end
    end
    
    h = SyMath::Definition::Variable.hodge_dual(v.inject(1.to_m, :*))
    return s.inject(1.to_m, :*)*h
  end
end

#sharpObject

Raise indices, transforming differential forms to vectors



22
23
24
25
26
27
28
29
30
31
32
# File 'lib/symath/operation/exterior.rb', line 22

def sharp()
  res = recurse('sharp', nil)

  if res.is_a?(SyMath::Definition::Variable)
    if res.type.is_subtype?('dform')
      return res.raise_dform
    end
  end

  return res
end