Class: SyMath::Product
Direct Known Subclasses
Wedge
Instance Attribute Summary
Attributes inherited from Operator
#args, #definition
Class Method Summary
collapse
Instance Method Summary
collapse
Methods inherited from Operator
#<=>, #==, #args_assoc, #arity, #dump, #hash, #is_constant?, #name, #reduce, #replace, #variables
Methods inherited from Value
#*, #**, #+, #-, #-@, #/, #<, #<=, #<=>, #>, #>=, #^, #add, #base, create, #deep_clone, #div, #dump, #exponent, #inspect, #inv, #is_divisor_factor?, #is_finite?, #is_nan?, #is_negative?, #is_negative_number?, #is_number?, #is_positive?, #is_sum_exp?, #is_unit_quaternion?, #is_zero?, #mul, #neg, #power, #reduce, #reduce_modulo_sign, #sign, #sub, #terms, #to_m, #wedge
#flat, #hodge, #sharp
#anti_derivative, #get_linear_constants, initialize, #int_constant, #int_failure, #int_function, #int_inv, #int_pattern, #int_power, #int_product, #int_sum, #integral_bounds
#_d_wedge, #d, #d_failure, #d_fraction, #d_function, #d_function_def, #d_power, #d_product, initialize
Methods included from Operation
#iterate, #recurse
#combfrac_add_term, #combfrac_sum, #combine_fractions, #expand, #expand_product, #expand_single_pass, #factorize, #factorize_integer_poly, #factorize_simple, #has_fractional_terms?
#combine_factors, #compare_factors_and_swap, #normalize, #normalize_matrix, #normalize_power, #normalize_product, #normalize_single_pass, #normalize_sum, #order_product, #product_on_fraction_form, #reduce_constant_factors, #replace_combined_factors, #swap_factors
#build_assoc_op, #match, #match_assoc, #match_replace
Constructor Details
#initialize(arg1, arg2) ⇒ Product
Returns a new instance of Product.
103
104
105
|
# File 'lib/symath/product.rb', line 103
def initialize(arg1, arg2)
super('*', [arg1, arg2])
end
|
Class Method Details
.compose_with_simplify(a, b) ⇒ Object
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
# File 'lib/symath/product.rb', line 5
def self.compose_with_simplify(a, b)
a = a.to_m
b = b.to_m
if b.is_a?(SyMath::Equation)
return eq(a * b.args[0], a * b.args[1])
end
if a.is_finite?() == false or b.is_finite?() == false
return self.simplify_inf(a, b)
end
return a if b == 1
return b if a == 1
if b.is_a?(SyMath::Minus) and a.is_a?(SyMath::Minus)
return a.argument*b.argument
end
return -(a*b.argument) if b.is_a?(SyMath::Minus)
return -(a.argument*b) if a.is_a?(SyMath::Minus)
if b.is_a?(SyMath::Matrix)
return self.new(a, b)
end
if a.base == b.base
return a.base ** (a.exponent + b.exponent)
end
if a.is_a?(SyMath::Fraction) and a.dividend == 1.to_m
return b/a.divisor
end
if b.is_a?(SyMath::Fraction) and b.dividend == 1.to_m
return a/b.divisor
end
if a.type.is_subtype?(:tensor) and b.type.is_subtype?(:tensor)
if b.is_sum_exp?
return b.terms.map { |f| a.*(f) }.inject(:+)
end
if a.is_sum_exp?
return a.terms.map { |f| f.wedge(b) }.inject(:+)
end
return a.wedge(b)
end
return self.new(a, b)
end
|
.simplify_inf(a, b) ⇒ Object
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
|
# File 'lib/symath/product.rb', line 68
def self.simplify_inf(a, b)
if a.is_finite?.nil? or b.is_finite?.nil?
return self.new(a, b)
end
if a.is_nan? or b.is_nan?
return :nan.to_m
end
if a.is_zero? or b.is_zero?
return :nan.to_m
end
if SyMath.setting(:complex_arithmetic)
return :oo.to_m
else
if (a.is_positive? and b.is_positive?) or
(a.is_negative? and b.is_negative?)
return :oo.to_m
end
if (a.is_negative? and b.is_positive?) or
(a.is_positive? and b.is_negative?)
return -:oo.to_m
end
end
raise 'Internal error'
end
|
Instance Method Details
#evaluate ⇒ Object
142
143
144
145
146
147
148
149
150
151
|
# File 'lib/symath/product.rb', line 142
def evaluate()
if factor1.is_a?(SyMath::Matrix)
return factor1.matrix_mul(factor2)
elsif factor2.is_a?(SyMath::Matrix) and
factor1.type.is_scalar?
return factor2.matrix_mul(factor1)
end
return super
end
|
#factor1 ⇒ Object
107
108
109
|
# File 'lib/symath/product.rb', line 107
def factor1()
return @args[0]
end
|
#factor1=(f) ⇒ Object
111
112
113
|
# File 'lib/symath/product.rb', line 111
def factor1=(f)
@args[0] = f
end
|
#factor2 ⇒ Object
115
116
117
|
# File 'lib/symath/product.rb', line 115
def factor2()
return @args[1]
end
|
#factor2=(f) ⇒ Object
119
120
121
|
# File 'lib/symath/product.rb', line 119
def factor2=(f)
@args[1] = f
end
|
#factors ⇒ Object
135
136
137
138
139
140
|
# File 'lib/symath/product.rb', line 135
def factors()
return Enumerator.new do |f|
factor1.factors.each { |f1| f << f1 }
factor2.factors.each { |f2| f << f2 }
end
end
|
#is_associative? ⇒ Boolean
127
128
129
|
# File 'lib/symath/product.rb', line 127
def is_associative?()
return true
end
|
#is_commutative? ⇒ Boolean
123
124
125
|
# File 'lib/symath/product.rb', line 123
def is_commutative?()
return true
end
|
#is_prod_exp? ⇒ Boolean
131
132
133
|
# File 'lib/symath/product.rb', line 131
def is_prod_exp?()
return true
end
|
#to_latex ⇒ Object
171
172
173
174
175
176
177
178
179
180
181
|
# File 'lib/symath/product.rb', line 171
def to_latex()
dot = SyMath.setting(:ltx_product_sign) ? ' \ccdot ' : ' ';
return @args.map do |a|
if a.is_sum_exp?
'(' + a.to_latex + ')'
else
a.to_latex
end
end.join(dot)
end
|
#to_s ⇒ Object
157
158
159
160
161
162
163
164
165
166
167
168
169
|
# File 'lib/symath/product.rb', line 157
def to_s()
if SyMath.setting(:expl_parentheses)
return '('.to_s + factor1.to_s + '*' + factor2.to_s + ')'.to_s
else
return @args.map do |a|
if a.is_sum_exp?
'(' + a.to_s + ')'
else
a.to_s
end
end.join('*')
end
end
|
#type ⇒ Object
153
154
155
|
# File 'lib/symath/product.rb', line 153
def type()
return factor1.type.product(factor2.type)
end
|