Class: SyMath::Definition::Variable
- Inherits:
-
SyMath::Definition
- Object
- Value
- SyMath::Definition
- SyMath::Definition::Variable
- Defined in:
- lib/symath/definition/variable.rb
Instance Attribute Summary collapse
-
#name ⇒ Object
readonly
Returns the value of attribute name.
-
#type ⇒ Object
readonly
Returns the value of attribute type.
Class Method Summary collapse
-
.hodge_dual(exp) ⇒ Object
Return the hodge dual of an expression consisting only of basis vectors or basis dforms.
-
.permutation_parity(perm) ⇒ Object
Return parity of permutation.
-
.recalc_basis_vectors ⇒ Object
Re-calculate various auxiliary data structured based on the given basis This does not scale for higher dimensions, but that will most probably be out of scope for this library anyway.
Instance Method Summary collapse
- #<=>(other) ⇒ Object
- #==(other) ⇒ Object (also: #eql?)
- #call(*args) ⇒ Object
- #description ⇒ Object
-
#initialize(name, t = 'real') ⇒ Variable
constructor
A new instance of Variable.
- #is_constant?(vars = nil) ⇒ Boolean
-
#is_d? ⇒ Boolean
Returns true if variable is a differential form.
-
#lower_vector ⇒ Object
Return the dform dual of the vector.
-
#raise_dform ⇒ Object
Return the vector dual of the dform.
- #replace(map) ⇒ Object
- #to_d ⇒ Object
- #to_latex ⇒ Object
- #to_s ⇒ Object
-
#undiff ⇒ Object
Returns variable which differential is based on.
- #variables ⇒ Object
Methods inherited from SyMath::Definition
#arity, define, defined?, definitions, get, #hash, init_builtin, #inspect, #is_function?, #is_operator?, #reduce_call, undefine
Methods inherited from Value
#*, #**, #+, #-, #-@, #/, #<, #<=, #>, #>=, #^, #add, #base, compose_with_simplify, create, #deep_clone, #div, #dump, #evaluate, #exponent, #factors, #inspect, #inv, #is_divisor_factor?, #is_finite?, #is_nan?, #is_negative?, #is_negative_number?, #is_number?, #is_positive?, #is_prod_exp?, #is_sum_exp?, #is_unit_quaternion?, #is_zero?, #mul, #neg, #power, #reduce, #reduce_modulo_sign, #sign, #sub, #terms, #to_m, #wedge
Methods included from Operation::Exterior
Methods included from Operation::Integration
#anti_derivative, #get_linear_constants, initialize, #int_constant, #int_failure, #int_function, #int_inv, #int_pattern, #int_power, #int_product, #int_sum, #integral_bounds
Methods included from Operation::Differential
#_d_wedge, #d, #d_failure, #d_fraction, #d_function, #d_function_def, #d_power, #d_product, initialize
Methods included from Operation
Methods included from Operation::DistributiveLaw
#combfrac_add_term, #combfrac_sum, #combine_fractions, #expand, #expand_product, #expand_single_pass, #factorize, #factorize_integer_poly, #factorize_simple, #has_fractional_terms?
Methods included from Operation::Normalization
#combine_factors, #compare_factors_and_swap, #normalize, #normalize_matrix, #normalize_power, #normalize_product, #normalize_single_pass, #normalize_sum, #order_product, #product_on_fraction_form, #reduce_constant_factors, #replace_combined_factors, #swap_factors
Methods included from Operation::Match
#build_assoc_op, #match, #match_assoc, #match_replace
Constructor Details
#initialize(name, t = 'real') ⇒ Variable
Returns a new instance of Variable.
131 132 133 134 |
# File 'lib/symath/definition/variable.rb', line 131 def initialize(name, t = 'real') @type = t.to_t super(name, define_symbol: false) end |
Instance Attribute Details
#name ⇒ Object (readonly)
Returns the value of attribute name.
128 129 130 |
# File 'lib/symath/definition/variable.rb', line 128 def name @name end |
#type ⇒ Object (readonly)
Returns the value of attribute type.
129 130 131 |
# File 'lib/symath/definition/variable.rb', line 129 def type @type end |
Class Method Details
.hodge_dual(exp) ⇒ Object
Return the hodge dual of an expression consisting only of basis vectors or basis dforms
120 121 122 123 124 125 126 |
# File 'lib/symath/definition/variable.rb', line 120 def self.hodge_dual(exp) if !@@hodge_map.key?(exp) raise 'No hodge dual for ' + exp.to_s end return @@hodge_map[exp] end |
.permutation_parity(perm) ⇒ Object
Return parity of permutation. Even number of permutations give 1 and odd number gives -1
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
# File 'lib/symath/definition/variable.rb', line 9 def self.permutation_parity(perm) # perm is an array of indexes representing the permutation # Put permutation list into disjoint cycles form cycles = {} (0..perm.length-1).each do |i| cycles[perm[i]] = i end sign = 0 # Count the number even cycles. (0..perm.length-1).each do |i| next if !cycles.key?(i) count = 0 while cycles.key?(i) count += 1 j = cycles[i] cycles.delete(i) i = j end if (count % 2) == 0 sign += 1 end end # Even => 1, Odd => -1 sign = (1 - (sign % 2)*2).to_m end |
.recalc_basis_vectors ⇒ Object
Re-calculate various auxiliary data structured based on the given basis This does not scale for higher dimensions, but that will most probably be out of scope for this library anyway.
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
# File 'lib/symath/definition/variable.rb', line 43 def self.recalc_basis_vectors() b = SyMath.get_variable(:basis) g = SyMath.get_variable(:g) brow = b.row(0) dim = brow.length dmap = brow.map do |bb| "d#{bb.name}".to_sym.to_m('dform') end vmap = brow.map do |bb| bb.name.to_sym.to_m('vector') end # Hash up the order of the basis vectors @@basis_order = {} (0..dim - 1).each do |i| @@basis_order[brow[i].name.to_sym] = i @@basis_order["d#{brow[i].name}".to_sym] = i end # Calculate all possible permutations of all possible combinations of # the basis vectors (including no vectors). @@norm_map = {} @@hodge_map = {} (0..dim).each do |d| (0..dim - 1).to_a.permutation(d).each do |p| if p.length == 0 @@norm_map[1.to_m] = 1.to_m @@hodge_map[1.to_m] = dmap.inject(:^) next end # Hash them to the normalized expression (including the sign). # Do this both for vectors and dforms. norm = p.sort sign = permutation_parity(p) dform = p.map { |i| dmap[i] }.inject(:^) vect = p.map { |i| vmap[i] }.inject(:^) dnorm = sign*(norm.map { |i| dmap[i] }.inject(:^)) vnorm = sign*(norm.map { |i| vmap[i] }.inject(:^)) @@norm_map[dform] = dnorm @@norm_map[vect] = vnorm # Hash them to their hodge dual dual = (0..dim - 1).to_a - norm dsign = permutation_parity(p + dual) if dual.length == 0 hdd = sign hdv = sign else hdd = sign*dsign*(dual.map { |i| dmap[i] }.inject(:^)) hdv = sign*dsign*(dual.map { |i| vmap[i] }.inject(:^)) end @@hodge_map[dform] = hdd @@hodge_map[vect] = hdv end end # Calculate the musical isomorphisms. Hash up the mappings both ways. flat = (g*SyMath::Matrix.new(dmap).transpose).evaluate.normalize.col(0) sharp = (g.inverse*SyMath::Matrix.new(vmap).transpose).evaluate. normalize.col(0) @@flat_map = (0..dim - 1).map { |i| [vmap[i], flat[i]] }.to_h @@sharp_map = (0..dim - 1).map { |i| [dmap[i], sharp[i]] }.to_h end |
Instance Method Details
#<=>(other) ⇒ Object
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# File 'lib/symath/definition/variable.rb', line 150 def <=>(other) if self.class.name != other.class.name return super(other) end if type.name != other.type.name return type.name <=> other.type.name end # Order basis vectors and basis dforms by basis order if type.is_subtype?('vector') or type.is_subtype?('dform') bv1 = @@basis_order.key?(@name) bv2 = @@basis_order.key?(other.name) if !bv1 and bv2 # Order basis vectors higher than other vectors return 1 elsif bv1 and !bv2 # Order basis vectors higher than other vectors return -1 elsif bv1 and bv2 return @@basis_order[@name] <=> @@basis_order[other.name] end end return @name.to_s <=> other.name.to_s end |
#==(other) ⇒ Object Also known as: eql?
144 145 146 147 148 |
# File 'lib/symath/definition/variable.rb', line 144 def ==(other) return false if self.class.name != other.class.name return false if @type != other.type return @name == other.name end |
#call(*args) ⇒ Object
140 141 142 |
# File 'lib/symath/definition/variable.rb', line 140 def call(*args) return SyMath::Operator.create(self, args.map { |a| a.nil? ? a : a.to_m }) end |
#description ⇒ Object
136 137 138 |
# File 'lib/symath/definition/variable.rb', line 136 def description() return "#{name} - free variable" end |
#is_constant?(vars = nil) ⇒ Boolean
177 178 179 180 |
# File 'lib/symath/definition/variable.rb', line 177 def is_constant?(vars = nil) return false if vars.nil? return !(vars.member?(self)) end |
#is_d? ⇒ Boolean
Returns true if variable is a differential form
183 184 185 |
# File 'lib/symath/definition/variable.rb', line 183 def is_d?() return @type.is_dform? end |
#lower_vector ⇒ Object
Return the dform dual of the vector
211 212 213 214 215 216 217 |
# File 'lib/symath/definition/variable.rb', line 211 def lower_vector() if !@@flat_map.key?(self) raise 'No dform dual for ' + to_s end return @@flat_map[self] end |
#raise_dform ⇒ Object
Return the vector dual of the dform
202 203 204 205 206 207 208 |
# File 'lib/symath/definition/variable.rb', line 202 def raise_dform() if !@@sharp_map.key?(self) raise 'No vector dual for ' + to_s end return @@sharp_map[self] end |
#replace(map) ⇒ Object
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# File 'lib/symath/definition/variable.rb', line 223 def replace(map) if is_d? u = undiff if map.key?(u) return op(:d, map[u].deep_clone) else return self end end if map.key?(self) return map[self].deep_clone else return self end end |
#to_d ⇒ Object
197 198 199 |
# File 'lib/symath/definition/variable.rb', line 197 def to_d() return "d#{@name}".to_sym.to_m(:dform) end |
#to_latex ⇒ Object
254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
# File 'lib/symath/definition/variable.rb', line 254 def to_latex() if type.is_dform? return '\mathrm{d}' + undiff.to_latex elsif @type.is_vector? return '\vec{'.to_s + @name.to_s + '}'.to_s elsif @type.is_covector? # What is the best way to denote a covector without using indexes? return '\vec{'.to_s + @name.to_s + '}'.to_s elsif @type.is_subtype?('tensor') return @name.to_s + '['.to_s + @type.index_str + ']'.to_s else return @name.to_s end end |
#to_s ⇒ Object
240 241 242 243 244 245 246 247 248 249 250 251 252 |
# File 'lib/symath/definition/variable.rb', line 240 def to_s() if @type.is_dform? return SyMath.setting(:d_symbol) + undiff.to_s elsif @type.is_vector? return @name.to_s + SyMath.setting(:vector_symbol) elsif @type.is_covector? return @name.to_s + SyMath.setting(:covector_symbol) elsif @type.is_subtype?('tensor') return @name.to_s + '['.to_s + @type.index_str + ']'.to_s else return @name.to_s end end |
#undiff ⇒ Object
Returns variable which differential is based on
188 189 190 191 192 193 194 195 |
# File 'lib/symath/definition/variable.rb', line 188 def undiff() n = "#{@name}" if n[0] == 'd' n = n[1..-1] end n.to_sym.to_m(:real) end |
#variables ⇒ Object
219 220 221 |
# File 'lib/symath/definition/variable.rb', line 219 def variables() return [@name] end |