Class: SVMKit::KernelMachine::KernelSVC
- Inherits:
-
Object
- Object
- SVMKit::KernelMachine::KernelSVC
- Includes:
- Base::BaseEstimator, Base::Classifier
- Defined in:
- lib/svmkit/kernel_machine/kernel_svc.rb
Overview
KernelSVC is a class that implements (Nonlinear) Kernel Support Vector Classifier with stochastic gradient descent (SGD) optimization. For multiclass classification problem, it uses one-vs-the-rest strategy.
Reference
-
Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Mathematical Programming, vol. 127 (1), pp. 3–30, 2011.
-
Instance Attribute Summary collapse
-
#classes ⇒ Numo::Int32
readonly
Return the class labels.
-
#rng ⇒ Random
readonly
Return the random generator for performing random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for Kernel SVC.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ KernelSVC
Fit the model with given training data.
-
#initialize(reg_param: 1.0, max_iter: 1000, probability: false, random_seed: nil) ⇒ KernelSVC
constructor
Create a new classifier with Kernel Support Vector Machine by the SGD optimization.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
-
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
Methods included from Base::Classifier
Constructor Details
#initialize(reg_param: 1.0, max_iter: 1000, probability: false, random_seed: nil) ⇒ KernelSVC
Create a new classifier with Kernel Support Vector Machine by the SGD optimization.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 47 def initialize(reg_param: 1.0, max_iter: 1000, probability: false, random_seed: nil) SVMKit::Validation.check_params_float(reg_param: reg_param) SVMKit::Validation.check_params_integer(max_iter: max_iter) SVMKit::Validation.check_params_boolean(probability: probability) SVMKit::Validation.check_params_type_or_nil(Integer, random_seed: random_seed) SVMKit::Validation.check_params_positive(reg_param: reg_param, max_iter: max_iter) @params = {} @params[:reg_param] = reg_param @params[:max_iter] = max_iter @params[:probability] = probability @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil @prob_param = nil @classes = nil @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
35 36 37 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 35 def classes @classes end |
#rng ⇒ Random (readonly)
Return the random generator for performing random sampling.
39 40 41 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 39 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for Kernel SVC.
31 32 33 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 31 def weight_vec @weight_vec end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
111 112 113 114 115 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 111 def decision_function(x) SVMKit::Validation.check_sample_array(x) x.dot(@weight_vec.transpose) end |
#fit(x, y) ⇒ KernelSVC
Fit the model with given training data.
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 71 def fit(x, y) SVMKit::Validation.check_sample_array(x) SVMKit::Validation.check_label_array(y) SVMKit::Validation.check_sample_label_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size _n_samples, n_features = x.shape if n_classes > 2 @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @prob_param = Numo::DFloat.zeros(n_classes, 2) n_classes.times do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 @weight_vec[n, true] = binary_fit(x, bin_y) @prob_param[n, true] = if @params[:probability] SVMKit::ProbabilisticOutput.fit_sigmoid(x.dot(@weight_vec[n, true].transpose), bin_y) else Numo::DFloat[1, 0] end end else negative_label = y.to_a.uniq.min bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @weight_vec = binary_fit(x, bin_y) @prob_param = if @params[:probability] SVMKit::ProbabilisticOutput.fit_sigmoid(x.dot(@weight_vec.transpose), bin_y) else Numo::DFloat[1, 0] end end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
154 155 156 157 158 159 160 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 154 def marshal_dump { params: @params, weight_vec: @weight_vec, prob_param: @prob_param, classes: @classes, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
164 165 166 167 168 169 170 171 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 164 def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @prob_param = obj[:prob_param] @classes = obj[:classes] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
122 123 124 125 126 127 128 129 130 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 122 def predict(x) SVMKit::Validation.check_sample_array(x) return Numo::Int32.cast(decision_function(x).ge(0.0)) * 2 - 1 if @classes.size <= 2 n_samples, = x.shape decision_values = decision_function(x) Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }) end |
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 137 def predict_proba(x) SVMKit::Validation.check_sample_array(x) if @classes.size > 2 probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0) return (probs.transpose / probs.sum(axis: 1)).transpose end n_samples, = x.shape probs = Numo::DFloat.zeros(n_samples, 2) probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0) probs[true, 0] = 1.0 - probs[true, 1] probs end |