Class: SyMath::Definition::Exp

Inherits:
Function show all
Defined in:
lib/symath/definition/exp.rb

Instance Attribute Summary

Attributes inherited from Operator

#args, #exp

Attributes inherited from SyMath::Definition

#name

Instance Method Summary collapse

Methods inherited from Function

#check_pi_fraction, functions, init_builtin, #is_function?, #latex_format

Methods inherited from Operator

#<=>, #==, #arity, #call, #compose_with_simplify, #dump, #evaluate_call, init_builtin, #is_operator?, #latex_format, operators, #replace, #to_latex, #to_s, #validate_args

Methods inherited from SyMath::Definition

#<=>, #==, #arity, define, defined?, definitions, get, #hash, init_builtin, #inspect, #is_constant?, #is_function?, #is_operator?, #replace, #to_latex, #to_s, undefine, #variables

Methods inherited from Value

#*, #**, #+, #-, #-@, #/, #<, #<=, #<=>, #>, #>=, #^, #add, #base, compose_with_simplify, create, #deep_clone, #div, #dump, #evaluate, #exponent, #factors, #inspect, #inv, #is_divisor_factor?, #is_finite?, #is_nan?, #is_negative?, #is_negative_number?, #is_number?, #is_positive?, #is_prod_exp?, #is_sum_exp?, #is_unit_quaternion?, #is_zero?, #mul, #neg, #power, #reduce, #reduce_modulo_sign, #sign, #sub, #terms, #to_m, #type, #wedge

Methods included from Operation::Exterior

#flat, #hodge, #sharp

Methods included from Operation::Integration

#anti_derivative, #get_linear_constants, initialize, #int_constant, #int_failure, #int_function, #int_inv, #int_pattern, #int_power, #int_product, #int_sum, #integral_bounds

Methods included from Operation::Differential

#_d_wedge, #d, #d_failure, #d_fraction, #d_function, #d_function_def, #d_power, #d_product, initialize

Methods included from Operation

#iterate, #recurse

Methods included from Operation::DistributiveLaw

#combfrac_add_term, #combfrac_sum, #combine_fractions, #expand, #expand_product, #expand_single_pass, #factorize, #factorize_integer_poly, #factorize_simple, #has_fractional_terms?

Methods included from Operation::Normalization

#combine_factors, #compare_factors_and_swap, #normalize, #normalize_matrix, #normalize_power, #normalize_product, #normalize_single_pass, #normalize_sum, #order_product, #product_on_fraction_form, #reduce_constant_factors, #replace_combined_factors, #swap_factors

Methods included from Operation::Match

#build_assoc_op, #match, #match_assoc, #match_replace

Constructor Details

#initializeExp

Returns a new instance of Exp.



5
6
7
# File 'lib/symath/definition/exp.rb', line 5

def initialize()
  super(:exp)
end

Instance Method Details

#descriptionObject



9
10
11
# File 'lib/symath/definition/exp.rb', line 9

def description()
  return 'exp(x) - exponential function (e**x)'
end

#reduce_call(call) ⇒ Object



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# File 'lib/symath/definition/exp.rb', line 13

def reduce_call(call)
  arg = call.args[0]
  
  if arg.is_nan?
    return :nan.to_m
  end

  if arg == 0
    return 1.to_m
 elsif arg == 1
    return :e.to_m
  end

  if arg.is_finite? == false
    if SyMath.setting(:complex_arithmetic)
      return :nan.to_m
    else
      if arg.is_positive? == true
        return :oo.to_m
      else
        return 0.to_m
      end
    end
  end

  if SyMath.setting(:complex_arithmetic)
    ret = 1.to_m
  
    arg.terms.each do |t|
      if t.is_a?(SyMath::Minus)
        t = t.args[0]
        minus = true
      else
        minus = false
      end

      if t.class.method_defined?('definition') and
        t.definition.is_a?(SyMath::Definition::Ln)
        # exp(ln(c)) = c
        t2 = t.args[0]
      else
        # Euler's formula
        c, dc = check_pi_fraction(t, true)
        if !c.nil?
          if dc == 1
            c *= 2
          elsif dc != 2
            # Not reducible
            return call
          end

          case c % 4
          when 0
            t2 = 1
          when 1
            t2 = :i
          when 2
            t2 = -1
          when 3
            t2 = -:i
          end
        else
          # Cannot reduce
          return call
        end
      end

      ret = minus ? ret/t2 : ret*t2
    end

    return ret
  else
    ret = 1.to_m

    call.args[0].terms.each do |t|
      if t.is_a?(SyMath::Minus)
        t = t.args[0]
        minus = true
      else
        minus = false
      end

      # exp(ln(c)) = c for positive c
      if t.class.method_defined?('definition') and
        t.definition.is_a?(SyMath::Definition::Ln)
        if t.args[0].is_number?
          ret = minus ? ret/t.args[0] : ret*t.args[0]
          next
        end
      end

      # Cannot reduce
      return call
    end

    return ret
  end
end