Class: SyMath::Power
Instance Attribute Summary
Attributes inherited from Operator
Class Method Summary collapse
Instance Method Summary collapse
- #base ⇒ Object
- #exponent ⇒ Object
-
#initialize(base, exponent) ⇒ Power
constructor
A new instance of Power.
-
#is_divisor_factor? ⇒ Boolean
Expression is on the form a**-n, n is a positive number.
-
#reduce_modulo_sign ⇒ Object
Simple reduction rules, allows sign to change.
- #to_latex ⇒ Object
- #to_s ⇒ Object
Methods inherited from Operator
#<=>, #==, #args_assoc, #arity, #dump, #evaluate, #hash, #is_associative?, #is_commutative?, #is_constant?, #name, #reduce, #replace, #variables
Methods inherited from Value
#*, #**, #+, #-, #-@, #/, #<, #<=, #<=>, #>, #>=, #^, #add, create, #deep_clone, #div, #dump, #evaluate, #factors, #inspect, #inv, #is_finite?, #is_nan?, #is_negative?, #is_negative_number?, #is_number?, #is_positive?, #is_prod_exp?, #is_sum_exp?, #is_unit_quaternion?, #is_zero?, #mul, #neg, #power, #reduce, #sign, #sub, #terms, #to_m, #type, #wedge
Methods included from Operation::Exterior
Methods included from Operation::Integration
#anti_derivative, #get_linear_constants, initialize, #int_constant, #int_failure, #int_function, #int_inv, #int_pattern, #int_power, #int_product, #int_sum, #integral_bounds
Methods included from Operation::Differential
#_d_wedge, #d, #d_failure, #d_fraction, #d_function, #d_function_def, #d_power, #d_product, initialize
Methods included from Operation
Methods included from Operation::DistributiveLaw
#combfrac_add_term, #combfrac_sum, #combine_fractions, #expand, #expand_product, #expand_single_pass, #factorize, #factorize_integer_poly, #factorize_simple, #has_fractional_terms?
Methods included from Operation::Normalization
#combine_factors, #compare_factors_and_swap, #normalize, #normalize_matrix, #normalize_power, #normalize_product, #normalize_single_pass, #normalize_sum, #order_product, #product_on_fraction_form, #reduce_constant_factors, #replace_combined_factors, #swap_factors
Methods included from Operation::Match
#build_assoc_op, #match, #match_assoc, #match_replace
Constructor Details
#initialize(base, exponent) ⇒ Power
Returns a new instance of Power.
83 84 85 |
# File 'lib/symath/power.rb', line 83 def initialize(base, exponent) super('**', [base, exponent]) end |
Class Method Details
.compose_with_simplify(a, b) ⇒ Object
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
# File 'lib/symath/power.rb', line 5 def self.compose_with_simplify(a, b) a = a.to_m b = b.to_m if a.is_finite?() == false or b.is_finite?() == false return self.simplify_inf(a, b) end # 0**0 = NaN if a.is_zero? and b.is_zero? return :nan.to_m end # n**1 = n if b == 1 return a end if a.is_a?(SyMath::Power) return a.base**(a.exponent*b) end return self.new(a, b) end |
.simplify_inf(a, b) ⇒ Object
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
# File 'lib/symath/power.rb', line 30 def self.simplify_inf(a, b) # Indefinite factors if a.is_finite?.nil? or b.is_finite?.nil? return self.new(a, b) end # NaN**(..) = NaN, (..)**NaN = NaN if a.is_nan? or b.is_nan? return :nan.to_m end # 1**oo = 1**-oo = oo**0 = -oo**0 = NaN if a == 1 or b.is_zero? return :nan.to_m end if SyMath.setting(:complex_arithmetic) if b.is_finite? == false return :nan.to_m else return :oo.to_m end else if a.is_zero? and b.is_finite? == false return :nan.to_m end # n**-oo = oo**-oo = -oo**-oo = 0 if b.is_finite? == false and b.is_negative? return 0.to_m end if a.is_finite? == false and a.is_negative? if b.is_finite? == true # -oo*n = oo*(-1**n) return :oo.to_m.mul(a.sign**b) else # -oo**oo = NaN return :nan.to_m end end # -n**oo => NaN if a.is_finite? and a.is_negative? return :nan.to_m end # The only remaining possibilities: # oo**n = n*oo = oo*oo = oo return :oo.to_m end end |
Instance Method Details
#base ⇒ Object
87 88 89 |
# File 'lib/symath/power.rb', line 87 def base() return @args[0] end |
#exponent ⇒ Object
91 92 93 |
# File 'lib/symath/power.rb', line 91 def exponent() return @args[1] end |
#is_divisor_factor? ⇒ Boolean
Expression is on the form a**-n, n is a positive number
96 97 98 |
# File 'lib/symath/power.rb', line 96 def is_divisor_factor?() return exponent.is_negative_number? end |
#reduce_modulo_sign ⇒ Object
Simple reduction rules, allows sign to change. Returns (reduced exp, sign, changed).
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# File 'lib/symath/power.rb', line 102 def reduce_modulo_sign # a to the power of 1 reduces to a if exponent == 1 return base, 1, true end # Powers of 1 reduces to 1 if base == 1 and exponent.is_finite? return base, 1, true end # Power of 0 reduces to 0 if base == 0 and exponent.is_finite? and exponent != 0 return 0.to_m, 1, true end if base != 0 and exponent == 0 return 1.to_m, 1, true end if base == :e fn = fn(:exp, exponent) # FIXME: Merge functions reduce and reduce_modulo_sign red = fn.reduce if red != fn return red, 1, true end end # Reduce negative number if base.is_a?(SyMath::Minus) if exponent.is_number? exp = exponent elsif exponent.is_negative_number? exp = exponent.argument else exp = nil end if !exp.nil? e, sign, changed = (base.argument**exp).reduce_modulo_sign if exp.value.odd? sign *= -1 end return e, sign, true end end # Number power of number reduces to number if base.is_number? if exponent.is_number? return (base.value ** exponent.value).to_m, 1, true end if exponent.is_negative_number? and exponent.argument.value > 1 return (base.value ** exponent.argument.value).to_m.power(-1), 1, true end end # p**q**r reduces to p**(q*r) if base.is_a?(SyMath::Power) return base.base.power(base.exponent.mul(exponent)), 1, true end # Reduce positive integer power of vectors and dforms to zero if (base.type.is_dform? or base.type.is_vector?) and exponent.is_number? return 0.to_m, 1, true end # Remaining code reduces only quaternions if !base.is_unit_quaternion? return self, 1, false end # q**n for some unit quaternion # Exponent is 1 or not a number if !exponent.is_number? or exponent == 1 return self, 1, false end # e is on the form q**n for some integer n >= 2 x = exponent.value if x.odd? ret = base x -= 1 else ret = 1.to_m end if (x/2).odd? return ret, -1, true else return ret, 1, true end end |
#to_latex ⇒ Object
214 215 216 217 218 219 220 221 222 |
# File 'lib/symath/power.rb', line 214 def to_latex() if base.is_sum_exp? or base.is_prod_exp? or base.is_a?(SyMath::Power) base_str = '\left(' + base.to_latex + '\right)' else base_str = base.to_latex end return base_str + '^' + '{' + exponent.to_latex + '}' end |
#to_s ⇒ Object
200 201 202 203 204 205 206 207 208 209 210 211 212 |
# File 'lib/symath/power.rb', line 200 def to_s() if base.is_sum_exp? or base.is_prod_exp? or base.is_a?(SyMath::Power) base_str = '(' + base.to_s + ')' else base_str = base.to_s end expo_str = (exponent.is_sum_exp? or exponent.is_prod_exp?) ? '(' + exponent.to_s + ')' : exponent.to_s return base_str + '**' + expo_str end |