Class: SVMKit::LinearModel::LogisticRegression
- Inherits:
-
SGDLinearEstimator
- Object
- SGDLinearEstimator
- SVMKit::LinearModel::LogisticRegression
- Includes:
- Base::Classifier
- Defined in:
- lib/svmkit/linear_model/logistic_regression.rb
Overview
LogisticRegression is a class that implements Logistic Regression with mini-batch stochastic gradient descent optimization. For multiclass classification problem, it uses one-vs-the-rest strategy.
Reference
-
Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Mathematical Programming, vol. 127 (1), pp. 3–30, 2011.
-
Instance Attribute Summary collapse
-
#bias_term ⇒ Numo::DFloat
readonly
Return the bias term (a.k.a. intercept) for Logistic Regression.
-
#classes ⇒ Numo::Int32
readonly
Return the class labels.
-
#rng ⇒ Random
readonly
Return the random generator for performing random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for Logistic Regression.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ LogisticRegression
Fit the model with given training data.
-
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil) ⇒ LogisticRegression
constructor
Create a new classifier with Logisitc Regression by the SGD optimization.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
-
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
Methods included from Base::Classifier
Constructor Details
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil) ⇒ LogisticRegression
Create a new classifier with Logisitc Regression by the SGD optimization.
52 53 54 55 56 57 58 59 60 61 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 52 def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil) check_params_float(reg_param: reg_param, bias_scale: bias_scale) check_params_integer(max_iter: max_iter, batch_size: batch_size) check_params_boolean(fit_bias: fit_bias) check_params_type_or_nil(Integer, random_seed: random_seed) check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size) super @classes = nil end |
Instance Attribute Details
#bias_term ⇒ Numo::DFloat (readonly)
Return the bias term (a.k.a. intercept) for Logistic Regression.
31 32 33 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 31 def bias_term @bias_term end |
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
35 36 37 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 35 def classes @classes end |
#rng ⇒ Random (readonly)
Return the random generator for performing random sampling.
39 40 41 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 39 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for Logistic Regression.
27 28 29 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 27 def weight_vec @weight_vec end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
97 98 99 100 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 97 def decision_function(x) check_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end |
#fit(x, y) ⇒ LogisticRegression
Fit the model with given training data.
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 68 def fit(x, y) check_sample_array(x) check_label_array(y) check_sample_label_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size n_features = x.shape[1] if n_classes > 2 @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @bias_term = Numo::DFloat.zeros(n_classes) n_classes.times do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 @weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y) end else negative_label = y.to_a.uniq.min bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @weight_vec, @bias_term = partial_fit(x, bin_y) end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
135 136 137 138 139 140 141 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 135 def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, classes: @classes, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
145 146 147 148 149 150 151 152 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 145 def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @classes = obj[:classes] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
106 107 108 109 110 111 112 113 114 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 106 def predict(x) check_sample_array(x) return Numo::Int32.cast(predict_proba(x)[true, 1].ge(0.5)) * 2 - 1 if @classes.size <= 2 n_samples, = x.shape decision_values = predict_proba(x) Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }) end |
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
120 121 122 123 124 125 126 127 128 129 130 131 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 120 def predict_proba(x) check_sample_array(x) proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0) return (proba.transpose / proba.sum(axis: 1)).transpose if @classes.size > 2 n_samples, = x.shape probs = Numo::DFloat.zeros(n_samples, 2) probs[true, 1] = proba probs[true, 0] = 1.0 - proba probs end |