Module: SVMKit::Base::Classifier
- Included in:
- Ensemble::AdaBoostClassifier, Ensemble::RandomForestClassifier, KernelMachine::KernelSVC, LinearModel::LogisticRegression, LinearModel::SVC, Multiclass::OneVsRestClassifier, NaiveBayes::BaseNaiveBayes, NearestNeighbors::KNeighborsClassifier, PolynomialModel::FactorizationMachineClassifier, Tree::DecisionTreeClassifier
- Defined in:
- lib/svmkit/base/classifier.rb
Overview
Module for all classifiers in SVMKit.
Instance Method Summary collapse
-
#fit ⇒ Object
An abstract method for fitting a model.
-
#predict ⇒ Object
An abstract method for predicting labels.
-
#score(x, y) ⇒ Float
Calculate the mean accuracy of the given testing data.
Instance Method Details
#fit ⇒ Object
An abstract method for fitting a model.
11 12 13 |
# File 'lib/svmkit/base/classifier.rb', line 11 def fit raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}." end |
#predict ⇒ Object
An abstract method for predicting labels.
16 17 18 |
# File 'lib/svmkit/base/classifier.rb', line 16 def predict raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}." end |
#score(x, y) ⇒ Float
Calculate the mean accuracy of the given testing data.
25 26 27 28 29 30 31 |
# File 'lib/svmkit/base/classifier.rb', line 25 def score(x, y) SVMKit::Validation.check_sample_array(x) SVMKit::Validation.check_label_array(y) SVMKit::Validation.check_sample_label_size(x, y) evaluator = SVMKit::EvaluationMeasure::Accuracy.new evaluator.score(y, predict(x)) end |