Class: Aws::SageMaker::Client

Inherits:
Seahorse::Client::Base
  • Object
show all
Includes:
ClientStubs
Defined in:
lib/aws-sdk-sagemaker/client.rb

Class Attribute Summary collapse

API Operations collapse

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(options) ⇒ Client

Returns a new instance of Client.

Parameters:

  • options (Hash)

Options Hash (options):

  • :credentials (required, Aws::CredentialProvider)

    Your AWS credentials. This can be an instance of any one of the following classes:

    • ‘Aws::Credentials` - Used for configuring static, non-refreshing credentials.

    • ‘Aws::InstanceProfileCredentials` - Used for loading credentials from an EC2 IMDS on an EC2 instance.

    • ‘Aws::SharedCredentials` - Used for loading credentials from a shared file, such as `~/.aws/config`.

    • ‘Aws::AssumeRoleCredentials` - Used when you need to assume a role.

    When ‘:credentials` are not configured directly, the following locations will be searched for credentials:

    • Aws.config`

    • The ‘:access_key_id`, `:secret_access_key`, and `:session_token` options.

    • ENV, ENV

    • ‘~/.aws/credentials`

    • ‘~/.aws/config`

    • EC2 IMDS instance profile - When used by default, the timeouts are very aggressive. Construct and pass an instance of ‘Aws::InstanceProfileCredentails` to enable retries and extended timeouts.

  • :region (required, String)

    The AWS region to connect to. The configured ‘:region` is used to determine the service `:endpoint`. When not passed, a default `:region` is search for in the following locations:

  • :access_key_id (String)
  • :active_endpoint_cache (Boolean) — default: false

    When set to ‘true`, a thread polling for endpoints will be running in the background every 60 secs (default). Defaults to `false`.

  • :client_side_monitoring (Boolean) — default: false

    When ‘true`, client-side metrics will be collected for all API requests from this client.

  • :client_side_monitoring_client_id (String) — default: ""

    Allows you to provide an identifier for this client which will be attached to all generated client side metrics. Defaults to an empty string.

  • :client_side_monitoring_host (String) — default: "127.0.0.1"

    Allows you to specify the DNS hostname or IPv4 or IPv6 address that the client side monitoring agent is running on, where client metrics will be published via UDP.

  • :client_side_monitoring_port (Integer) — default: 31000

    Required for publishing client metrics. The port that the client side monitoring agent is running on, where client metrics will be published via UDP.

  • :client_side_monitoring_publisher (Aws::ClientSideMonitoring::Publisher) — default: Aws::ClientSideMonitoring::Publisher

    Allows you to provide a custom client-side monitoring publisher class. By default, will use the Client Side Monitoring Agent Publisher.

  • :convert_params (Boolean) — default: true

    When ‘true`, an attempt is made to coerce request parameters into the required types.

  • :disable_host_prefix_injection (Boolean) — default: false

    Set to true to disable SDK automatically adding host prefix to default service endpoint when available.

  • :endpoint (String)

    The client endpoint is normally constructed from the ‘:region` option. You should only configure an `:endpoint` when connecting to test endpoints. This should be avalid HTTP(S) URI.

  • :endpoint_cache_max_entries (Integer) — default: 1000

    Used for the maximum size limit of the LRU cache storing endpoints data for endpoint discovery enabled operations. Defaults to 1000.

  • :endpoint_cache_max_threads (Integer) — default: 10

    Used for the maximum threads in use for polling endpoints to be cached, defaults to 10.

  • :endpoint_cache_poll_interval (Integer) — default: 60

    When :endpoint_discovery and :active_endpoint_cache is enabled, Use this option to config the time interval in seconds for making requests fetching endpoints information. Defaults to 60 sec.

  • :endpoint_discovery (Boolean) — default: false

    When set to ‘true`, endpoint discovery will be enabled for operations when available. Defaults to `false`.

  • :log_formatter (Aws::Log::Formatter) — default: Aws::Log::Formatter.default

    The log formatter.

  • :log_level (Symbol) — default: :info

    The log level to send messages to the ‘:logger` at.

  • :logger (Logger)

    The Logger instance to send log messages to. If this option is not set, logging will be disabled.

  • :profile (String) — default: "default"

    Used when loading credentials from the shared credentials file at HOME/.aws/credentials. When not specified, ‘default’ is used.

  • :retry_base_delay (Float) — default: 0.3

    The base delay in seconds used by the default backoff function.

  • :retry_jitter (Symbol) — default: :none

    A delay randomiser function used by the default backoff function. Some predefined functions can be referenced by name - :none, :equal, :full, otherwise a Proc that takes and returns a number.

    @see www.awsarchitectureblog.com/2015/03/backoff.html

  • :retry_limit (Integer) — default: 3

    The maximum number of times to retry failed requests. Only ~ 500 level server errors and certain ~ 400 level client errors are retried. Generally, these are throttling errors, data checksum errors, networking errors, timeout errors and auth errors from expired credentials.

  • :retry_max_delay (Integer) — default: 0

    The maximum number of seconds to delay between retries (0 for no limit) used by the default backoff function.

  • :secret_access_key (String)
  • :session_token (String)
  • :simple_json (Boolean) — default: false

    Disables request parameter conversion, validation, and formatting. Also disable response data type conversions. This option is useful when you want to ensure the highest level of performance by avoiding overhead of walking request parameters and response data structures.

    When ‘:simple_json` is enabled, the request parameters hash must be formatted exactly as the DynamoDB API expects.

  • :stub_responses (Boolean) — default: false

    Causes the client to return stubbed responses. By default fake responses are generated and returned. You can specify the response data to return or errors to raise by calling ClientStubs#stub_responses. See ClientStubs for more information.

    ** Please note ** When response stubbing is enabled, no HTTP requests are made, and retries are disabled.

  • :validate_params (Boolean) — default: true

    When ‘true`, request parameters are validated before sending the request.

  • :http_proxy (URI::HTTP, String)

    A proxy to send requests through. Formatted like ‘proxy.com:123’.

  • :http_open_timeout (Float) — default: 15

    The number of seconds to wait when opening a HTTP session before rasing a ‘Timeout::Error`.

  • :http_read_timeout (Integer) — default: 60

    The default number of seconds to wait for response data. This value can safely be set per-request on the session yeidled by #session_for.

  • :http_idle_timeout (Float) — default: 5

    The number of seconds a connection is allowed to sit idble before it is considered stale. Stale connections are closed and removed from the pool before making a request.

  • :http_continue_timeout (Float) — default: 1

    The number of seconds to wait for a 100-continue response before sending the request body. This option has no effect unless the request has “Expect” header set to “100-continue”. Defaults to ‘nil` which disables this behaviour. This value can safely be set per request on the session yeidled by #session_for.

  • :http_wire_trace (Boolean) — default: false

    When ‘true`, HTTP debug output will be sent to the `:logger`.

  • :ssl_verify_peer (Boolean) — default: true

    When ‘true`, SSL peer certificates are verified when establishing a connection.

  • :ssl_ca_bundle (String)

    Full path to the SSL certificate authority bundle file that should be used when verifying peer certificates. If you do not pass ‘:ssl_ca_bundle` or `:ssl_ca_directory` the the system default will be used if available.

  • :ssl_ca_directory (String)

    Full path of the directory that contains the unbundled SSL certificate authority files for verifying peer certificates. If you do not pass ‘:ssl_ca_bundle` or `:ssl_ca_directory` the the system default will be used if available.



261
262
263
# File 'lib/aws-sdk-sagemaker/client.rb', line 261

def initialize(*args)
  super
end

Class Attribute Details

.identifierObject (readonly)

This method is part of a private API. You should avoid using this method if possible, as it may be removed or be changed in the future.



10216
10217
10218
# File 'lib/aws-sdk-sagemaker/client.rb', line 10216

def identifier
  @identifier
end

Class Method Details

.errors_moduleObject

This method is part of a private API. You should avoid using this method if possible, as it may be removed or be changed in the future.



10219
10220
10221
# File 'lib/aws-sdk-sagemaker/client.rb', line 10219

def errors_module
  Errors
end

Instance Method Details

#add_tags(params = {}) ⇒ Types::AddTagsOutput

Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints.

Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see [AWS Tagging Strategies].

<note markdown=“1”> Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the ‘Tags` parameter of CreateHyperParameterTuningJob

</note>

[1]: aws.amazon.com/answers/account-management/aws-tagging-strategies/

Examples:

Request syntax with placeholder values


resp = client.add_tags({
  resource_arn: "ResourceArn", # required
  tags: [ # required
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.tags #=> Array
resp.tags[0].key #=> String
resp.tags[0].value #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :resource_arn (required, String)

    The Amazon Resource Name (ARN) of the resource that you want to tag.

  • :tags (required, Array<Types::Tag>)

    An array of ‘Tag` objects. Each tag is a key-value pair. Only the `key` parameter is required. If you don’t specify a value, Amazon SageMaker sets the value to an empty string.

Returns:

  • (Types::AddTagsOutput)

    Returns a response object which responds to the following methods:

    • #tags => Array&lt;Types::Tag&gt;

See Also:



326
327
328
329
# File 'lib/aws-sdk-sagemaker/client.rb', line 326

def add_tags(params = {}, options = {})
  req = build_request(:add_tags, params)
  req.send_request(options)
end

#associate_trial_component(params = {}) ⇒ Types::AssociateTrialComponentResponse

Associates a trial component with a trial. A trial component can be associated with multiple trials. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.

Examples:

Request syntax with placeholder values


resp = client.associate_trial_component({
  trial_component_name: "ExperimentEntityName", # required
  trial_name: "ExperimentEntityName", # required
})

Response structure


resp.trial_component_arn #=> String
resp.trial_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :trial_component_name (required, String)

    The name of the component to associated with the trial.

  • :trial_name (required, String)

    The name of the trial to associate with.

Returns:

See Also:



362
363
364
365
# File 'lib/aws-sdk-sagemaker/client.rb', line 362

def associate_trial_component(params = {}, options = {})
  req = build_request(:associate_trial_component, params)
  req.send_request(options)
end

#build_request(operation_name, params = {}) ⇒ Object

This method is part of a private API. You should avoid using this method if possible, as it may be removed or be changed in the future.

Parameters:

  • params ({}) (defaults to: {})


10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
# File 'lib/aws-sdk-sagemaker/client.rb', line 10067

def build_request(operation_name, params = {})
  handlers = @handlers.for(operation_name)
  context = Seahorse::Client::RequestContext.new(
    operation_name: operation_name,
    operation: config.api.operation(operation_name),
    client: self,
    params: params,
    config: config)
  context[:gem_name] = 'aws-sdk-sagemaker'
  context[:gem_version] = '1.48.0'
  Seahorse::Client::Request.new(handlers, context)
end

#create_algorithm(params = {}) ⇒ Types::CreateAlgorithmOutput

Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace.

Examples:

Request syntax with placeholder values


resp = client.create_algorithm({
  algorithm_name: "EntityName", # required
  algorithm_description: "EntityDescription",
  training_specification: { # required
    training_image: "Image", # required
    training_image_digest: "ImageDigest",
    supported_hyper_parameters: [
      {
        name: "ParameterName", # required
        description: "EntityDescription",
        type: "Integer", # required, accepts Integer, Continuous, Categorical, FreeText
        range: {
          integer_parameter_range_specification: {
            min_value: "ParameterValue", # required
            max_value: "ParameterValue", # required
          },
          continuous_parameter_range_specification: {
            min_value: "ParameterValue", # required
            max_value: "ParameterValue", # required
          },
          categorical_parameter_range_specification: {
            values: ["ParameterValue"], # required
          },
        },
        is_tunable: false,
        is_required: false,
        default_value: "ParameterValue",
      },
    ],
    supported_training_instance_types: ["ml.m4.xlarge"], # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge
    supports_distributed_training: false,
    metric_definitions: [
      {
        name: "MetricName", # required
        regex: "MetricRegex", # required
      },
    ],
    training_channels: [ # required
      {
        name: "ChannelName", # required
        description: "EntityDescription",
        is_required: false,
        supported_content_types: ["ContentType"], # required
        supported_compression_types: ["None"], # accepts None, Gzip
        supported_input_modes: ["Pipe"], # required, accepts Pipe, File
      },
    ],
    supported_tuning_job_objective_metrics: [
      {
        type: "Maximize", # required, accepts Maximize, Minimize
        metric_name: "MetricName", # required
      },
    ],
  },
  inference_specification: {
    containers: [ # required
      {
        container_hostname: "ContainerHostname",
        image: "Image", # required
        image_digest: "ImageDigest",
        model_data_url: "Url",
        product_id: "ProductId",
      },
    ],
    supported_transform_instance_types: ["ml.m4.xlarge"], # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
    supported_realtime_inference_instance_types: ["ml.t2.medium"], # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.12xlarge, ml.m5d.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.large, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.12xlarge, ml.r5d.24xlarge, ml.inf1.xlarge, ml.inf1.2xlarge, ml.inf1.6xlarge, ml.inf1.24xlarge
    supported_content_types: ["ContentType"], # required
    supported_response_mime_types: ["ResponseMIMEType"], # required
  },
  validation_specification: {
    validation_role: "RoleArn", # required
    validation_profiles: [ # required
      {
        profile_name: "EntityName", # required
        training_job_definition: { # required
          training_input_mode: "Pipe", # required, accepts Pipe, File
          hyper_parameters: {
            "ParameterKey" => "ParameterValue",
          },
          input_data_config: [ # required
            {
              channel_name: "ChannelName", # required
              data_source: { # required
                s3_data_source: {
                  s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix, AugmentedManifestFile
                  s3_uri: "S3Uri", # required
                  s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
                  attribute_names: ["AttributeName"],
                },
                file_system_data_source: {
                  file_system_id: "FileSystemId", # required
                  file_system_access_mode: "rw", # required, accepts rw, ro
                  file_system_type: "EFS", # required, accepts EFS, FSxLustre
                  directory_path: "DirectoryPath", # required
                },
              },
              content_type: "ContentType",
              compression_type: "None", # accepts None, Gzip
              record_wrapper_type: "None", # accepts None, RecordIO
              input_mode: "Pipe", # accepts Pipe, File
              shuffle_config: {
                seed: 1, # required
              },
            },
          ],
          output_data_config: { # required
            kms_key_id: "KmsKeyId",
            s3_output_path: "S3Uri", # required
          },
          resource_config: { # required
            instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge
            instance_count: 1, # required
            volume_size_in_gb: 1, # required
            volume_kms_key_id: "KmsKeyId",
          },
          stopping_condition: { # required
            max_runtime_in_seconds: 1,
            max_wait_time_in_seconds: 1,
          },
        },
        transform_job_definition: {
          max_concurrent_transforms: 1,
          max_payload_in_mb: 1,
          batch_strategy: "MultiRecord", # accepts MultiRecord, SingleRecord
          environment: {
            "TransformEnvironmentKey" => "TransformEnvironmentValue",
          },
          transform_input: { # required
            data_source: { # required
              s3_data_source: { # required
                s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix, AugmentedManifestFile
                s3_uri: "S3Uri", # required
              },
            },
            content_type: "ContentType",
            compression_type: "None", # accepts None, Gzip
            split_type: "None", # accepts None, Line, RecordIO, TFRecord
          },
          transform_output: { # required
            s3_output_path: "S3Uri", # required
            accept: "Accept",
            assemble_with: "None", # accepts None, Line
            kms_key_id: "KmsKeyId",
          },
          transform_resources: { # required
            instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
            instance_count: 1, # required
            volume_kms_key_id: "KmsKeyId",
          },
        },
      },
    ],
  },
  certify_for_marketplace: false,
})

Response structure


resp.algorithm_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :algorithm_name (required, String)

    The name of the algorithm.

  • :algorithm_description (String)

    A description of the algorithm.

  • :training_specification (required, Types::TrainingSpecification)

    Specifies details about training jobs run by this algorithm, including the following:

    • The Amazon ECR path of the container and the version digest of the algorithm.

    • The hyperparameters that the algorithm supports.

    • The instance types that the algorithm supports for training.

    • Whether the algorithm supports distributed training.

    • The metrics that the algorithm emits to Amazon CloudWatch.

    • Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.

    • The input channels that the algorithm supports for training data. For example, an algorithm might support ‘train`, `validation`, and `test` channels.

  • :inference_specification (Types::InferenceSpecification)

    Specifies details about inference jobs that the algorithm runs, including the following:

    • The Amazon ECR paths of containers that contain the inference code and model artifacts.

    • The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.

    • The input and output content formats that the algorithm supports for inference.

  • :validation_specification (Types::AlgorithmValidationSpecification)

    Specifies configurations for one or more training jobs and that Amazon SageMaker runs to test the algorithm’s training code and, optionally, one or more batch transform jobs that Amazon SageMaker runs to test the algorithm’s inference code.

  • :certify_for_marketplace (Boolean)

    Whether to certify the algorithm so that it can be listed in AWS Marketplace.

Returns:

See Also:



591
592
593
594
# File 'lib/aws-sdk-sagemaker/client.rb', line 591

def create_algorithm(params = {}, options = {})
  req = build_request(:create_algorithm, params)
  req.send_request(options)
end

#create_app(params = {}) ⇒ Types::CreateAppResponse

Creates a running App for the specified UserProfile. Supported Apps are JupyterServer and KernelGateway. This operation is automatically invoked by Amazon SageMaker Amazon SageMaker Studio (Studio) upon access to the associated Studio Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously. Apps will automatically terminate and be deleted when stopped from within Studio, or when the DeleteApp API is manually called. UserProfiles are limited to 5 concurrently running Apps at a time.

Examples:

Request syntax with placeholder values


resp = client.create_app({
  domain_id: "DomainId", # required
  user_profile_name: "UserProfileName", # required
  app_type: "JupyterServer", # required, accepts JupyterServer, KernelGateway, TensorBoard
  app_name: "AppName", # required
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
  resource_spec: {
    environment_arn: "EnvironmentArn",
    instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
  },
})

Response structure


resp.app_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :domain_id (required, String)

    The domain ID.

  • :user_profile_name (required, String)

    The user profile name.

  • :app_type (required, String)

    The type of app.

  • :app_name (required, String)

    The name of the app.

  • :tags (Array<Types::Tag>)

    Each tag consists of a key and an optional value. Tag keys must be unique per resource.

  • :resource_spec (Types::ResourceSpec)

    The instance type and quantity.

Returns:

See Also:



656
657
658
659
# File 'lib/aws-sdk-sagemaker/client.rb', line 656

def create_app(params = {}, options = {})
  req = build_request(:create_app, params)
  req.send_request(options)
end

#create_auto_ml_job(params = {}) ⇒ Types::CreateAutoMLJobResponse

Creates an AutoPilot job.

Examples:

Request syntax with placeholder values


resp = client.create_auto_ml_job({
  auto_ml_job_name: "AutoMLJobName", # required
  input_data_config: [ # required
    {
      data_source: { # required
        s3_data_source: { # required
          s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix
          s3_uri: "S3Uri", # required
        },
      },
      compression_type: "None", # accepts None, Gzip
      target_attribute_name: "TargetAttributeName", # required
    },
  ],
  output_data_config: { # required
    kms_key_id: "KmsKeyId",
    s3_output_path: "S3Uri", # required
  },
  problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
  auto_ml_job_objective: {
    metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
  },
  auto_ml_job_config: {
    completion_criteria: {
      max_candidates: 1,
      max_runtime_per_training_job_in_seconds: 1,
      max_auto_ml_job_runtime_in_seconds: 1,
    },
    security_config: {
      volume_kms_key_id: "KmsKeyId",
      enable_inter_container_traffic_encryption: false,
      vpc_config: {
        security_group_ids: ["SecurityGroupId"], # required
        subnets: ["SubnetId"], # required
      },
    },
  },
  role_arn: "RoleArn", # required
  generate_candidate_definitions_only: false,
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.auto_ml_job_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :auto_ml_job_name (required, String)

    Identifies an AutoPilot job. Must be unique to your account and is case-insensitive.

  • :input_data_config (required, Array<Types::AutoMLChannel>)

    Similar to InputDataConfig supported by Tuning. Format(s) supported: CSV.

  • :output_data_config (required, Types::AutoMLOutputDataConfig)

    Similar to OutputDataConfig supported by Tuning. Format(s) supported: CSV.

  • :problem_type (String)

    Defines the kind of preprocessing and algorithms intended for the candidates. Options include: BinaryClassification, MulticlassClassification, and Regression.

  • :auto_ml_job_objective (Types::AutoMLJobObjective)

    Defines the job’s objective. You provide a MetricName and AutoML will infer minimize or maximize. If this is not provided, the most commonly used ObjectiveMetric for problem type will be selected.

  • :auto_ml_job_config (Types::AutoMLJobConfig)

    Contains CompletionCriteria and SecurityConfig.

  • :role_arn (required, String)

    The ARN of the role that will be used to access the data.

  • :generate_candidate_definitions_only (Boolean)

    This will generate possible candidates without training a model. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.

  • :tags (Array<Types::Tag>)

    Each tag consists of a key and an optional value. Tag keys must be unique per resource.

Returns:

See Also:



761
762
763
764
# File 'lib/aws-sdk-sagemaker/client.rb', line 761

def create_auto_ml_job(params = {}, options = {})
  req = build_request(:create_auto_ml_job, params)
  req.send_request(options)
end

#create_code_repository(params = {}) ⇒ Types::CreateCodeRepositoryOutput

Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with.

The repository can be hosted either in [AWS CodeCommit] or in any other Git repository.

[1]: docs.aws.amazon.com/codecommit/latest/userguide/welcome.html

Examples:

Request syntax with placeholder values


resp = client.create_code_repository({
  code_repository_name: "EntityName", # required
  git_config: { # required
    repository_url: "GitConfigUrl", # required
    branch: "Branch",
    secret_arn: "SecretArn",
  },
})

Response structure


resp.code_repository_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :code_repository_name (required, String)

    The name of the Git repository. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

  • :git_config (required, Types::GitConfig)

    Specifies details about the repository, including the URL where the repository is located, the default branch, and credentials to use to access the repository.

Returns:

See Also:



813
814
815
816
# File 'lib/aws-sdk-sagemaker/client.rb', line 813

def create_code_repository(params = {}, options = {})
  req = build_request(:create_code_repository, params)
  req.send_request(options)
end

#create_compilation_job(params = {}) ⇒ Types::CreateCompilationJobResponse

Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify.

If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with AWS IoT Greengrass. In that case, deploy them as an ML resource.

In the request body, you provide the following:

  • A name for the compilation job

  • Information about the input model artifacts

  • The output location for the compiled model and the device (target) that the model runs on

  • ‘The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job`

You can also provide a ‘Tag` to track the model compilation job’s resource use and costs. The response body contains the ‘CompilationJobArn` for the compiled job.

To stop a model compilation job, use StopCompilationJob. To get information about a particular model compilation job, use DescribeCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.

Examples:

Request syntax with placeholder values


resp = client.create_compilation_job({
  compilation_job_name: "EntityName", # required
  role_arn: "RoleArn", # required
  input_config: { # required
    s3_uri: "S3Uri", # required
    data_input_config: "DataInputConfig", # required
    framework: "TENSORFLOW", # required, accepts TENSORFLOW, MXNET, ONNX, PYTORCH, XGBOOST
  },
  output_config: { # required
    s3_output_location: "S3Uri", # required
    target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603
  },
  stopping_condition: { # required
    max_runtime_in_seconds: 1,
    max_wait_time_in_seconds: 1,
  },
})

Response structure


resp.compilation_job_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :compilation_job_name (required, String)

    A name for the model compilation job. The name must be unique within the AWS Region and within your AWS account.

  • :role_arn (required, String)

    The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.

    During model compilation, Amazon SageMaker needs your permission to:

    • Read input data from an S3 bucket

    • Write model artifacts to an S3 bucket

    • Write logs to Amazon CloudWatch Logs

    • Publish metrics to Amazon CloudWatch

    You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the ‘iam:PassRole` permission. For more information, see [Amazon SageMaker Roles.]

    [1]: docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html

  • :input_config (required, Types::InputConfig)

    Provides information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.

  • :output_config (required, Types::OutputConfig)

    Provides information about the output location for the compiled model and the target device the model runs on.

  • :stopping_condition (required, Types::StoppingCondition)

    Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.

Returns:

See Also:



921
922
923
924
# File 'lib/aws-sdk-sagemaker/client.rb', line 921

def create_compilation_job(params = {}, options = {})
  req = build_request(:create_compilation_job, params)
  req.send_request(options)
end

#create_domain(params = {}) ⇒ Types::CreateDomainResponse

Creates a Domain for Amazon SageMaker Amazon SageMaker Studio (Studio), which can be accessed by end-users in a web browser. A Domain has an associated directory, list of authorized users, and a variety of security, application, policies, and Amazon Virtual Private Cloud configurations. An AWS account is limited to one Domain, per region. Users within a domain can share notebook files and other artifacts with each other. When a Domain is created, an Amazon Elastic File System (EFS) is also created for use by all of the users within the Domain. Each user receives a private home directory within the EFS for notebooks, Git repositories, and data files.

Examples:

Request syntax with placeholder values


resp = client.create_domain({
  domain_name: "DomainName", # required
  auth_mode: "SSO", # required, accepts SSO, IAM
  default_user_settings: { # required
    execution_role: "RoleArn",
    security_groups: ["SecurityGroupId"],
    sharing_settings: {
      notebook_output_option: "Allowed", # accepts Allowed, Disabled
      s3_output_path: "S3Uri",
      s3_kms_key_id: "KmsKeyId",
    },
    jupyter_server_app_settings: {
      default_resource_spec: {
        environment_arn: "EnvironmentArn",
        instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
      },
    },
    kernel_gateway_app_settings: {
      default_resource_spec: {
        environment_arn: "EnvironmentArn",
        instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
      },
    },
    tensor_board_app_settings: {
      default_resource_spec: {
        environment_arn: "EnvironmentArn",
        instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
      },
    },
  },
  subnet_ids: ["SubnetId"], # required
  vpc_id: "VpcId", # required
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
  home_efs_file_system_kms_key_id: "KmsKeyId",
})

Response structure


resp.domain_arn #=> String
resp.url #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :domain_name (required, String)

    A name for the domain.

  • :auth_mode (required, String)

    The mode of authentication that member use to access the domain.

  • :default_user_settings (required, Types::UserSettings)

    The default user settings.

  • :subnet_ids (required, Array<String>)

    Security setting to limit to a set of subnets.

  • :vpc_id (required, String)

    Security setting to limit the domain’s communication to a Amazon Virtual Private Cloud.

  • :tags (Array<Types::Tag>)

    Each tag consists of a key and an optional value. Tag keys must be unique per resource.

  • :home_efs_file_system_kms_key_id (String)

    The AWS Key Management Service encryption key ID.

Returns:

See Also:



1017
1018
1019
1020
# File 'lib/aws-sdk-sagemaker/client.rb', line 1017

def create_domain(params = {}, options = {})
  req = build_request(:create_domain, params)
  req.send_request(options)
end

#create_endpoint(params = {}) ⇒ Types::CreateEndpointOutput

Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the

CreateEndpointConfig][1

API.

<note markdown=“1”> Use this API only for hosting models using Amazon SageMaker hosting services.

You must not delete an `EndpointConfig` in use by an endpoint that is

live or while the ‘UpdateEndpoint` or `CreateEndpoint` operations are being performed on the endpoint. To update an endpoint, you must create a new `EndpointConfig`.

</note>

The endpoint name must be unique within an AWS Region in your AWS account.

When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them.

When Amazon SageMaker receives the request, it sets the endpoint status to ‘Creating`. After it creates the endpoint, it sets the status to `InService`. Amazon SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the

DescribeEndpoint][2

API.

For an example, see [Exercise 1: Using the K-Means Algorithm Provided by Amazon SageMaker].

If any of the models hosted at this endpoint get model data from an Amazon S3 location, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provided. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see [Activating and Deactivating AWS STS in an AWS Region] in the *AWS Identity and Access Management User Guide*.

[1]: docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html [3]: docs.aws.amazon.com/sagemaker/latest/dg/ex1.html [4]: docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html

Examples:

Request syntax with placeholder values


resp = client.create_endpoint({
  endpoint_name: "EndpointName", # required
  endpoint_config_name: "EndpointConfigName", # required
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.endpoint_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

Returns:

See Also:



1115
1116
1117
1118
# File 'lib/aws-sdk-sagemaker/client.rb', line 1115

def create_endpoint(params = {}, options = {})
  req = build_request(:create_endpoint, params)
  req.send_request(options)
end

#create_endpoint_config(params = {}) ⇒ Types::CreateEndpointConfigOutput

Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the ‘CreateModel` API, to deploy and the resources that you want Amazon SageMaker to provision. Then you call the [CreateEndpoint] API.

<note markdown=“1”> Use this API only if you want to use Amazon SageMaker hosting services to deploy models into production.

</note>

In the request, you define one or more ‘ProductionVariant`s, each of which identifies a model. Each `ProductionVariant` parameter also describes the resources that you want Amazon SageMaker to provision. This includes the number and type of ML compute instances to deploy.

If you are hosting multiple models, you also assign a ‘VariantWeight` to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B.

[1]: docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html

Examples:

Request syntax with placeholder values


resp = client.create_endpoint_config({
  endpoint_config_name: "EndpointConfigName", # required
  production_variants: [ # required
    {
      variant_name: "VariantName", # required
      model_name: "ModelName", # required
      initial_instance_count: 1, # required
      instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.12xlarge, ml.m5d.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.large, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.12xlarge, ml.r5d.24xlarge, ml.inf1.xlarge, ml.inf1.2xlarge, ml.inf1.6xlarge, ml.inf1.24xlarge
      initial_variant_weight: 1.0,
      accelerator_type: "ml.eia1.medium", # accepts ml.eia1.medium, ml.eia1.large, ml.eia1.xlarge, ml.eia2.medium, ml.eia2.large, ml.eia2.xlarge
    },
  ],
  data_capture_config: {
    enable_capture: false,
    initial_sampling_percentage: 1, # required
    destination_s3_uri: "DestinationS3Uri", # required
    kms_key_id: "KmsKeyId",
    capture_options: [ # required
      {
        capture_mode: "Input", # required, accepts Input, Output
      },
    ],
    capture_content_type_header: {
      csv_content_types: ["CsvContentType"],
      json_content_types: ["JsonContentType"],
    },
  },
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
  kms_key_id: "KmsKeyId",
})

Response structure


resp.endpoint_config_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

Returns:

See Also:



1248
1249
1250
1251
# File 'lib/aws-sdk-sagemaker/client.rb', line 1248

def create_endpoint_config(params = {}, options = {})
  req = build_request(:create_endpoint_config, params)
  req.send_request(options)
end

#create_experiment(params = {}) ⇒ Types::CreateExperimentResponse

Creates an Amazon SageMaker experiment. An experiment is a collection of trials that are observed, compared and evaluated as a group. A trial is a set of steps, called *trial components*, that produce a machine learning model.

The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant.

When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK.

You can add tags to experiments, trials, trial components and then use the Search API to search for the tags.

To add a description to an experiment, specify the optional ‘Description` parameter. To add a description later, or to change the description, call the UpdateExperiment API.

To get a list of all your experiments, call the ListExperiments API. To view an experiment’s properties, call the DescribeExperiment API. To get a list of all the trials associated with an experiment, call the ListTrials API. To create a trial call the CreateTrial API.

Examples:

Request syntax with placeholder values


resp = client.create_experiment({
  experiment_name: "ExperimentEntityName", # required
  display_name: "ExperimentEntityName",
  description: "ExperimentDescription",
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.experiment_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :experiment_name (required, String)

    The name of the experiment. The name must be unique in your AWS account and is not case-sensitive.

  • :display_name (String)

    The name of the experiment as displayed. The name doesn’t need to be unique. If you don’t specify ‘DisplayName`, the value in `ExperimentName` is displayed.

  • :description (String)

    The description of the experiment.

  • :tags (Array<Types::Tag>)

    A list of tags to associate with the experiment. You can use Search API to search on the tags.

Returns:

See Also:



1322
1323
1324
1325
# File 'lib/aws-sdk-sagemaker/client.rb', line 1322

def create_experiment(params = {}, options = {})
  req = build_request(:create_experiment, params)
  req.send_request(options)
end

#create_flow_definition(params = {}) ⇒ Types::CreateFlowDefinitionResponse

Creates a flow definition.

Examples:

Request syntax with placeholder values


resp = client.create_flow_definition({
  flow_definition_name: "FlowDefinitionName", # required
  human_loop_activation_config: {
    human_loop_request_source: { # required
      aws_managed_human_loop_request_source: "AWS/Rekognition/DetectModerationLabels/Image/V3", # required, accepts AWS/Rekognition/DetectModerationLabels/Image/V3, AWS/Textract/AnalyzeDocument/Forms/V1
    },
    human_loop_activation_conditions_config: { # required
      human_loop_activation_conditions: "HumanLoopActivationConditions", # required
    },
  },
  human_loop_config: { # required
    workteam_arn: "WorkteamArn", # required
    human_task_ui_arn: "HumanTaskUiArn", # required
    task_title: "FlowDefinitionTaskTitle", # required
    task_description: "FlowDefinitionTaskDescription", # required
    task_count: 1, # required
    task_availability_lifetime_in_seconds: 1,
    task_time_limit_in_seconds: 1,
    task_keywords: ["FlowDefinitionTaskKeyword"],
    public_workforce_task_price: {
      amount_in_usd: {
        dollars: 1,
        cents: 1,
        tenth_fractions_of_a_cent: 1,
      },
    },
  },
  output_config: { # required
    s3_output_path: "S3Uri", # required
    kms_key_id: "KmsKeyId",
  },
  role_arn: "RoleArn", # required
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.flow_definition_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :flow_definition_name (required, String)

    The name of your flow definition.

  • :human_loop_activation_config (Types::HumanLoopActivationConfig)

    An object containing information about the events that trigger a human workflow.

  • :human_loop_config (required, Types::HumanLoopConfig)

    An object containing information about the tasks the human reviewers will perform.

  • :output_config (required, Types::FlowDefinitionOutputConfig)

    An object containing information about where the human review results will be uploaded.

  • :role_arn (required, String)

    The Amazon Resource Name (ARN) of the role needed to call other services on your behalf. For example, ‘arn:aws:iam::1234567890:role/service-role/AmazonSageMaker-ExecutionRole-20180111T151298`.

  • :tags (Array<Types::Tag>)

    An array of key-value pairs that contain metadata to help you categorize and organize a flow definition. Each tag consists of a key and a value, both of which you define.

Returns:

See Also:



1408
1409
1410
1411
# File 'lib/aws-sdk-sagemaker/client.rb', line 1408

def create_flow_definition(params = {}, options = {})
  req = build_request(:create_flow_definition, params)
  req.send_request(options)
end

#create_human_task_ui(params = {}) ⇒ Types::CreateHumanTaskUiResponse

Defines the settings you will use for the human review workflow user interface. Reviewers will see a three-panel interface with an instruction area, the item to review, and an input area.

Examples:

Request syntax with placeholder values


resp = client.create_human_task_ui({
  human_task_ui_name: "HumanTaskUiName", # required
  ui_template: { # required
    content: "TemplateContent", # required
  },
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.human_task_ui_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :human_task_ui_name (required, String)

    The name of the user interface you are creating.

  • :ui_template (required, Types::UiTemplate)

    The Liquid template for the worker user interface.

  • :tags (Array<Types::Tag>)

    An array of key-value pairs that contain metadata to help you categorize and organize a human review workflow user interface. Each tag consists of a key and a value, both of which you define.

Returns:

See Also:



1455
1456
1457
1458
# File 'lib/aws-sdk-sagemaker/client.rb', line 1455

def create_human_task_ui(params = {}, options = {})
  req = build_request(:create_human_task_ui, params)
  req.send_request(options)
end

#create_hyper_parameter_tuning_job(params = {}) ⇒ Types::CreateHyperParameterTuningJobResponse

Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.

Examples:

Request syntax with placeholder values


resp = client.create_hyper_parameter_tuning_job({
  hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
  hyper_parameter_tuning_job_config: { # required
    strategy: "Bayesian", # required, accepts Bayesian, Random
    hyper_parameter_tuning_job_objective: {
      type: "Maximize", # required, accepts Maximize, Minimize
      metric_name: "MetricName", # required
    },
    resource_limits: { # required
      max_number_of_training_jobs: 1, # required
      max_parallel_training_jobs: 1, # required
    },
    parameter_ranges: {
      integer_parameter_ranges: [
        {
          name: "ParameterKey", # required
          min_value: "ParameterValue", # required
          max_value: "ParameterValue", # required
          scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
        },
      ],
      continuous_parameter_ranges: [
        {
          name: "ParameterKey", # required
          min_value: "ParameterValue", # required
          max_value: "ParameterValue", # required
          scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
        },
      ],
      categorical_parameter_ranges: [
        {
          name: "ParameterKey", # required
          values: ["ParameterValue"], # required
        },
      ],
    },
    training_job_early_stopping_type: "Off", # accepts Off, Auto
    tuning_job_completion_criteria: {
      target_objective_metric_value: 1.0, # required
    },
  },
  training_job_definition: {
    definition_name: "HyperParameterTrainingJobDefinitionName",
    tuning_objective: {
      type: "Maximize", # required, accepts Maximize, Minimize
      metric_name: "MetricName", # required
    },
    hyper_parameter_ranges: {
      integer_parameter_ranges: [
        {
          name: "ParameterKey", # required
          min_value: "ParameterValue", # required
          max_value: "ParameterValue", # required
          scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
        },
      ],
      continuous_parameter_ranges: [
        {
          name: "ParameterKey", # required
          min_value: "ParameterValue", # required
          max_value: "ParameterValue", # required
          scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
        },
      ],
      categorical_parameter_ranges: [
        {
          name: "ParameterKey", # required
          values: ["ParameterValue"], # required
        },
      ],
    },
    static_hyper_parameters: {
      "ParameterKey" => "ParameterValue",
    },
    algorithm_specification: { # required
      training_image: "AlgorithmImage",
      training_input_mode: "Pipe", # required, accepts Pipe, File
      algorithm_name: "ArnOrName",
      metric_definitions: [
        {
          name: "MetricName", # required
          regex: "MetricRegex", # required
        },
      ],
    },
    role_arn: "RoleArn", # required
    input_data_config: [
      {
        channel_name: "ChannelName", # required
        data_source: { # required
          s3_data_source: {
            s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix, AugmentedManifestFile
            s3_uri: "S3Uri", # required
            s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
            attribute_names: ["AttributeName"],
          },
          file_system_data_source: {
            file_system_id: "FileSystemId", # required
            file_system_access_mode: "rw", # required, accepts rw, ro
            file_system_type: "EFS", # required, accepts EFS, FSxLustre
            directory_path: "DirectoryPath", # required
          },
        },
        content_type: "ContentType",
        compression_type: "None", # accepts None, Gzip
        record_wrapper_type: "None", # accepts None, RecordIO
        input_mode: "Pipe", # accepts Pipe, File
        shuffle_config: {
          seed: 1, # required
        },
      },
    ],
    vpc_config: {
      security_group_ids: ["SecurityGroupId"], # required
      subnets: ["SubnetId"], # required
    },
    output_data_config: { # required
      kms_key_id: "KmsKeyId",
      s3_output_path: "S3Uri", # required
    },
    resource_config: { # required
      instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge
      instance_count: 1, # required
      volume_size_in_gb: 1, # required
      volume_kms_key_id: "KmsKeyId",
    },
    stopping_condition: { # required
      max_runtime_in_seconds: 1,
      max_wait_time_in_seconds: 1,
    },
    enable_network_isolation: false,
    enable_inter_container_traffic_encryption: false,
    enable_managed_spot_training: false,
    checkpoint_config: {
      s3_uri: "S3Uri", # required
      local_path: "DirectoryPath",
    },
  },
  training_job_definitions: [
    {
      definition_name: "HyperParameterTrainingJobDefinitionName",
      tuning_objective: {
        type: "Maximize", # required, accepts Maximize, Minimize
        metric_name: "MetricName", # required
      },
      hyper_parameter_ranges: {
        integer_parameter_ranges: [
          {
            name: "ParameterKey", # required
            min_value: "ParameterValue", # required
            max_value: "ParameterValue", # required
            scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
          },
        ],
        continuous_parameter_ranges: [
          {
            name: "ParameterKey", # required
            min_value: "ParameterValue", # required
            max_value: "ParameterValue", # required
            scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
          },
        ],
        categorical_parameter_ranges: [
          {
            name: "ParameterKey", # required
            values: ["ParameterValue"], # required
          },
        ],
      },
      static_hyper_parameters: {
        "ParameterKey" => "ParameterValue",
      },
      algorithm_specification: { # required
        training_image: "AlgorithmImage",
        training_input_mode: "Pipe", # required, accepts Pipe, File
        algorithm_name: "ArnOrName",
        metric_definitions: [
          {
            name: "MetricName", # required
            regex: "MetricRegex", # required
          },
        ],
      },
      role_arn: "RoleArn", # required
      input_data_config: [
        {
          channel_name: "ChannelName", # required
          data_source: { # required
            s3_data_source: {
              s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix, AugmentedManifestFile
              s3_uri: "S3Uri", # required
              s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
              attribute_names: ["AttributeName"],
            },
            file_system_data_source: {
              file_system_id: "FileSystemId", # required
              file_system_access_mode: "rw", # required, accepts rw, ro
              file_system_type: "EFS", # required, accepts EFS, FSxLustre
              directory_path: "DirectoryPath", # required
            },
          },
          content_type: "ContentType",
          compression_type: "None", # accepts None, Gzip
          record_wrapper_type: "None", # accepts None, RecordIO
          input_mode: "Pipe", # accepts Pipe, File
          shuffle_config: {
            seed: 1, # required
          },
        },
      ],
      vpc_config: {
        security_group_ids: ["SecurityGroupId"], # required
        subnets: ["SubnetId"], # required
      },
      output_data_config: { # required
        kms_key_id: "KmsKeyId",
        s3_output_path: "S3Uri", # required
      },
      resource_config: { # required
        instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge
        instance_count: 1, # required
        volume_size_in_gb: 1, # required
        volume_kms_key_id: "KmsKeyId",
      },
      stopping_condition: { # required
        max_runtime_in_seconds: 1,
        max_wait_time_in_seconds: 1,
      },
      enable_network_isolation: false,
      enable_inter_container_traffic_encryption: false,
      enable_managed_spot_training: false,
      checkpoint_config: {
        s3_uri: "S3Uri", # required
        local_path: "DirectoryPath",
      },
    },
  ],
  warm_start_config: {
    parent_hyper_parameter_tuning_jobs: [ # required
      {
        hyper_parameter_tuning_job_name: "HyperParameterTuningJobName",
      },
    ],
    warm_start_type: "IdenticalDataAndAlgorithm", # required, accepts IdenticalDataAndAlgorithm, TransferLearning
  },
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.hyper_parameter_tuning_job_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :hyper_parameter_tuning_job_name (required, String)

    The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same AWS account and AWS Region. The name must have \{ \} to \{ \} characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.

  • :hyper_parameter_tuning_job_config (required, Types::HyperParameterTuningJobConfig)

    The HyperParameterTuningJobConfig object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see automatic-model-tuning

  • :training_job_definition (Types::HyperParameterTrainingJobDefinition)

    The HyperParameterTrainingJobDefinition object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.

  • :training_job_definitions (Array<Types::HyperParameterTrainingJobDefinition>)
  • :warm_start_config (Types::HyperParameterTuningJobWarmStartConfig)

    Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.

    All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify ‘IDENTICAL_DATA_AND_ALGORITHM` as the `WarmStartType` value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.

    <note markdown=“1”> All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.

    </note>
    
  • :tags (Array<Types::Tag>)

    An array of key-value pairs. You can use tags to categorize your AWS resources in different ways, for example, by purpose, owner, or environment. For more information, see [AWS Tagging Strategies].

    Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.

    [1]: aws.amazon.com/answers/account-management/aws-tagging-strategies/

Returns:

See Also:



1789
1790
1791
1792
# File 'lib/aws-sdk-sagemaker/client.rb', line 1789

def create_hyper_parameter_tuning_job(params = {}, options = {})
  req = build_request(:create_hyper_parameter_tuning_job, params)
  req.send_request(options)
end

#create_labeling_job(params = {}) ⇒ Types::CreateLabelingJobResponse

Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models.

You can select your workforce from one of three providers:

  • A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.

  • One or more vendors that you select from the AWS Marketplace. Vendors provide expertise in specific areas.

  • The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.

You can also use *automated data labeling* to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses *active learning* to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see [Using Automated Data Labeling].

The data objects to be labeled are contained in an Amazon S3 bucket. You create a *manifest file* that describes the location of each object. For more information, see [Using Input and Output Data].

The output can be used as the manifest file for another labeling job or as training data for your machine learning models.

[1]: docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/sms-data.html

Examples:

Request syntax with placeholder values


resp = client.create_labeling_job({
  labeling_job_name: "LabelingJobName", # required
  label_attribute_name: "LabelAttributeName", # required
  input_config: { # required
    data_source: { # required
      s3_data_source: { # required
        manifest_s3_uri: "S3Uri", # required
      },
    },
    data_attributes: {
      content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
    },
  },
  output_config: { # required
    s3_output_path: "S3Uri", # required
    kms_key_id: "KmsKeyId",
  },
  role_arn: "RoleArn", # required
  label_category_config_s3_uri: "S3Uri",
  stopping_conditions: {
    max_human_labeled_object_count: 1,
    max_percentage_of_input_dataset_labeled: 1,
  },
  labeling_job_algorithms_config: {
    labeling_job_algorithm_specification_arn: "LabelingJobAlgorithmSpecificationArn", # required
    initial_active_learning_model_arn: "ModelArn",
    labeling_job_resource_config: {
      volume_kms_key_id: "KmsKeyId",
    },
  },
  human_task_config: { # required
    workteam_arn: "WorkteamArn", # required
    ui_config: { # required
      ui_template_s3_uri: "S3Uri", # required
    },
    pre_human_task_lambda_arn: "LambdaFunctionArn", # required
    task_keywords: ["TaskKeyword"],
    task_title: "TaskTitle", # required
    task_description: "TaskDescription", # required
    number_of_human_workers_per_data_object: 1, # required
    task_time_limit_in_seconds: 1, # required
    task_availability_lifetime_in_seconds: 1,
    max_concurrent_task_count: 1,
    annotation_consolidation_config: { # required
      annotation_consolidation_lambda_arn: "LambdaFunctionArn", # required
    },
    public_workforce_task_price: {
      amount_in_usd: {
        dollars: 1,
        cents: 1,
        tenth_fractions_of_a_cent: 1,
      },
    },
  },
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.labeling_job_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :labeling_job_name (required, String)

    The name of the labeling job. This name is used to identify the job in a list of labeling jobs.

  • :label_attribute_name (required, String)

    The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The name can’t end with “-metadata”. If you are running a semantic segmentation labeling job, the attribute name must end with “-ref”. If you are running any other kind of labeling job, the attribute name must not end with “-ref”.

  • :input_config (required, Types::LabelingJobInputConfig)

    Input data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.

  • :output_config (required, Types::LabelingJobOutputConfig)

    The location of the output data and the AWS Key Management Service key ID for the key used to encrypt the output data, if any.

  • :role_arn (required, String)

    The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.

  • :label_category_config_s3_uri (String)

    The S3 URL of the file that defines the categories used to label the data objects.

    The file is a JSON structure in the following format:

    ‘{`

    ‘ “document-version”: “2018-11-28”`

    ‘ “labels”: [`

    ‘ {`

    ‘ “label”: “label 1”`

    ‘ },`

    ‘ {`

    ‘ “label”: “label 2”`

    ‘ },`

    ‘ …`

    ‘ {`

    ‘ “label”: “label n”`

    ‘ }`

    ‘ ]`

    ‘}`

  • :stopping_conditions (Types::LabelingJobStoppingConditions)

    A set of conditions for stopping the labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.

  • :labeling_job_algorithms_config (Types::LabelingJobAlgorithmsConfig)

    Configures the information required to perform automated data labeling.

  • :human_task_config (required, Types::HumanTaskConfig)

    Configures the labeling task and how it is presented to workers; including, but not limited to price, keywords, and batch size (task count).

  • :tags (Array<Types::Tag>)

    An array of key/value pairs. For more information, see [Using Cost Allocation Tags] in the *AWS Billing and Cost Management User Guide*.

    [1]: docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what

Returns:

See Also:



1992
1993
1994
1995
# File 'lib/aws-sdk-sagemaker/client.rb', line 1992

def create_labeling_job(params = {}, options = {})
  req = build_request(:create_labeling_job, params)
  req.send_request(options)
end

#create_model(params = {}) ⇒ Types::CreateModelOutput

Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the docker image containing inference code, artifacts (from prior training), and custom environment map that the inference code uses when you deploy the model for predictions.

Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch transform job.

To host your model, you create an endpoint configuration with the ‘CreateEndpointConfig` API, and then create an endpoint with the `CreateEndpoint` API. Amazon SageMaker then deploys all of the containers that you defined for the model in the hosting environment.

To run a batch transform using your model, you start a job with the ‘CreateTransformJob` API. Amazon SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location.

In the ‘CreateModel` request, you must define a container with the `PrimaryContainer` parameter.

In the request, you also provide an IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other AWS resources, you grant necessary permissions via this role.

Examples:

Request syntax with placeholder values


resp = client.create_model({
  model_name: "ModelName", # required
  primary_container: {
    container_hostname: "ContainerHostname",
    image: "Image",
    mode: "SingleModel", # accepts SingleModel, MultiModel
    model_data_url: "Url",
    environment: {
      "EnvironmentKey" => "EnvironmentValue",
    },
    model_package_name: "ArnOrName",
  },
  containers: [
    {
      container_hostname: "ContainerHostname",
      image: "Image",
      mode: "SingleModel", # accepts SingleModel, MultiModel
      model_data_url: "Url",
      environment: {
        "EnvironmentKey" => "EnvironmentValue",
      },
      model_package_name: "ArnOrName",
    },
  ],
  execution_role_arn: "RoleArn", # required
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
  vpc_config: {
    security_group_ids: ["SecurityGroupId"], # required
    subnets: ["SubnetId"], # required
  },
  enable_network_isolation: false,
})

Response structure


resp.model_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

Returns:

See Also:



2137
2138
2139
2140
# File 'lib/aws-sdk-sagemaker/client.rb', line 2137

def create_model(params = {}, options = {})
  req = build_request(:create_model, params)
  req.send_request(options)
end

#create_model_package(params = {}) ⇒ Types::CreateModelPackageOutput

Creates a model package that you can use to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.

To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for ‘InferenceSpecification`. To create a model from an algorithm resource that you created or subscribed to in AWS Marketplace, provide a value for `SourceAlgorithmSpecification`.

Examples:

Request syntax with placeholder values


resp = client.create_model_package({
  model_package_name: "EntityName", # required
  model_package_description: "EntityDescription",
  inference_specification: {
    containers: [ # required
      {
        container_hostname: "ContainerHostname",
        image: "Image", # required
        image_digest: "ImageDigest",
        model_data_url: "Url",
        product_id: "ProductId",
      },
    ],
    supported_transform_instance_types: ["ml.m4.xlarge"], # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
    supported_realtime_inference_instance_types: ["ml.t2.medium"], # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.12xlarge, ml.m5d.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.large, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.12xlarge, ml.r5d.24xlarge, ml.inf1.xlarge, ml.inf1.2xlarge, ml.inf1.6xlarge, ml.inf1.24xlarge
    supported_content_types: ["ContentType"], # required
    supported_response_mime_types: ["ResponseMIMEType"], # required
  },
  validation_specification: {
    validation_role: "RoleArn", # required
    validation_profiles: [ # required
      {
        profile_name: "EntityName", # required
        transform_job_definition: { # required
          max_concurrent_transforms: 1,
          max_payload_in_mb: 1,
          batch_strategy: "MultiRecord", # accepts MultiRecord, SingleRecord
          environment: {
            "TransformEnvironmentKey" => "TransformEnvironmentValue",
          },
          transform_input: { # required
            data_source: { # required
              s3_data_source: { # required
                s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix, AugmentedManifestFile
                s3_uri: "S3Uri", # required
              },
            },
            content_type: "ContentType",
            compression_type: "None", # accepts None, Gzip
            split_type: "None", # accepts None, Line, RecordIO, TFRecord
          },
          transform_output: { # required
            s3_output_path: "S3Uri", # required
            accept: "Accept",
            assemble_with: "None", # accepts None, Line
            kms_key_id: "KmsKeyId",
          },
          transform_resources: { # required
            instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
            instance_count: 1, # required
            volume_kms_key_id: "KmsKeyId",
          },
        },
      },
    ],
  },
  source_algorithm_specification: {
    source_algorithms: [ # required
      {
        model_data_url: "Url",
        algorithm_name: "ArnOrName", # required
      },
    ],
  },
  certify_for_marketplace: false,
})

Response structure


resp.model_package_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :model_package_name (required, String)

    The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

  • :model_package_description (String)

    A description of the model package.

  • :inference_specification (Types::InferenceSpecification)

    Specifies details about inference jobs that can be run with models based on this model package, including the following:

    • The Amazon ECR paths of containers that contain the inference code and model artifacts.

    • The instance types that the model package supports for transform jobs and real-time endpoints used for inference.

    • The input and output content formats that the model package supports for inference.

  • :validation_specification (Types::ModelPackageValidationSpecification)

    Specifies configurations for one or more transform jobs that Amazon SageMaker runs to test the model package.

  • :source_algorithm_specification (Types::SourceAlgorithmSpecification)

    Details about the algorithm that was used to create the model package.

  • :certify_for_marketplace (Boolean)

    Whether to certify the model package for listing on AWS Marketplace.

Returns:

See Also:



2264
2265
2266
2267
# File 'lib/aws-sdk-sagemaker/client.rb', line 2264

def create_model_package(params = {}, options = {})
  req = build_request(:create_model_package, params)
  req.send_request(options)
end

#create_monitoring_schedule(params = {}) ⇒ Types::CreateMonitoringScheduleResponse

Creates a schedule that regularly starts Amazon SageMaker Processing Jobs to monitor the data captured for an Amazon SageMaker Endoint.

Examples:

Request syntax with placeholder values


resp = client.create_monitoring_schedule({
  monitoring_schedule_name: "MonitoringScheduleName", # required
  monitoring_schedule_config: { # required
    schedule_config: {
      schedule_expression: "ScheduleExpression", # required
    },
    monitoring_job_definition: { # required
      baseline_config: {
        constraints_resource: {
          s3_uri: "S3Uri",
        },
        statistics_resource: {
          s3_uri: "S3Uri",
        },
      },
      monitoring_inputs: [ # required
        {
          endpoint_input: { # required
            endpoint_name: "EndpointName", # required
            local_path: "ProcessingLocalPath", # required
            s3_input_mode: "Pipe", # accepts Pipe, File
            s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
          },
        },
      ],
      monitoring_output_config: { # required
        monitoring_outputs: [ # required
          {
            s3_output: { # required
              s3_uri: "MonitoringS3Uri", # required
              local_path: "ProcessingLocalPath", # required
              s3_upload_mode: "Continuous", # accepts Continuous, EndOfJob
            },
          },
        ],
        kms_key_id: "KmsKeyId",
      },
      monitoring_resources: { # required
        cluster_config: { # required
          instance_count: 1, # required
          instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
          volume_size_in_gb: 1, # required
          volume_kms_key_id: "KmsKeyId",
        },
      },
      monitoring_app_specification: { # required
        image_uri: "ImageUri", # required
        container_entrypoint: ["ContainerEntrypointString"],
        container_arguments: ["ContainerArgument"],
        record_preprocessor_source_uri: "S3Uri",
        post_analytics_processor_source_uri: "S3Uri",
      },
      stopping_condition: {
        max_runtime_in_seconds: 1, # required
      },
      environment: {
        "ProcessingEnvironmentKey" => "ProcessingEnvironmentValue",
      },
      network_config: {
        enable_network_isolation: false,
        vpc_config: {
          security_group_ids: ["SecurityGroupId"], # required
          subnets: ["SubnetId"], # required
        },
      },
      role_arn: "RoleArn", # required
    },
  },
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.monitoring_schedule_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

Returns:

See Also:



2376
2377
2378
2379
# File 'lib/aws-sdk-sagemaker/client.rb', line 2376

def create_monitoring_schedule(params = {}, options = {})
  req = build_request(:create_monitoring_schedule, params)
  req.send_request(options)
end

#create_notebook_instance(params = {}) ⇒ Types::CreateNotebookInstanceOutput

Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook.

In a ‘CreateNotebookInstance` request, specify the type of ML compute instance that you want to run. Amazon SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance.

Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use Amazon SageMaker with a specific algorithm or with a machine learning framework.

After receiving the request, Amazon SageMaker does the following:

  1. Creates a network interface in the Amazon SageMaker VPC.

  2. (Option) If you specified ‘SubnetId`, Amazon SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, Amazon SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC.

  3. Launches an EC2 instance of the type specified in the request in the Amazon SageMaker VPC. If you specified ‘SubnetId` of your VPC, Amazon SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.

After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN). You can’t change the name of a notebook instance after you create it.

After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and validate hosted models.

For more information, see [How It Works].

[1]: docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html

Examples:

Request syntax with placeholder values


resp = client.create_notebook_instance({
  notebook_instance_name: "NotebookInstanceName", # required
  instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
  subnet_id: "SubnetId",
  security_group_ids: ["SecurityGroupId"],
  role_arn: "RoleArn", # required
  kms_key_id: "KmsKeyId",
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
  lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
  direct_internet_access: "Enabled", # accepts Enabled, Disabled
  volume_size_in_gb: 1,
  accelerator_types: ["ml.eia1.medium"], # accepts ml.eia1.medium, ml.eia1.large, ml.eia1.xlarge, ml.eia2.medium, ml.eia2.large, ml.eia2.xlarge
  default_code_repository: "CodeRepositoryNameOrUrl",
  additional_code_repositories: ["CodeRepositoryNameOrUrl"],
  root_access: "Enabled", # accepts Enabled, Disabled
})

Response structure


resp.notebook_instance_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :notebook_instance_name (required, String)

    The name of the new notebook instance.

  • :instance_type (required, String)

    The type of ML compute instance to launch for the notebook instance.

  • :subnet_id (String)

    The ID of the subnet in a VPC to which you would like to have a connectivity from your ML compute instance.

  • :security_group_ids (Array<String>)

    The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.

  • :role_arn (required, String)

    When you send any requests to AWS resources from the notebook instance, Amazon SageMaker assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so Amazon SageMaker can perform these tasks. The policy must allow the Amazon SageMaker service principal (sagemaker.amazonaws.com) permissions to assume this role. For more information, see [Amazon SageMaker Roles].

    <note markdown=“1”> To be able to pass this role to Amazon SageMaker, the caller of this API must have the ‘iam:PassRole` permission.

    </note>
    

    [1]: docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html

  • :kms_key_id (String)

    The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to your notebook instance. The KMS key you provide must be enabled. For information, see [Enabling and Disabling Keys] in the *AWS Key Management Service Developer Guide*.

    [1]: docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html

  • :tags (Array<Types::Tag>)

    A list of tags to associate with the notebook instance. You can add tags later by using the ‘CreateTags` API.

  • :lifecycle_config_name (String)

    The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see [Step 2.1: (Optional) Customize a Notebook Instance].

    [1]: docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html

  • :direct_internet_access (String)

    Sets whether Amazon SageMaker provides internet access to the notebook instance. If you set this to ‘Disabled` this notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC.

    For more information, see [Notebook Instances Are Internet-Enabled by Default]. You can set the value of this parameter to ‘Disabled` only if you set a value for the `SubnetId` parameter.

    [1]: docs.aws.amazon.com/sagemaker/latest/dg/appendix-additional-considerations.html#appendix-notebook-and-internet-access

  • :volume_size_in_gb (Integer)

    The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.

  • :accelerator_types (Array<String>)

    A list of Elastic Inference (EI) instance types to associate with this notebook instance. Currently, only one instance type can be associated with a notebook instance. For more information, see [Using Elastic Inference in Amazon SageMaker].

    [1]: docs.aws.amazon.com/sagemaker/latest/dg/ei.html

  • :default_code_repository (String)

    A Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in [AWS CodeCommit] or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see [Associating Git Repositories with Amazon SageMaker Notebook Instances].

    [1]: docs.aws.amazon.com/codecommit/latest/userguide/welcome.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html

  • :additional_code_repositories (Array<String>)

    An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in

    AWS CodeCommit][1

    or in any other Git repository. These repositories

    are cloned at the same level as the default repository of your notebook instance. For more information, see [Associating Git Repositories with Amazon SageMaker Notebook Instances].

    [1]: docs.aws.amazon.com/codecommit/latest/userguide/welcome.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html

  • :root_access (String)

    Whether root access is enabled or disabled for users of the notebook instance. The default value is ‘Enabled`.

    <note markdown=“1”> Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.

    </note>
    

Returns:

See Also:



2588
2589
2590
2591
# File 'lib/aws-sdk-sagemaker/client.rb', line 2588

def create_notebook_instance(params = {}, options = {})
  req = build_request(:create_notebook_instance, params)
  req.send_request(options)
end

#create_notebook_instance_lifecycle_config(params = {}) ⇒ Types::CreateNotebookInstanceLifecycleConfigOutput

Creates a lifecycle configuration that you can associate with a notebook instance. A *lifecycle configuration* is a collection of shell scripts that run when you create or start a notebook instance.

Each lifecycle configuration script has a limit of 16384 characters.

The value of the ‘$PATH` environment variable that is available to both scripts is `/sbin:bin:/usr/sbin:/usr/bin`.

View CloudWatch Logs for notebook instance lifecycle configurations in log group ‘/aws/sagemaker/NotebookInstances` in log stream `[notebook-instance-name]/`.

Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.

For information about notebook instance lifestyle configurations, see [Step 2.1: (Optional) Customize a Notebook Instance].

[1]: docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html

Examples:

Request syntax with placeholder values


resp = client.create_notebook_instance_lifecycle_config({
  notebook_instance_lifecycle_config_name: "NotebookInstanceLifecycleConfigName", # required
  on_create: [
    {
      content: "NotebookInstanceLifecycleConfigContent",
    },
  ],
  on_start: [
    {
      content: "NotebookInstanceLifecycleConfigContent",
    },
  ],
})

Response structure


resp.notebook_instance_lifecycle_config_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :notebook_instance_lifecycle_config_name (required, String)

    The name of the lifecycle configuration.

  • :on_create (Array<Types::NotebookInstanceLifecycleHook>)

    A shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.

  • :on_start (Array<Types::NotebookInstanceLifecycleHook>)

    A shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.

Returns:

See Also:



2657
2658
2659
2660
# File 'lib/aws-sdk-sagemaker/client.rb', line 2657

def create_notebook_instance_lifecycle_config(params = {}, options = {})
  req = build_request(:create_notebook_instance_lifecycle_config, params)
  req.send_request(options)
end

#create_presigned_domain_url(params = {}) ⇒ Types::CreatePresignedDomainUrlResponse

Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to Amazon SageMaker Amazon SageMaker Studio (Studio), and granted access to all of the Apps and files associated with that Amazon Elastic File System (EFS). This operation can only be called when AuthMode equals IAM.

Examples:

Request syntax with placeholder values


resp = client.create_presigned_domain_url({
  domain_id: "DomainId", # required
  user_profile_name: "UserProfileName", # required
  session_expiration_duration_in_seconds: 1,
})

Response structure


resp.authorized_url #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :domain_id (required, String)

    The domain ID.

  • :user_profile_name (required, String)

    The name of the UserProfile to sign-in as.

  • :session_expiration_duration_in_seconds (Integer)

    The session expiration duration in seconds.

Returns:

See Also:



2697
2698
2699
2700
# File 'lib/aws-sdk-sagemaker/client.rb', line 2697

def create_presigned_domain_url(params = {}, options = {})
  req = build_request(:create_presigned_domain_url, params)
  req.send_request(options)
end

#create_presigned_notebook_instance_url(params = {}) ⇒ Types::CreatePresignedNotebookInstanceUrlOutput

Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the Amazon SageMaker console, when you choose ‘Open` next to a notebook instance, Amazon SageMaker opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page.

IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook instance.For example, you can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. Use the ‘NotIpAddress` condition operator and the `aws:SourceIP` condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see [Limit Access to a Notebook Instance by IP Address].

<note markdown=“1”> The URL that you get from a call to is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page.

</note>

[1]: docs.aws.amazon.com/sagemaker/latest/dg/security_iam_id-based-policy-examples.html#nbi-ip-filter

Examples:

Request syntax with placeholder values


resp = client.create_presigned_notebook_instance_url({
  notebook_instance_name: "NotebookInstanceName", # required
  session_expiration_duration_in_seconds: 1,
})

Response structure


resp.authorized_url #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :notebook_instance_name (required, String)

    The name of the notebook instance.

  • :session_expiration_duration_in_seconds (Integer)

    The duration of the session, in seconds. The default is 12 hours.

Returns:

See Also:



2752
2753
2754
2755
# File 'lib/aws-sdk-sagemaker/client.rb', line 2752

def create_presigned_notebook_instance_url(params = {}, options = {})
  req = build_request(:create_presigned_notebook_instance_url, params)
  req.send_request(options)
end

#create_processing_job(params = {}) ⇒ Types::CreateProcessingJobResponse

Creates a processing job.

Examples:

Request syntax with placeholder values


resp = client.create_processing_job({
  processing_inputs: [
    {
      input_name: "String", # required
      s3_input: { # required
        s3_uri: "S3Uri", # required
        local_path: "ProcessingLocalPath", # required
        s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix
        s3_input_mode: "Pipe", # required, accepts Pipe, File
        s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
        s3_compression_type: "None", # accepts None, Gzip
      },
    },
  ],
  processing_output_config: {
    outputs: [ # required
      {
        output_name: "String", # required
        s3_output: { # required
          s3_uri: "S3Uri", # required
          local_path: "ProcessingLocalPath", # required
          s3_upload_mode: "Continuous", # required, accepts Continuous, EndOfJob
        },
      },
    ],
    kms_key_id: "KmsKeyId",
  },
  processing_job_name: "ProcessingJobName", # required
  processing_resources: { # required
    cluster_config: { # required
      instance_count: 1, # required
      instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
      volume_size_in_gb: 1, # required
      volume_kms_key_id: "KmsKeyId",
    },
  },
  stopping_condition: {
    max_runtime_in_seconds: 1, # required
  },
  app_specification: { # required
    image_uri: "ImageUri", # required
    container_entrypoint: ["ContainerEntrypointString"],
    container_arguments: ["ContainerArgument"],
  },
  environment: {
    "ProcessingEnvironmentKey" => "ProcessingEnvironmentValue",
  },
  network_config: {
    enable_network_isolation: false,
    vpc_config: {
      security_group_ids: ["SecurityGroupId"], # required
      subnets: ["SubnetId"], # required
    },
  },
  role_arn: "RoleArn", # required
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
  experiment_config: {
    experiment_name: "ExperimentConfigName",
    trial_name: "ExperimentConfigName",
    trial_component_display_name: "ExperimentConfigName",
  },
})

Response structure


resp.processing_job_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :processing_inputs (Array<Types::ProcessingInput>)

    For each input, data is downloaded from S3 into the processing container before the processing job begins running if “S3InputMode” is set to ‘File`.

  • :processing_output_config (Types::ProcessingOutputConfig)

    Output configuration for the processing job.

  • :processing_job_name (required, String)

    The name of the processing job. The name must be unique within an AWS Region in the AWS account.

  • :processing_resources (required, Types::ProcessingResources)

    Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.

  • :stopping_condition (Types::ProcessingStoppingCondition)

    The time limit for how long the processing job is allowed to run.

  • :app_specification (required, Types::AppSpecification)

    Configures the processing job to run a specified Docker container image.

  • :environment (Hash<String,String>)

    Sets the environment variables in the Docker container.

  • :network_config (Types::NetworkConfig)

    Networking options for a processing job.

  • :role_arn (required, String)

    The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

  • :tags (Array<Types::Tag>) — default: Optional

    An array of key-value pairs. For more information, see

    Using Cost Allocation Tags][1

    in the *AWS Billing and Cost

    Management User Guide*.

    [1]: docs-aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-whatURL

  • :experiment_config (Types::ExperimentConfig)

    Configuration for the experiment.

Returns:

See Also:



2887
2888
2889
2890
# File 'lib/aws-sdk-sagemaker/client.rb', line 2887

def create_processing_job(params = {}, options = {})
  req = build_request(:create_processing_job, params)
  req.send_request(options)
end

#create_training_job(params = {}) ⇒ Types::CreateTrainingJobResponse

Starts a model training job. After training completes, Amazon SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify.

If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than Amazon SageMaker, provided that you know how to use them for inferences.

In the request body, you provide the following:

  • ‘AlgorithmSpecification` - Identifies the training algorithm to use.

  • ‘HyperParameters` - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see [Algorithms].

  • ‘InputDataConfig` - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored.

  • ‘OutputDataConfig` - Identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of model training.

  • ‘ResourceConfig` - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance.

  • ‘EnableManagedSpotTraining` - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see [Managed Spot Training].

  • ‘RoleARN` - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete model training.

  • ‘StoppingCondition` - To help cap training costs, use `MaxRuntimeInSeconds` to set a time limit for training. Use `MaxWaitTimeInSeconds` to specify how long you are willing to wait for a managed spot training job to complete.

For more information about Amazon SageMaker, see [How It Works].

[1]: docs.aws.amazon.com/sagemaker/latest/dg/algos.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html [3]: docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html

Examples:

Request syntax with placeholder values


resp = client.create_training_job({
  training_job_name: "TrainingJobName", # required
  hyper_parameters: {
    "ParameterKey" => "ParameterValue",
  },
  algorithm_specification: { # required
    training_image: "AlgorithmImage",
    algorithm_name: "ArnOrName",
    training_input_mode: "Pipe", # required, accepts Pipe, File
    metric_definitions: [
      {
        name: "MetricName", # required
        regex: "MetricRegex", # required
      },
    ],
    enable_sage_maker_metrics_time_series: false,
  },
  role_arn: "RoleArn", # required
  input_data_config: [
    {
      channel_name: "ChannelName", # required
      data_source: { # required
        s3_data_source: {
          s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix, AugmentedManifestFile
          s3_uri: "S3Uri", # required
          s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
          attribute_names: ["AttributeName"],
        },
        file_system_data_source: {
          file_system_id: "FileSystemId", # required
          file_system_access_mode: "rw", # required, accepts rw, ro
          file_system_type: "EFS", # required, accepts EFS, FSxLustre
          directory_path: "DirectoryPath", # required
        },
      },
      content_type: "ContentType",
      compression_type: "None", # accepts None, Gzip
      record_wrapper_type: "None", # accepts None, RecordIO
      input_mode: "Pipe", # accepts Pipe, File
      shuffle_config: {
        seed: 1, # required
      },
    },
  ],
  output_data_config: { # required
    kms_key_id: "KmsKeyId",
    s3_output_path: "S3Uri", # required
  },
  resource_config: { # required
    instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge
    instance_count: 1, # required
    volume_size_in_gb: 1, # required
    volume_kms_key_id: "KmsKeyId",
  },
  vpc_config: {
    security_group_ids: ["SecurityGroupId"], # required
    subnets: ["SubnetId"], # required
  },
  stopping_condition: { # required
    max_runtime_in_seconds: 1,
    max_wait_time_in_seconds: 1,
  },
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
  enable_network_isolation: false,
  enable_inter_container_traffic_encryption: false,
  enable_managed_spot_training: false,
  checkpoint_config: {
    s3_uri: "S3Uri", # required
    local_path: "DirectoryPath",
  },
  debug_hook_config: {
    local_path: "DirectoryPath",
    s3_output_path: "S3Uri", # required
    hook_parameters: {
      "ConfigKey" => "ConfigValue",
    },
    collection_configurations: [
      {
        collection_name: "CollectionName",
        collection_parameters: {
          "ConfigKey" => "ConfigValue",
        },
      },
    ],
  },
  debug_rule_configurations: [
    {
      rule_configuration_name: "RuleConfigurationName", # required
      local_path: "DirectoryPath",
      s3_output_path: "S3Uri",
      rule_evaluator_image: "AlgorithmImage", # required
      instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
      volume_size_in_gb: 1,
      rule_parameters: {
        "ConfigKey" => "ConfigValue",
      },
    },
  ],
  tensor_board_output_config: {
    local_path: "DirectoryPath",
    s3_output_path: "S3Uri", # required
  },
  experiment_config: {
    experiment_name: "ExperimentConfigName",
    trial_name: "ExperimentConfigName",
    trial_component_display_name: "ExperimentConfigName",
  },
})

Response structure


resp.training_job_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :training_job_name (required, String)

    The name of the training job. The name must be unique within an AWS Region in an AWS account.

  • :hyper_parameters (Hash<String,String>)

    Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see [Algorithms].

    You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the ‘Length Constraint`.

    [1]: docs.aws.amazon.com/sagemaker/latest/dg/algos.html

  • :algorithm_specification (required, Types::AlgorithmSpecification)

    The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by Amazon SageMaker, see [Algorithms]. For information about providing your own algorithms, see [Using Your Own Algorithms with Amazon SageMaker].

    [1]: docs.aws.amazon.com/sagemaker/latest/dg/algos.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html

  • :role_arn (required, String)

    The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.

    During model training, Amazon SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see [Amazon SageMaker Roles].

    <note markdown=“1”> To be able to pass this role to Amazon SageMaker, the caller of this API must have the ‘iam:PassRole` permission.

    </note>
    

    [1]: docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html

  • :input_data_config (Array<Types::Channel>)

    An array of ‘Channel` objects. Each channel is a named input source. `InputDataConfig` describes the input data and its location.

    Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, ‘training_data` and `validation_data`. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format.

    Depending on the input mode that the algorithm supports, Amazon SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files will be made available as input streams. They do not need to be downloaded.

  • :output_data_config (required, Types::OutputDataConfig)

    Specifies the path to the S3 location where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.

  • :resource_config (required, Types::ResourceConfig)

    The resources, including the ML compute instances and ML storage volumes, to use for model training.

    ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want Amazon SageMaker to use the ML storage volume to store the training data, choose ‘File` as the `TrainingInputMode` in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.

  • :vpc_config (Types::VpcConfig)

    A VpcConfig object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see [Protect Training Jobs by Using an Amazon Virtual Private Cloud].

    [1]: docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html

  • :stopping_condition (required, Types::StoppingCondition)

    Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.

    To stop a job, Amazon SageMaker sends the algorithm the ‘SIGTERM` signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.

  • :tags (Array<Types::Tag>)

    An array of key-value pairs. For more information, see [Using Cost Allocation Tags] in the *AWS Billing and Cost Management User Guide*.

    [1]: docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what

  • :enable_network_isolation (Boolean)

    Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

    <note markdown=“1”> The Semantic Segmentation built-in algorithm does not support network isolation.

    </note>
    
  • :enable_inter_container_traffic_encryption (Boolean)

    To encrypt all communications between ML compute instances in distributed training, choose ‘True`. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see [Protect Communications Between ML Compute Instances in a Distributed Training Job].

    [1]: docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html

  • :enable_managed_spot_training (Boolean)

    To train models using managed spot training, choose ‘True`. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run.

    The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.

  • :checkpoint_config (Types::CheckpointConfig)

    Contains information about the output location for managed spot training checkpoint data.

  • :debug_hook_config (Types::DebugHookConfig)

    Configuration information for the debug hook parameters, collection configuration, and storage paths.

  • :debug_rule_configurations (Array<Types::DebugRuleConfiguration>)

    Configuration information for debugging rules.

  • :tensor_board_output_config (Types::TensorBoardOutputConfig)

    Configuration of storage locations for TensorBoard output.

  • :experiment_config (Types::ExperimentConfig)

    Configuration for the experiment.

Returns:

See Also:



3244
3245
3246
3247
# File 'lib/aws-sdk-sagemaker/client.rb', line 3244

def create_training_job(params = {}, options = {})
  req = build_request(:create_training_job, params)
  req.send_request(options)
end

#create_transform_job(params = {}) ⇒ Types::CreateTransformJobResponse

Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify.

To perform batch transformations, you create a transform job and use the data that you have readily available.

In the request body, you provide the following:

  • ‘TransformJobName` - Identifies the transform job. The name must be unique within an AWS Region in an AWS account.

  • ‘ModelName` - Identifies the model to use. `ModelName` must be the name of an existing Amazon SageMaker model in the same AWS Region and AWS account. For information on creating a model, see CreateModel.

  • ‘TransformInput` - Describes the dataset to be transformed and the Amazon S3 location where it is stored.

  • ‘TransformOutput` - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

  • ‘TransformResources` - Identifies the ML compute instances for the transform job.

For more information about how batch transformation works, see [Batch Transform].

[1]: docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html

Examples:

Request syntax with placeholder values


resp = client.create_transform_job({
  transform_job_name: "TransformJobName", # required
  model_name: "ModelName", # required
  max_concurrent_transforms: 1,
  max_payload_in_mb: 1,
  batch_strategy: "MultiRecord", # accepts MultiRecord, SingleRecord
  environment: {
    "TransformEnvironmentKey" => "TransformEnvironmentValue",
  },
  transform_input: { # required
    data_source: { # required
      s3_data_source: { # required
        s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix, AugmentedManifestFile
        s3_uri: "S3Uri", # required
      },
    },
    content_type: "ContentType",
    compression_type: "None", # accepts None, Gzip
    split_type: "None", # accepts None, Line, RecordIO, TFRecord
  },
  transform_output: { # required
    s3_output_path: "S3Uri", # required
    accept: "Accept",
    assemble_with: "None", # accepts None, Line
    kms_key_id: "KmsKeyId",
  },
  transform_resources: { # required
    instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
    instance_count: 1, # required
    volume_kms_key_id: "KmsKeyId",
  },
  data_processing: {
    input_filter: "JsonPath",
    output_filter: "JsonPath",
    join_source: "Input", # accepts Input, None
  },
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
  experiment_config: {
    experiment_name: "ExperimentConfigName",
    trial_name: "ExperimentConfigName",
    trial_component_display_name: "ExperimentConfigName",
  },
})

Response structure


resp.transform_job_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :transform_job_name (required, String)

    The name of the transform job. The name must be unique within an AWS Region in an AWS account.

  • :model_name (required, String)

    The name of the model that you want to use for the transform job. ‘ModelName` must be the name of an existing Amazon SageMaker model within an AWS Region in an AWS account.

  • :max_concurrent_transforms (Integer)

    The maximum number of parallel requests that can be sent to each instance in a transform job. If ‘MaxConcurrentTransforms` is set to `0` or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is `1`. For more information on execution-parameters, see [How Containers Serve Requests]. For built-in algorithms, you don’t need to set a value for ‘MaxConcurrentTransforms`.

    [1]: docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html#your-algorithms-batch-code-how-containe-serves-requests

  • :max_payload_in_mb (Integer)

    The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in ‘MaxPayloadInMB` must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is `6` MB.

    For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to ‘0`. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.

  • :batch_strategy (String)

    Specifies the number of records to include in a mini-batch for an HTTP inference request. A record ** is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.

    To enable the batch strategy, you must set the ‘SplitType` property of the DataProcessing object to `Line`, `RecordIO`, or `TFRecord`.

    To use only one record when making an HTTP invocation request to a container, set ‘BatchStrategy` to `SingleRecord` and `SplitType` to `Line`.

    To fit as many records in a mini-batch as can fit within the ‘MaxPayloadInMB` limit, set `BatchStrategy` to `MultiRecord` and `SplitType` to `Line`.

  • :environment (Hash<String,String>)

    The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.

  • :transform_input (required, Types::TransformInput)

    Describes the input source and the way the transform job consumes it.

  • :transform_output (required, Types::TransformOutput)

    Describes the results of the transform job.

  • :transform_resources (required, Types::TransformResources)

    Describes the resources, including ML instance types and ML instance count, to use for the transform job.

  • :data_processing (Types::DataProcessing)

    The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see [Associate Prediction Results with their Corresponding Input Records].

    [1]: docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html

  • :tags (Array<Types::Tag>) — default: Optional

    An array of key-value pairs. For more information, see

    Using Cost Allocation Tags][1

    in the *AWS Billing and Cost

    Management User Guide*.

    [1]: docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what

  • :experiment_config (Types::ExperimentConfig)

    Configuration for the experiment.

Returns:

See Also:



3439
3440
3441
3442
# File 'lib/aws-sdk-sagemaker/client.rb', line 3439

def create_transform_job(params = {}, options = {})
  req = build_request(:create_transform_job, params)
  req.send_request(options)
end

#create_trial(params = {}) ⇒ Types::CreateTrialResponse

Creates an Amazon SageMaker trial. A trial is a set of steps called *trial components* that produce a machine learning model. A trial is part of a single Amazon SageMaker experiment.

When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK.

You can add tags to a trial and then use the Search API to search for the tags.

To get a list of all your trials, call the ListTrials API. To view a trial’s properties, call the DescribeTrial API. To create a trial component, call the CreateTrialComponent API.

Examples:

Request syntax with placeholder values


resp = client.create_trial({
  trial_name: "ExperimentEntityName", # required
  display_name: "ExperimentEntityName",
  experiment_name: "ExperimentEntityName", # required
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.trial_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :trial_name (required, String)

    The name of the trial. The name must be unique in your AWS account and is not case-sensitive.

  • :display_name (String)

    The name of the trial as displayed. The name doesn’t need to be unique. If ‘DisplayName` isn’t specified, ‘TrialName` is displayed.

  • :experiment_name (required, String)

    The name of the experiment to associate the trial with.

  • :tags (Array<Types::Tag>)

    A list of tags to associate with the trial. You can use Search API to search on the tags.

Returns:

See Also:



3501
3502
3503
3504
# File 'lib/aws-sdk-sagemaker/client.rb', line 3501

def create_trial(params = {}, options = {})
  req = build_request(:create_trial, params)
  req.send_request(options)
end

#create_trial_component(params = {}) ⇒ Types::CreateTrialComponentResponse

Creates a *trial component*, which is a stage of a machine learning trial. A trial is composed of one or more trial components. A trial component can be used in multiple trials.

Trial components include pre-processing jobs, training jobs, and batch transform jobs.

When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK.

You can add tags to a trial component and then use the Search API to search for the tags.

<note markdown=“1”> You can create a trial component through a direct call to the ‘CreateTrialComponent` API. However, you can’t specify the ‘Source` property of the component in the request, therefore, the component isn’t associated with an Amazon SageMaker job. You must use Amazon SageMaker Studio, the Amazon SageMaker Python SDK, or the AWS SDK for Python (Boto) to create the component with a valid ‘Source` property.

</note>

Examples:

Request syntax with placeholder values


resp = client.create_trial_component({
  trial_component_name: "ExperimentEntityName", # required
  display_name: "ExperimentEntityName",
  status: {
    primary_status: "InProgress", # accepts InProgress, Completed, Failed
    message: "TrialComponentStatusMessage",
  },
  start_time: Time.now,
  end_time: Time.now,
  parameters: {
    "TrialComponentKey256" => {
      string_value: "StringParameterValue",
      number_value: 1.0,
    },
  },
  input_artifacts: {
    "TrialComponentKey64" => {
      media_type: "MediaType",
      value: "TrialComponentArtifactValue", # required
    },
  },
  output_artifacts: {
    "TrialComponentKey64" => {
      media_type: "MediaType",
      value: "TrialComponentArtifactValue", # required
    },
  },
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.trial_component_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :trial_component_name (required, String)

    The name of the component. The name must be unique in your AWS account and is not case-sensitive.

  • :display_name (String)

    The name of the component as displayed. The name doesn’t need to be unique. If ‘DisplayName` isn’t specified, ‘TrialComponentName` is displayed.

  • :status (Types::TrialComponentStatus)

    The status of the component. States include:

    • InProgress

    • Completed

    • Failed

  • :start_time (Time, DateTime, Date, Integer, String)

    When the component started.

  • :end_time (Time, DateTime, Date, Integer, String)

    When the component ended.

  • :parameters (Hash<String,Types::TrialComponentParameterValue>)

    The hyperparameters for the component.

  • :input_artifacts (Hash<String,Types::TrialComponentArtifact>)

    The input artifacts for the component. Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types.

  • :output_artifacts (Hash<String,Types::TrialComponentArtifact>)

    The output artifacts for the component. Examples of output artifacts are metrics, snapshots, logs, and images.

  • :tags (Array<Types::Tag>)

    A list of tags to associate with the component. You can use Search API to search on the tags.

Returns:

See Also:



3619
3620
3621
3622
# File 'lib/aws-sdk-sagemaker/client.rb', line 3619

def create_trial_component(params = {}, options = {})
  req = build_request(:create_trial_component, params)
  req.send_request(options)
end

#create_user_profile(params = {}) ⇒ Types::CreateUserProfileResponse

Creates a new user profile. A user profile represents a single user within a Domain, and is the main way to reference a “person” for the purposes of sharing, reporting and other user-oriented features. This entity is created during on-boarding. If an administrator invites a person by email or imports them from SSO, a new UserProfile is automatically created. This entity is the primary holder of settings for an individual user and has a reference to the user’s private Amazon Elastic File System (EFS) home directory.

Examples:

Request syntax with placeholder values


resp = client.({
  domain_id: "DomainId", # required
  user_profile_name: "UserProfileName", # required
  single_sign_on_user_identifier: "SingleSignOnUserIdentifier",
  single_sign_on_user_value: "String256",
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
  user_settings: {
    execution_role: "RoleArn",
    security_groups: ["SecurityGroupId"],
    sharing_settings: {
      notebook_output_option: "Allowed", # accepts Allowed, Disabled
      s3_output_path: "S3Uri",
      s3_kms_key_id: "KmsKeyId",
    },
    jupyter_server_app_settings: {
      default_resource_spec: {
        environment_arn: "EnvironmentArn",
        instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
      },
    },
    kernel_gateway_app_settings: {
      default_resource_spec: {
        environment_arn: "EnvironmentArn",
        instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
      },
    },
    tensor_board_app_settings: {
      default_resource_spec: {
        environment_arn: "EnvironmentArn",
        instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
      },
    },
  },
})

Response structure


resp. #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :domain_id (required, String)

    The ID of the associated Domain.

  • :user_profile_name (required, String)

    A name for the UserProfile.

  • :single_sign_on_user_identifier (String)

    A specifier for the type of value specified in SingleSignOnUserValue. Currently, the only supported value is “UserName”. If the Domain’s AuthMode is SSO, this field is required. If the Domain’s AuthMode is not SSO, this field cannot be specified.

  • :single_sign_on_user_value (String)

    The username of the associated AWS Single Sign-On User for this UserProfile. If the Domain’s AuthMode is SSO, this field is required, and must match a valid username of a user in your directory. If the Domain’s AuthMode is not SSO, this field cannot be specified.

  • :tags (Array<Types::Tag>)

    Each tag consists of a key and an optional value. Tag keys must be unique per resource.

  • :user_settings (Types::UserSettings)

    A collection of settings.

Returns:

See Also:



3712
3713
3714
3715
# File 'lib/aws-sdk-sagemaker/client.rb', line 3712

def (params = {}, options = {})
  req = build_request(:create_user_profile, params)
  req.send_request(options)
end

#create_workteam(params = {}) ⇒ Types::CreateWorkteamResponse

Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team.

You cannot create more than 25 work teams in an account and region.

Examples:

Request syntax with placeholder values


resp = client.create_workteam({
  workteam_name: "WorkteamName", # required
  member_definitions: [ # required
    {
      cognito_member_definition: {
        user_pool: "CognitoUserPool", # required
        user_group: "CognitoUserGroup", # required
        client_id: "CognitoClientId", # required
      },
    },
  ],
  description: "String200", # required
  notification_configuration: {
    notification_topic_arn: "NotificationTopicArn",
  },
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.workteam_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

Returns:

See Also:



3793
3794
3795
3796
# File 'lib/aws-sdk-sagemaker/client.rb', line 3793

def create_workteam(params = {}, options = {})
  req = build_request(:create_workteam, params)
  req.send_request(options)
end

#delete_algorithm(params = {}) ⇒ Struct

Removes the specified algorithm from your account.

Examples:

Request syntax with placeholder values


resp = client.delete_algorithm({
  algorithm_name: "EntityName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :algorithm_name (required, String)

    The name of the algorithm to delete.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



3815
3816
3817
3818
# File 'lib/aws-sdk-sagemaker/client.rb', line 3815

def delete_algorithm(params = {}, options = {})
  req = build_request(:delete_algorithm, params)
  req.send_request(options)
end

#delete_app(params = {}) ⇒ Struct

Used to stop and delete an app.

Examples:

Request syntax with placeholder values


resp = client.delete_app({
  domain_id: "DomainId", # required
  user_profile_name: "UserProfileName", # required
  app_type: "JupyterServer", # required, accepts JupyterServer, KernelGateway, TensorBoard
  app_name: "AppName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :domain_id (required, String)

    The domain ID.

  • :user_profile_name (required, String)

    The user profile name.

  • :app_type (required, String)

    The type of app.

  • :app_name (required, String)

    The name of the app.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



3849
3850
3851
3852
# File 'lib/aws-sdk-sagemaker/client.rb', line 3849

def delete_app(params = {}, options = {})
  req = build_request(:delete_app, params)
  req.send_request(options)
end

#delete_code_repository(params = {}) ⇒ Struct

Deletes the specified Git repository from your account.

Examples:

Request syntax with placeholder values


resp = client.delete_code_repository({
  code_repository_name: "EntityName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :code_repository_name (required, String)

    The name of the Git repository to delete.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



3871
3872
3873
3874
# File 'lib/aws-sdk-sagemaker/client.rb', line 3871

def delete_code_repository(params = {}, options = {})
  req = build_request(:delete_code_repository, params)
  req.send_request(options)
end

#delete_domain(params = {}) ⇒ Struct

Used to delete a domain. If you on-boarded with IAM mode, you will need to delete your domain to on-board again using SSO. Use with caution. All of the members of the domain will lose access to their EFS volume, including data, notebooks, and other artifacts.

Examples:

Request syntax with placeholder values


resp = client.delete_domain({
  domain_id: "DomainId", # required
  retention_policy: {
    home_efs_file_system: "Retain", # accepts Retain, Delete
  },
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :domain_id (required, String)

    The domain ID.

  • :retention_policy (Types::RetentionPolicy)

    The retention policy for this domain, which specifies which resources will be retained after the Domain is deleted. By default, all resources are retained (not automatically deleted).

Returns:

  • (Struct)

    Returns an empty response.

See Also:



3904
3905
3906
3907
# File 'lib/aws-sdk-sagemaker/client.rb', line 3904

def delete_domain(params = {}, options = {})
  req = build_request(:delete_domain, params)
  req.send_request(options)
end

#delete_endpoint(params = {}) ⇒ Struct

Deletes an endpoint. Amazon SageMaker frees up all of the resources that were deployed when the endpoint was created.

Amazon SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don’t need to use the [RevokeGrant] API call.

[1]: docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html

Examples:

Request syntax with placeholder values


resp = client.delete_endpoint({
  endpoint_name: "EndpointName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :endpoint_name (required, String)

    The name of the endpoint that you want to delete.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



3935
3936
3937
3938
# File 'lib/aws-sdk-sagemaker/client.rb', line 3935

def delete_endpoint(params = {}, options = {})
  req = build_request(:delete_endpoint, params)
  req.send_request(options)
end

#delete_endpoint_config(params = {}) ⇒ Struct

Deletes an endpoint configuration. The ‘DeleteEndpointConfig` API deletes only the specified configuration. It does not delete endpoints created using the configuration.

Examples:

Request syntax with placeholder values


resp = client.delete_endpoint_config({
  endpoint_config_name: "EndpointConfigName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :endpoint_config_name (required, String)

    The name of the endpoint configuration that you want to delete.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



3959
3960
3961
3962
# File 'lib/aws-sdk-sagemaker/client.rb', line 3959

def delete_endpoint_config(params = {}, options = {})
  req = build_request(:delete_endpoint_config, params)
  req.send_request(options)
end

#delete_experiment(params = {}) ⇒ Types::DeleteExperimentResponse

Deletes an Amazon SageMaker experiment. All trials associated with the experiment must be deleted first. Use the ListTrials API to get a list of the trials associated with the experiment.

Examples:

Request syntax with placeholder values


resp = client.delete_experiment({
  experiment_name: "ExperimentEntityName", # required
})

Response structure


resp.experiment_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :experiment_name (required, String)

    The name of the experiment to delete.

Returns:

See Also:



3989
3990
3991
3992
# File 'lib/aws-sdk-sagemaker/client.rb', line 3989

def delete_experiment(params = {}, options = {})
  req = build_request(:delete_experiment, params)
  req.send_request(options)
end

#delete_flow_definition(params = {}) ⇒ Struct

Deletes the specified flow definition.

Examples:

Request syntax with placeholder values


resp = client.delete_flow_definition({
  flow_definition_name: "FlowDefinitionName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :flow_definition_name (required, String)

    The name of the flow definition you are deleting.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



4011
4012
4013
4014
# File 'lib/aws-sdk-sagemaker/client.rb', line 4011

def delete_flow_definition(params = {}, options = {})
  req = build_request(:delete_flow_definition, params)
  req.send_request(options)
end

#delete_model(params = {}) ⇒ Struct

Deletes a model. The ‘DeleteModel` API deletes only the model entry that was created in Amazon SageMaker when you called the

CreateModel][1

API. It does not delete model artifacts, inference

code, or the IAM role that you specified when creating the model.

[1]: docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html

Examples:

Request syntax with placeholder values


resp = client.delete_model({
  model_name: "ModelName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :model_name (required, String)

    The name of the model to delete.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



4040
4041
4042
4043
# File 'lib/aws-sdk-sagemaker/client.rb', line 4040

def delete_model(params = {}, options = {})
  req = build_request(:delete_model, params)
  req.send_request(options)
end

#delete_model_package(params = {}) ⇒ Struct

Deletes a model package.

A model package is used to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.

Examples:

Request syntax with placeholder values


resp = client.delete_model_package({
  model_package_name: "EntityName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :model_package_name (required, String)

    The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

Returns:

  • (Struct)

    Returns an empty response.

See Also:



4067
4068
4069
4070
# File 'lib/aws-sdk-sagemaker/client.rb', line 4067

def delete_model_package(params = {}, options = {})
  req = build_request(:delete_model_package, params)
  req.send_request(options)
end

#delete_monitoring_schedule(params = {}) ⇒ Struct

Deletes a monitoring schedule. Also stops the schedule had not already been stopped. This does not delete the job execution history of the monitoring schedule.

Examples:

Request syntax with placeholder values


resp = client.delete_monitoring_schedule({
  monitoring_schedule_name: "MonitoringScheduleName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :monitoring_schedule_name (required, String)

    The name of the monitoring schedule to delete.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



4091
4092
4093
4094
# File 'lib/aws-sdk-sagemaker/client.rb', line 4091

def delete_monitoring_schedule(params = {}, options = {})
  req = build_request(:delete_monitoring_schedule, params)
  req.send_request(options)
end

#delete_notebook_instance(params = {}) ⇒ Struct

Deletes an Amazon SageMaker notebook instance. Before you can delete a notebook instance, you must call the ‘StopNotebookInstance` API.

When you delete a notebook instance, you lose all of your data. Amazon SageMaker removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance.

Examples:

Request syntax with placeholder values


resp = client.delete_notebook_instance({
  notebook_instance_name: "NotebookInstanceName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :notebook_instance_name (required, String)

    The name of the Amazon SageMaker notebook instance to delete.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



4119
4120
4121
4122
# File 'lib/aws-sdk-sagemaker/client.rb', line 4119

def delete_notebook_instance(params = {}, options = {})
  req = build_request(:delete_notebook_instance, params)
  req.send_request(options)
end

#delete_notebook_instance_lifecycle_config(params = {}) ⇒ Struct

Deletes a notebook instance lifecycle configuration.

Examples:

Request syntax with placeholder values


resp = client.delete_notebook_instance_lifecycle_config({
  notebook_instance_lifecycle_config_name: "NotebookInstanceLifecycleConfigName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :notebook_instance_lifecycle_config_name (required, String)

    The name of the lifecycle configuration to delete.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



4141
4142
4143
4144
# File 'lib/aws-sdk-sagemaker/client.rb', line 4141

def delete_notebook_instance_lifecycle_config(params = {}, options = {})
  req = build_request(:delete_notebook_instance_lifecycle_config, params)
  req.send_request(options)
end

#delete_tags(params = {}) ⇒ Struct

Deletes the specified tags from an Amazon SageMaker resource.

To list a resource’s tags, use the ‘ListTags` API.

<note markdown=“1”> When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API.

</note>

Examples:

Request syntax with placeholder values


resp = client.delete_tags({
  resource_arn: "ResourceArn", # required
  tag_keys: ["TagKey"], # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :resource_arn (required, String)

    The Amazon Resource Name (ARN) of the resource whose tags you want to delete.

  • :tag_keys (required, Array<String>)

    An array or one or more tag keys to delete.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



4176
4177
4178
4179
# File 'lib/aws-sdk-sagemaker/client.rb', line 4176

def delete_tags(params = {}, options = {})
  req = build_request(:delete_tags, params)
  req.send_request(options)
end

#delete_trial(params = {}) ⇒ Types::DeleteTrialResponse

Deletes the specified trial. All trial components that make up the trial must be deleted first. Use the DescribeTrialComponent API to get the list of trial components.

Examples:

Request syntax with placeholder values


resp = client.delete_trial({
  trial_name: "ExperimentEntityName", # required
})

Response structure


resp.trial_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :trial_name (required, String)

    The name of the trial to delete.

Returns:

See Also:



4206
4207
4208
4209
# File 'lib/aws-sdk-sagemaker/client.rb', line 4206

def delete_trial(params = {}, options = {})
  req = build_request(:delete_trial, params)
  req.send_request(options)
end

#delete_trial_component(params = {}) ⇒ Types::DeleteTrialComponentResponse

Deletes the specified trial component. A trial component must be disassociated from all trials before the trial component can be deleted. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.

Examples:

Request syntax with placeholder values


resp = client.delete_trial_component({
  trial_component_name: "ExperimentEntityName", # required
})

Response structure


resp.trial_component_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :trial_component_name (required, String)

    The name of the component to delete.

Returns:

See Also:



4237
4238
4239
4240
# File 'lib/aws-sdk-sagemaker/client.rb', line 4237

def delete_trial_component(params = {}, options = {})
  req = build_request(:delete_trial_component, params)
  req.send_request(options)
end

#delete_user_profile(params = {}) ⇒ Struct

Deletes a user profile.

Examples:

Request syntax with placeholder values


resp = client.({
  domain_id: "DomainId", # required
  user_profile_name: "UserProfileName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :domain_id (required, String)

    The domain ID.

  • :user_profile_name (required, String)

    The user profile name.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



4263
4264
4265
4266
# File 'lib/aws-sdk-sagemaker/client.rb', line 4263

def (params = {}, options = {})
  req = build_request(:delete_user_profile, params)
  req.send_request(options)
end

#delete_workteam(params = {}) ⇒ Types::DeleteWorkteamResponse

Deletes an existing work team. This operation can’t be undone.

Examples:

Request syntax with placeholder values


resp = client.delete_workteam({
  workteam_name: "WorkteamName", # required
})

Response structure


resp.success #=> Boolean

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :workteam_name (required, String)

    The name of the work team to delete.

Returns:

See Also:



4291
4292
4293
4294
# File 'lib/aws-sdk-sagemaker/client.rb', line 4291

def delete_workteam(params = {}, options = {})
  req = build_request(:delete_workteam, params)
  req.send_request(options)
end

#describe_algorithm(params = {}) ⇒ Types::DescribeAlgorithmOutput

Returns a description of the specified algorithm that is in your account.

Examples:

Request syntax with placeholder values


resp = client.describe_algorithm({
  algorithm_name: "ArnOrName", # required
})

Response structure


resp.algorithm_name #=> String
resp.algorithm_arn #=> String
resp.algorithm_description #=> String
resp.creation_time #=> Time
resp.training_specification.training_image #=> String
resp.training_specification.training_image_digest #=> String
resp.training_specification.supported_hyper_parameters #=> Array
resp.training_specification.supported_hyper_parameters[0].name #=> String
resp.training_specification.supported_hyper_parameters[0].description #=> String
resp.training_specification.supported_hyper_parameters[0].type #=> String, one of "Integer", "Continuous", "Categorical", "FreeText"
resp.training_specification.supported_hyper_parameters[0].range.integer_parameter_range_specification.min_value #=> String
resp.training_specification.supported_hyper_parameters[0].range.integer_parameter_range_specification.max_value #=> String
resp.training_specification.supported_hyper_parameters[0].range.continuous_parameter_range_specification.min_value #=> String
resp.training_specification.supported_hyper_parameters[0].range.continuous_parameter_range_specification.max_value #=> String
resp.training_specification.supported_hyper_parameters[0].range.categorical_parameter_range_specification.values #=> Array
resp.training_specification.supported_hyper_parameters[0].range.categorical_parameter_range_specification.values[0] #=> String
resp.training_specification.supported_hyper_parameters[0].is_tunable #=> Boolean
resp.training_specification.supported_hyper_parameters[0].is_required #=> Boolean
resp.training_specification.supported_hyper_parameters[0].default_value #=> String
resp.training_specification.supported_training_instance_types #=> Array
resp.training_specification.supported_training_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge"
resp.training_specification.supports_distributed_training #=> Boolean
resp.training_specification.metric_definitions #=> Array
resp.training_specification.metric_definitions[0].name #=> String
resp.training_specification.metric_definitions[0].regex #=> String
resp.training_specification.training_channels #=> Array
resp.training_specification.training_channels[0].name #=> String
resp.training_specification.training_channels[0].description #=> String
resp.training_specification.training_channels[0].is_required #=> Boolean
resp.training_specification.training_channels[0].supported_content_types #=> Array
resp.training_specification.training_channels[0].supported_content_types[0] #=> String
resp.training_specification.training_channels[0].supported_compression_types #=> Array
resp.training_specification.training_channels[0].supported_compression_types[0] #=> String, one of "None", "Gzip"
resp.training_specification.training_channels[0].supported_input_modes #=> Array
resp.training_specification.training_channels[0].supported_input_modes[0] #=> String, one of "Pipe", "File"
resp.training_specification.supported_tuning_job_objective_metrics #=> Array
resp.training_specification.supported_tuning_job_objective_metrics[0].type #=> String, one of "Maximize", "Minimize"
resp.training_specification.supported_tuning_job_objective_metrics[0].metric_name #=> String
resp.inference_specification.containers #=> Array
resp.inference_specification.containers[0].container_hostname #=> String
resp.inference_specification.containers[0].image #=> String
resp.inference_specification.containers[0].image_digest #=> String
resp.inference_specification.containers[0].model_data_url #=> String
resp.inference_specification.containers[0].product_id #=> String
resp.inference_specification.supported_transform_instance_types #=> Array
resp.inference_specification.supported_transform_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
resp.inference_specification.supported_realtime_inference_instance_types #=> Array
resp.inference_specification.supported_realtime_inference_instance_types[0] #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.12xlarge", "ml.m5d.24xlarge", "ml.c4.large", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.large", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.12xlarge", "ml.r5.24xlarge", "ml.r5d.large", "ml.r5d.xlarge", "ml.r5d.2xlarge", "ml.r5d.4xlarge", "ml.r5d.12xlarge", "ml.r5d.24xlarge", "ml.inf1.xlarge", "ml.inf1.2xlarge", "ml.inf1.6xlarge", "ml.inf1.24xlarge"
resp.inference_specification.supported_content_types #=> Array
resp.inference_specification.supported_content_types[0] #=> String
resp.inference_specification.supported_response_mime_types #=> Array
resp.inference_specification.supported_response_mime_types[0] #=> String
resp.validation_specification.validation_role #=> String
resp.validation_specification.validation_profiles #=> Array
resp.validation_specification.validation_profiles[0].profile_name #=> String
resp.validation_specification.validation_profiles[0].training_job_definition.training_input_mode #=> String, one of "Pipe", "File"
resp.validation_specification.validation_profiles[0].training_job_definition.hyper_parameters #=> Hash
resp.validation_specification.validation_profiles[0].training_job_definition.hyper_parameters["ParameterKey"] #=> String
resp.validation_specification.validation_profiles[0].training_job_definition.input_data_config #=> Array
resp.validation_specification.validation_profiles[0].training_job_definition.input_data_config[0].channel_name #=> String
resp.validation_specification.validation_profiles[0].training_job_definition.input_data_config[0].data_source.s3_data_source.s3_data_type #=> String, one of "ManifestFile", "S3Prefix", "AugmentedManifestFile"
resp.validation_specification.validation_profiles[0].training_job_definition.input_data_config[0].data_source.s3_data_source.s3_uri #=> String
resp.validation_specification.validation_profiles[0].training_job_definition.input_data_config[0].data_source.s3_data_source.s3_data_distribution_type #=> String, one of "FullyReplicated", "ShardedByS3Key"
resp.validation_specification.validation_profiles[0].training_job_definition.input_data_config[0].data_source.s3_data_source.attribute_names #=> Array
resp.validation_specification.validation_profiles[0].training_job_definition.input_data_config[0].data_source.s3_data_source.attribute_names[0] #=> String
resp.validation_specification.validation_profiles[0].training_job_definition.input_data_config[0].data_source.file_system_data_source.file_system_id #=> String
resp.validation_specification.validation_profiles[0].training_job_definition.input_data_config[0].data_source.file_system_data_source.file_system_access_mode #=> String, one of "rw", "ro"
resp.validation_specification.validation_profiles[0].training_job_definition.input_data_config[0].data_source.file_system_data_source.file_system_type #=> String, one of "EFS", "FSxLustre"
resp.validation_specification.validation_profiles[0].training_job_definition.input_data_config[0].data_source.file_system_data_source.directory_path #=> String
resp.validation_specification.validation_profiles[0].training_job_definition.input_data_config[0].content_type #=> String
resp.validation_specification.validation_profiles[0].training_job_definition.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
resp.validation_specification.validation_profiles[0].training_job_definition.input_data_config[0].record_wrapper_type #=> String, one of "None", "RecordIO"
resp.validation_specification.validation_profiles[0].training_job_definition.input_data_config[0].input_mode #=> String, one of "Pipe", "File"
resp.validation_specification.validation_profiles[0].training_job_definition.input_data_config[0].shuffle_config.seed #=> Integer
resp.validation_specification.validation_profiles[0].training_job_definition.output_data_config.kms_key_id #=> String
resp.validation_specification.validation_profiles[0].training_job_definition.output_data_config.s3_output_path #=> String
resp.validation_specification.validation_profiles[0].training_job_definition.resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge"
resp.validation_specification.validation_profiles[0].training_job_definition.resource_config.instance_count #=> Integer
resp.validation_specification.validation_profiles[0].training_job_definition.resource_config.volume_size_in_gb #=> Integer
resp.validation_specification.validation_profiles[0].training_job_definition.resource_config.volume_kms_key_id #=> String
resp.validation_specification.validation_profiles[0].training_job_definition.stopping_condition.max_runtime_in_seconds #=> Integer
resp.validation_specification.validation_profiles[0].training_job_definition.stopping_condition.max_wait_time_in_seconds #=> Integer
resp.validation_specification.validation_profiles[0].transform_job_definition.max_concurrent_transforms #=> Integer
resp.validation_specification.validation_profiles[0].transform_job_definition.max_payload_in_mb #=> Integer
resp.validation_specification.validation_profiles[0].transform_job_definition.batch_strategy #=> String, one of "MultiRecord", "SingleRecord"
resp.validation_specification.validation_profiles[0].transform_job_definition.environment #=> Hash
resp.validation_specification.validation_profiles[0].transform_job_definition.environment["TransformEnvironmentKey"] #=> String
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_input.data_source.s3_data_source.s3_data_type #=> String, one of "ManifestFile", "S3Prefix", "AugmentedManifestFile"
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_input.data_source.s3_data_source.s3_uri #=> String
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_input.content_type #=> String
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_input.compression_type #=> String, one of "None", "Gzip"
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_input.split_type #=> String, one of "None", "Line", "RecordIO", "TFRecord"
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.s3_output_path #=> String
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.accept #=> String
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.assemble_with #=> String, one of "None", "Line"
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.kms_key_id #=> String
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_count #=> Integer
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.volume_kms_key_id #=> String
resp.algorithm_status #=> String, one of "Pending", "InProgress", "Completed", "Failed", "Deleting"
resp.algorithm_status_details.validation_statuses #=> Array
resp.algorithm_status_details.validation_statuses[0].name #=> String
resp.algorithm_status_details.validation_statuses[0].status #=> String, one of "NotStarted", "InProgress", "Completed", "Failed"
resp.algorithm_status_details.validation_statuses[0].failure_reason #=> String
resp.algorithm_status_details.image_scan_statuses #=> Array
resp.algorithm_status_details.image_scan_statuses[0].name #=> String
resp.algorithm_status_details.image_scan_statuses[0].status #=> String, one of "NotStarted", "InProgress", "Completed", "Failed"
resp.algorithm_status_details.image_scan_statuses[0].failure_reason #=> String
resp.product_id #=> String
resp.certify_for_marketplace #=> Boolean

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :algorithm_name (required, String)

    The name of the algorithm to describe.

Returns:

See Also:



4439
4440
4441
4442
# File 'lib/aws-sdk-sagemaker/client.rb', line 4439

def describe_algorithm(params = {}, options = {})
  req = build_request(:describe_algorithm, params)
  req.send_request(options)
end

#describe_app(params = {}) ⇒ Types::DescribeAppResponse

Describes the app.

Examples:

Request syntax with placeholder values


resp = client.describe_app({
  domain_id: "DomainId", # required
  user_profile_name: "UserProfileName", # required
  app_type: "JupyterServer", # required, accepts JupyterServer, KernelGateway, TensorBoard
  app_name: "AppName", # required
})

Response structure


resp.app_arn #=> String
resp.app_type #=> String, one of "JupyterServer", "KernelGateway", "TensorBoard"
resp.app_name #=> String
resp.domain_id #=> String
resp. #=> String
resp.status #=> String, one of "Deleted", "Deleting", "Failed", "InService", "Pending"
resp.last_health_check_timestamp #=> Time
resp.last_user_activity_timestamp #=> Time
resp.creation_time #=> Time
resp.failure_reason #=> String
resp.resource_spec.environment_arn #=> String
resp.resource_spec.instance_type #=> String, one of "system", "ml.t3.micro", "ml.t3.small", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.8xlarge", "ml.m5.12xlarge", "ml.m5.16xlarge", "ml.m5.24xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.12xlarge", "ml.c5.18xlarge", "ml.c5.24xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :domain_id (required, String)

    The domain ID.

  • :user_profile_name (required, String)

    The user profile name.

  • :app_type (required, String)

    The type of app.

  • :app_name (required, String)

    The name of the app.

Returns:

See Also:



4500
4501
4502
4503
# File 'lib/aws-sdk-sagemaker/client.rb', line 4500

def describe_app(params = {}, options = {})
  req = build_request(:describe_app, params)
  req.send_request(options)
end

#describe_auto_ml_job(params = {}) ⇒ Types::DescribeAutoMLJobResponse

Returns information about an Amazon SageMaker job.

Examples:

Request syntax with placeholder values


resp = client.describe_auto_ml_job({
  auto_ml_job_name: "AutoMLJobName", # required
})

Response structure


resp.auto_ml_job_name #=> String
resp.auto_ml_job_arn #=> String
resp.input_data_config #=> Array
resp.input_data_config[0].data_source.s3_data_source.s3_data_type #=> String, one of "ManifestFile", "S3Prefix"
resp.input_data_config[0].data_source.s3_data_source.s3_uri #=> String
resp.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
resp.input_data_config[0].target_attribute_name #=> String
resp.output_data_config.kms_key_id #=> String
resp.output_data_config.s3_output_path #=> String
resp.role_arn #=> String
resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
resp.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
resp.auto_ml_job_config.completion_criteria.max_candidates #=> Integer
resp.auto_ml_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
resp.auto_ml_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
resp.auto_ml_job_config.security_config.volume_kms_key_id #=> String
resp.auto_ml_job_config.security_config.enable_inter_container_traffic_encryption #=> Boolean
resp.auto_ml_job_config.security_config.vpc_config.security_group_ids #=> Array
resp.auto_ml_job_config.security_config.vpc_config.security_group_ids[0] #=> String
resp.auto_ml_job_config.security_config.vpc_config.subnets #=> Array
resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
resp.creation_time #=> Time
resp.end_time #=> Time
resp.last_modified_time #=> Time
resp.failure_reason #=> String
resp.best_candidate.candidate_name #=> String
resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
resp.best_candidate.candidate_steps #=> Array
resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
resp.best_candidate.candidate_steps[0].candidate_step_arn #=> String
resp.best_candidate.candidate_steps[0].candidate_step_name #=> String
resp.best_candidate.candidate_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
resp.best_candidate.inference_containers #=> Array
resp.best_candidate.inference_containers[0].image #=> String
resp.best_candidate.inference_containers[0].model_data_url #=> String
resp.best_candidate.inference_containers[0].environment #=> Hash
resp.best_candidate.inference_containers[0].environment["EnvironmentKey"] #=> String
resp.best_candidate.creation_time #=> Time
resp.best_candidate.end_time #=> Time
resp.best_candidate.last_modified_time #=> Time
resp.best_candidate.failure_reason #=> String
resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
resp.generate_candidate_definitions_only #=> Boolean
resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
resp.resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :auto_ml_job_name (required, String)

    Request information about a job using that job’s unique name.

Returns:

See Also:



4598
4599
4600
4601
# File 'lib/aws-sdk-sagemaker/client.rb', line 4598

def describe_auto_ml_job(params = {}, options = {})
  req = build_request(:describe_auto_ml_job, params)
  req.send_request(options)
end

#describe_code_repository(params = {}) ⇒ Types::DescribeCodeRepositoryOutput

Gets details about the specified Git repository.

Examples:

Request syntax with placeholder values


resp = client.describe_code_repository({
  code_repository_name: "EntityName", # required
})

Response structure


resp.code_repository_name #=> String
resp.code_repository_arn #=> String
resp.creation_time #=> Time
resp.last_modified_time #=> Time
resp.git_config.repository_url #=> String
resp.git_config.branch #=> String
resp.git_config.secret_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :code_repository_name (required, String)

    The name of the Git repository to describe.

Returns:

See Also:



4636
4637
4638
4639
# File 'lib/aws-sdk-sagemaker/client.rb', line 4636

def describe_code_repository(params = {}, options = {})
  req = build_request(:describe_code_repository, params)
  req.send_request(options)
end

#describe_compilation_job(params = {}) ⇒ Types::DescribeCompilationJobResponse

Returns information about a model compilation job.

To create a model compilation job, use CreateCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.

Examples:

Request syntax with placeholder values


resp = client.describe_compilation_job({
  compilation_job_name: "EntityName", # required
})

Response structure


resp.compilation_job_name #=> String
resp.compilation_job_arn #=> String
resp.compilation_job_status #=> String, one of "INPROGRESS", "COMPLETED", "FAILED", "STARTING", "STOPPING", "STOPPED"
resp.compilation_start_time #=> Time
resp.compilation_end_time #=> Time
resp.stopping_condition.max_runtime_in_seconds #=> Integer
resp.stopping_condition.max_wait_time_in_seconds #=> Integer
resp.creation_time #=> Time
resp.last_modified_time #=> Time
resp.failure_reason #=> String
resp.model_artifacts.s3_model_artifacts #=> String
resp.role_arn #=> String
resp.input_config.s3_uri #=> String
resp.input_config.data_input_config #=> String
resp.input_config.framework #=> String, one of "TENSORFLOW", "MXNET", "ONNX", "PYTORCH", "XGBOOST"
resp.output_config.s3_output_location #=> String
resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "rasp3b", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603"

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :compilation_job_name (required, String)

    The name of the model compilation job that you want information about.

Returns:

See Also:



4696
4697
4698
4699
# File 'lib/aws-sdk-sagemaker/client.rb', line 4696

def describe_compilation_job(params = {}, options = {})
  req = build_request(:describe_compilation_job, params)
  req.send_request(options)
end

#describe_domain(params = {}) ⇒ Types::DescribeDomainResponse

The desciption of the domain.

Examples:

Request syntax with placeholder values


resp = client.describe_domain({
  domain_id: "DomainId", # required
})

Response structure


resp.domain_arn #=> String
resp.domain_id #=> String
resp.domain_name #=> String
resp.home_efs_file_system_id #=> String
resp.single_sign_on_managed_application_instance_id #=> String
resp.status #=> String, one of "Deleting", "Failed", "InService", "Pending"
resp.creation_time #=> Time
resp.last_modified_time #=> Time
resp.failure_reason #=> String
resp.auth_mode #=> String, one of "SSO", "IAM"
resp..execution_role #=> String
resp..security_groups #=> Array
resp..security_groups[0] #=> String
resp..sharing_settings.notebook_output_option #=> String, one of "Allowed", "Disabled"
resp..sharing_settings.s3_output_path #=> String
resp..sharing_settings.s3_kms_key_id #=> String
resp..jupyter_server_app_settings.default_resource_spec.environment_arn #=> String
resp..jupyter_server_app_settings.default_resource_spec.instance_type #=> String, one of "system", "ml.t3.micro", "ml.t3.small", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.8xlarge", "ml.m5.12xlarge", "ml.m5.16xlarge", "ml.m5.24xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.12xlarge", "ml.c5.18xlarge", "ml.c5.24xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
resp..kernel_gateway_app_settings.default_resource_spec.environment_arn #=> String
resp..kernel_gateway_app_settings.default_resource_spec.instance_type #=> String, one of "system", "ml.t3.micro", "ml.t3.small", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.8xlarge", "ml.m5.12xlarge", "ml.m5.16xlarge", "ml.m5.24xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.12xlarge", "ml.c5.18xlarge", "ml.c5.24xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
resp..tensor_board_app_settings.default_resource_spec.environment_arn #=> String
resp..tensor_board_app_settings.default_resource_spec.instance_type #=> String, one of "system", "ml.t3.micro", "ml.t3.small", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.8xlarge", "ml.m5.12xlarge", "ml.m5.16xlarge", "ml.m5.24xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.12xlarge", "ml.c5.18xlarge", "ml.c5.24xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
resp.home_efs_file_system_kms_key_id #=> String
resp.subnet_ids #=> Array
resp.subnet_ids[0] #=> String
resp.url #=> String
resp.vpc_id #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :domain_id (required, String)

    The domain ID.

Returns:

See Also:



4764
4765
4766
4767
# File 'lib/aws-sdk-sagemaker/client.rb', line 4764

def describe_domain(params = {}, options = {})
  req = build_request(:describe_domain, params)
  req.send_request(options)
end

#describe_endpoint(params = {}) ⇒ Types::DescribeEndpointOutput

Returns the description of an endpoint.

Examples:

Request syntax with placeholder values


resp = client.describe_endpoint({
  endpoint_name: "EndpointName", # required
})

Response structure


resp.endpoint_name #=> String
resp.endpoint_arn #=> String
resp.endpoint_config_name #=> String
resp.production_variants #=> Array
resp.production_variants[0].variant_name #=> String
resp.production_variants[0].deployed_images #=> Array
resp.production_variants[0].deployed_images[0].specified_image #=> String
resp.production_variants[0].deployed_images[0].resolved_image #=> String
resp.production_variants[0].deployed_images[0].resolution_time #=> Time
resp.production_variants[0].current_weight #=> Float
resp.production_variants[0].desired_weight #=> Float
resp.production_variants[0].current_instance_count #=> Integer
resp.production_variants[0].desired_instance_count #=> Integer
resp.data_capture_config.enable_capture #=> Boolean
resp.data_capture_config.capture_status #=> String, one of "Started", "Stopped"
resp.data_capture_config.current_sampling_percentage #=> Integer
resp.data_capture_config.destination_s3_uri #=> String
resp.data_capture_config.kms_key_id #=> String
resp.endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed"
resp.failure_reason #=> String
resp.creation_time #=> Time
resp.last_modified_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :endpoint_name (required, String)

    The name of the endpoint.

Returns:

See Also:



4821
4822
4823
4824
# File 'lib/aws-sdk-sagemaker/client.rb', line 4821

def describe_endpoint(params = {}, options = {})
  req = build_request(:describe_endpoint, params)
  req.send_request(options)
end

#describe_endpoint_config(params = {}) ⇒ Types::DescribeEndpointConfigOutput

Returns the description of an endpoint configuration created using the ‘CreateEndpointConfig` API.

Examples:

Request syntax with placeholder values


resp = client.describe_endpoint_config({
  endpoint_config_name: "EndpointConfigName", # required
})

Response structure


resp.endpoint_config_name #=> String
resp.endpoint_config_arn #=> String
resp.production_variants #=> Array
resp.production_variants[0].variant_name #=> String
resp.production_variants[0].model_name #=> String
resp.production_variants[0].initial_instance_count #=> Integer
resp.production_variants[0].instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.12xlarge", "ml.m5d.24xlarge", "ml.c4.large", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.large", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.12xlarge", "ml.r5.24xlarge", "ml.r5d.large", "ml.r5d.xlarge", "ml.r5d.2xlarge", "ml.r5d.4xlarge", "ml.r5d.12xlarge", "ml.r5d.24xlarge", "ml.inf1.xlarge", "ml.inf1.2xlarge", "ml.inf1.6xlarge", "ml.inf1.24xlarge"
resp.production_variants[0].initial_variant_weight #=> Float
resp.production_variants[0].accelerator_type #=> String, one of "ml.eia1.medium", "ml.eia1.large", "ml.eia1.xlarge", "ml.eia2.medium", "ml.eia2.large", "ml.eia2.xlarge"
resp.data_capture_config.enable_capture #=> Boolean
resp.data_capture_config.initial_sampling_percentage #=> Integer
resp.data_capture_config.destination_s3_uri #=> String
resp.data_capture_config.kms_key_id #=> String
resp.data_capture_config.capture_options #=> Array
resp.data_capture_config.capture_options[0].capture_mode #=> String, one of "Input", "Output"
resp.data_capture_config.capture_content_type_header.csv_content_types #=> Array
resp.data_capture_config.capture_content_type_header.csv_content_types[0] #=> String
resp.data_capture_config.capture_content_type_header.json_content_types #=> Array
resp.data_capture_config.capture_content_type_header.json_content_types[0] #=> String
resp.kms_key_id #=> String
resp.creation_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :endpoint_config_name (required, String)

    The name of the endpoint configuration.

Returns:

See Also:



4875
4876
4877
4878
# File 'lib/aws-sdk-sagemaker/client.rb', line 4875

def describe_endpoint_config(params = {}, options = {})
  req = build_request(:describe_endpoint_config, params)
  req.send_request(options)
end

#describe_experiment(params = {}) ⇒ Types::DescribeExperimentResponse

Provides a list of an experiment’s properties.

Examples:

Request syntax with placeholder values


resp = client.describe_experiment({
  experiment_name: "ExperimentEntityName", # required
})

Response structure


resp.experiment_name #=> String
resp.experiment_arn #=> String
resp.display_name #=> String
resp.source.source_arn #=> String
resp.source.source_type #=> String
resp.description #=> String
resp.creation_time #=> Time
resp.created_by. #=> String
resp.created_by. #=> String
resp.created_by.domain_id #=> String
resp.last_modified_time #=> Time
resp.last_modified_by. #=> String
resp.last_modified_by. #=> String
resp.last_modified_by.domain_id #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :experiment_name (required, String)

    The name of the experiment to describe.

Returns:

See Also:



4924
4925
4926
4927
# File 'lib/aws-sdk-sagemaker/client.rb', line 4924

def describe_experiment(params = {}, options = {})
  req = build_request(:describe_experiment, params)
  req.send_request(options)
end

#describe_flow_definition(params = {}) ⇒ Types::DescribeFlowDefinitionResponse

Returns information about the specified flow definition.

Examples:

Request syntax with placeholder values


resp = client.describe_flow_definition({
  flow_definition_name: "FlowDefinitionName", # required
})

Response structure


resp.flow_definition_arn #=> String
resp.flow_definition_name #=> String
resp.flow_definition_status #=> String, one of "Initializing", "Active", "Failed", "Deleting", "Deleted"
resp.creation_time #=> Time
resp.human_loop_activation_config.human_loop_request_source.aws_managed_human_loop_request_source #=> String, one of "AWS/Rekognition/DetectModerationLabels/Image/V3", "AWS/Textract/AnalyzeDocument/Forms/V1"
resp.human_loop_activation_config.human_loop_activation_conditions_config.human_loop_activation_conditions #=> String
resp.human_loop_config.workteam_arn #=> String
resp.human_loop_config.human_task_ui_arn #=> String
resp.human_loop_config.task_title #=> String
resp.human_loop_config.task_description #=> String
resp.human_loop_config.task_count #=> Integer
resp.human_loop_config.task_availability_lifetime_in_seconds #=> Integer
resp.human_loop_config.task_time_limit_in_seconds #=> Integer
resp.human_loop_config.task_keywords #=> Array
resp.human_loop_config.task_keywords[0] #=> String
resp.human_loop_config.public_workforce_task_price.amount_in_usd.dollars #=> Integer
resp.human_loop_config.public_workforce_task_price.amount_in_usd.cents #=> Integer
resp.human_loop_config.public_workforce_task_price.amount_in_usd.tenth_fractions_of_a_cent #=> Integer
resp.output_config.s3_output_path #=> String
resp.output_config.kms_key_id #=> String
resp.role_arn #=> String
resp.failure_reason #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :flow_definition_name (required, String)

    The name of the flow definition.

Returns:

See Also:



4981
4982
4983
4984
# File 'lib/aws-sdk-sagemaker/client.rb', line 4981

def describe_flow_definition(params = {}, options = {})
  req = build_request(:describe_flow_definition, params)
  req.send_request(options)
end

#describe_human_task_ui(params = {}) ⇒ Types::DescribeHumanTaskUiResponse

Returns information about the requested human task user interface.

Examples:

Request syntax with placeholder values


resp = client.describe_human_task_ui({
  human_task_ui_name: "HumanTaskUiName", # required
})

Response structure


resp.human_task_ui_arn #=> String
resp.human_task_ui_name #=> String
resp.creation_time #=> Time
resp.ui_template.url #=> String
resp.ui_template.content_sha_256 #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :human_task_ui_name (required, String)

    The name of the human task user interface you want information about.

Returns:

See Also:



5016
5017
5018
5019
# File 'lib/aws-sdk-sagemaker/client.rb', line 5016

def describe_human_task_ui(params = {}, options = {})
  req = build_request(:describe_human_task_ui, params)
  req.send_request(options)
end

#describe_hyper_parameter_tuning_job(params = {}) ⇒ Types::DescribeHyperParameterTuningJobResponse

Gets a description of a hyperparameter tuning job.

Examples:

Request syntax with placeholder values


resp = client.describe_hyper_parameter_tuning_job({
  hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
})

Response structure


resp.hyper_parameter_tuning_job_name #=> String
resp.hyper_parameter_tuning_job_arn #=> String
resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
resp.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
resp.hyper_parameter_tuning_job_config.resource_limits.max_parallel_training_jobs #=> Integer
resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges #=> Array
resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].name #=> String
resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].min_value #=> String
resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].max_value #=> String
resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges #=> Array
resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].name #=> String
resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].min_value #=> String
resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].max_value #=> String
resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges #=> Array
resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].name #=> String
resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].values #=> Array
resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].values[0] #=> String
resp.hyper_parameter_tuning_job_config.training_job_early_stopping_type #=> String, one of "Off", "Auto"
resp.hyper_parameter_tuning_job_config.tuning_job_completion_criteria.target_objective_metric_value #=> Float
resp.training_job_definition.definition_name #=> String
resp.training_job_definition.tuning_objective.type #=> String, one of "Maximize", "Minimize"
resp.training_job_definition.tuning_objective.metric_name #=> String
resp.training_job_definition.hyper_parameter_ranges.integer_parameter_ranges #=> Array
resp.training_job_definition.hyper_parameter_ranges.integer_parameter_ranges[0].name #=> String
resp.training_job_definition.hyper_parameter_ranges.integer_parameter_ranges[0].min_value #=> String
resp.training_job_definition.hyper_parameter_ranges.integer_parameter_ranges[0].max_value #=> String
resp.training_job_definition.hyper_parameter_ranges.integer_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
resp.training_job_definition.hyper_parameter_ranges.continuous_parameter_ranges #=> Array
resp.training_job_definition.hyper_parameter_ranges.continuous_parameter_ranges[0].name #=> String
resp.training_job_definition.hyper_parameter_ranges.continuous_parameter_ranges[0].min_value #=> String
resp.training_job_definition.hyper_parameter_ranges.continuous_parameter_ranges[0].max_value #=> String
resp.training_job_definition.hyper_parameter_ranges.continuous_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
resp.training_job_definition.hyper_parameter_ranges.categorical_parameter_ranges #=> Array
resp.training_job_definition.hyper_parameter_ranges.categorical_parameter_ranges[0].name #=> String
resp.training_job_definition.hyper_parameter_ranges.categorical_parameter_ranges[0].values #=> Array
resp.training_job_definition.hyper_parameter_ranges.categorical_parameter_ranges[0].values[0] #=> String
resp.training_job_definition.static_hyper_parameters #=> Hash
resp.training_job_definition.static_hyper_parameters["ParameterKey"] #=> String
resp.training_job_definition.algorithm_specification.training_image #=> String
resp.training_job_definition.algorithm_specification.training_input_mode #=> String, one of "Pipe", "File"
resp.training_job_definition.algorithm_specification.algorithm_name #=> String
resp.training_job_definition.algorithm_specification.metric_definitions #=> Array
resp.training_job_definition.algorithm_specification.metric_definitions[0].name #=> String
resp.training_job_definition.algorithm_specification.metric_definitions[0].regex #=> String
resp.training_job_definition.role_arn #=> String
resp.training_job_definition.input_data_config #=> Array
resp.training_job_definition.input_data_config[0].channel_name #=> String
resp.training_job_definition.input_data_config[0].data_source.s3_data_source.s3_data_type #=> String, one of "ManifestFile", "S3Prefix", "AugmentedManifestFile"
resp.training_job_definition.input_data_config[0].data_source.s3_data_source.s3_uri #=> String
resp.training_job_definition.input_data_config[0].data_source.s3_data_source.s3_data_distribution_type #=> String, one of "FullyReplicated", "ShardedByS3Key"
resp.training_job_definition.input_data_config[0].data_source.s3_data_source.attribute_names #=> Array
resp.training_job_definition.input_data_config[0].data_source.s3_data_source.attribute_names[0] #=> String
resp.training_job_definition.input_data_config[0].data_source.file_system_data_source.file_system_id #=> String
resp.training_job_definition.input_data_config[0].data_source.file_system_data_source.file_system_access_mode #=> String, one of "rw", "ro"
resp.training_job_definition.input_data_config[0].data_source.file_system_data_source.file_system_type #=> String, one of "EFS", "FSxLustre"
resp.training_job_definition.input_data_config[0].data_source.file_system_data_source.directory_path #=> String
resp.training_job_definition.input_data_config[0].content_type #=> String
resp.training_job_definition.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
resp.training_job_definition.input_data_config[0].record_wrapper_type #=> String, one of "None", "RecordIO"
resp.training_job_definition.input_data_config[0].input_mode #=> String, one of "Pipe", "File"
resp.training_job_definition.input_data_config[0].shuffle_config.seed #=> Integer
resp.training_job_definition.vpc_config.security_group_ids #=> Array
resp.training_job_definition.vpc_config.security_group_ids[0] #=> String
resp.training_job_definition.vpc_config.subnets #=> Array
resp.training_job_definition.vpc_config.subnets[0] #=> String
resp.training_job_definition.output_data_config.kms_key_id #=> String
resp.training_job_definition.output_data_config.s3_output_path #=> String
resp.training_job_definition.resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge"
resp.training_job_definition.resource_config.instance_count #=> Integer
resp.training_job_definition.resource_config.volume_size_in_gb #=> Integer
resp.training_job_definition.resource_config.volume_kms_key_id #=> String
resp.training_job_definition.stopping_condition.max_runtime_in_seconds #=> Integer
resp.training_job_definition.stopping_condition.max_wait_time_in_seconds #=> Integer
resp.training_job_definition.enable_network_isolation #=> Boolean
resp.training_job_definition.enable_inter_container_traffic_encryption #=> Boolean
resp.training_job_definition.enable_managed_spot_training #=> Boolean
resp.training_job_definition.checkpoint_config.s3_uri #=> String
resp.training_job_definition.checkpoint_config.local_path #=> String
resp.training_job_definitions #=> Array
resp.training_job_definitions[0].definition_name #=> String
resp.training_job_definitions[0].tuning_objective.type #=> String, one of "Maximize", "Minimize"
resp.training_job_definitions[0].tuning_objective.metric_name #=> String
resp.training_job_definitions[0].hyper_parameter_ranges.integer_parameter_ranges #=> Array
resp.training_job_definitions[0].hyper_parameter_ranges.integer_parameter_ranges[0].name #=> String
resp.training_job_definitions[0].hyper_parameter_ranges.integer_parameter_ranges[0].min_value #=> String
resp.training_job_definitions[0].hyper_parameter_ranges.integer_parameter_ranges[0].max_value #=> String
resp.training_job_definitions[0].hyper_parameter_ranges.integer_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
resp.training_job_definitions[0].hyper_parameter_ranges.continuous_parameter_ranges #=> Array
resp.training_job_definitions[0].hyper_parameter_ranges.continuous_parameter_ranges[0].name #=> String
resp.training_job_definitions[0].hyper_parameter_ranges.continuous_parameter_ranges[0].min_value #=> String
resp.training_job_definitions[0].hyper_parameter_ranges.continuous_parameter_ranges[0].max_value #=> String
resp.training_job_definitions[0].hyper_parameter_ranges.continuous_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
resp.training_job_definitions[0].hyper_parameter_ranges.categorical_parameter_ranges #=> Array
resp.training_job_definitions[0].hyper_parameter_ranges.categorical_parameter_ranges[0].name #=> String
resp.training_job_definitions[0].hyper_parameter_ranges.categorical_parameter_ranges[0].values #=> Array
resp.training_job_definitions[0].hyper_parameter_ranges.categorical_parameter_ranges[0].values[0] #=> String
resp.training_job_definitions[0].static_hyper_parameters #=> Hash
resp.training_job_definitions[0].static_hyper_parameters["ParameterKey"] #=> String
resp.training_job_definitions[0].algorithm_specification.training_image #=> String
resp.training_job_definitions[0].algorithm_specification.training_input_mode #=> String, one of "Pipe", "File"
resp.training_job_definitions[0].algorithm_specification.algorithm_name #=> String
resp.training_job_definitions[0].algorithm_specification.metric_definitions #=> Array
resp.training_job_definitions[0].algorithm_specification.metric_definitions[0].name #=> String
resp.training_job_definitions[0].algorithm_specification.metric_definitions[0].regex #=> String
resp.training_job_definitions[0].role_arn #=> String
resp.training_job_definitions[0].input_data_config #=> Array
resp.training_job_definitions[0].input_data_config[0].channel_name #=> String
resp.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.s3_data_type #=> String, one of "ManifestFile", "S3Prefix", "AugmentedManifestFile"
resp.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.s3_uri #=> String
resp.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.s3_data_distribution_type #=> String, one of "FullyReplicated", "ShardedByS3Key"
resp.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.attribute_names #=> Array
resp.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.attribute_names[0] #=> String
resp.training_job_definitions[0].input_data_config[0].data_source.file_system_data_source.file_system_id #=> String
resp.training_job_definitions[0].input_data_config[0].data_source.file_system_data_source.file_system_access_mode #=> String, one of "rw", "ro"
resp.training_job_definitions[0].input_data_config[0].data_source.file_system_data_source.file_system_type #=> String, one of "EFS", "FSxLustre"
resp.training_job_definitions[0].input_data_config[0].data_source.file_system_data_source.directory_path #=> String
resp.training_job_definitions[0].input_data_config[0].content_type #=> String
resp.training_job_definitions[0].input_data_config[0].compression_type #=> String, one of "None", "Gzip"
resp.training_job_definitions[0].input_data_config[0].record_wrapper_type #=> String, one of "None", "RecordIO"
resp.training_job_definitions[0].input_data_config[0].input_mode #=> String, one of "Pipe", "File"
resp.training_job_definitions[0].input_data_config[0].shuffle_config.seed #=> Integer
resp.training_job_definitions[0].vpc_config.security_group_ids #=> Array
resp.training_job_definitions[0].vpc_config.security_group_ids[0] #=> String
resp.training_job_definitions[0].vpc_config.subnets #=> Array
resp.training_job_definitions[0].vpc_config.subnets[0] #=> String
resp.training_job_definitions[0].output_data_config.kms_key_id #=> String
resp.training_job_definitions[0].output_data_config.s3_output_path #=> String
resp.training_job_definitions[0].resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge"
resp.training_job_definitions[0].resource_config.instance_count #=> Integer
resp.training_job_definitions[0].resource_config.volume_size_in_gb #=> Integer
resp.training_job_definitions[0].resource_config.volume_kms_key_id #=> String
resp.training_job_definitions[0].stopping_condition.max_runtime_in_seconds #=> Integer
resp.training_job_definitions[0].stopping_condition.max_wait_time_in_seconds #=> Integer
resp.training_job_definitions[0].enable_network_isolation #=> Boolean
resp.training_job_definitions[0].enable_inter_container_traffic_encryption #=> Boolean
resp.training_job_definitions[0].enable_managed_spot_training #=> Boolean
resp.training_job_definitions[0].checkpoint_config.s3_uri #=> String
resp.training_job_definitions[0].checkpoint_config.local_path #=> String
resp.hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
resp.creation_time #=> Time
resp.hyper_parameter_tuning_end_time #=> Time
resp.last_modified_time #=> Time
resp.training_job_status_counters.completed #=> Integer
resp.training_job_status_counters.in_progress #=> Integer
resp.training_job_status_counters.retryable_error #=> Integer
resp.training_job_status_counters.non_retryable_error #=> Integer
resp.training_job_status_counters.stopped #=> Integer
resp.objective_status_counters.succeeded #=> Integer
resp.objective_status_counters.pending #=> Integer
resp.objective_status_counters.failed #=> Integer
resp.best_training_job.training_job_definition_name #=> String
resp.best_training_job.training_job_name #=> String
resp.best_training_job.training_job_arn #=> String
resp.best_training_job.tuning_job_name #=> String
resp.best_training_job.creation_time #=> Time
resp.best_training_job.training_start_time #=> Time
resp.best_training_job.training_end_time #=> Time
resp.best_training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
resp.best_training_job.tuned_hyper_parameters #=> Hash
resp.best_training_job.tuned_hyper_parameters["ParameterKey"] #=> String
resp.best_training_job.failure_reason #=> String
resp.best_training_job.final_hyper_parameter_tuning_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
resp.best_training_job.final_hyper_parameter_tuning_job_objective_metric.metric_name #=> String
resp.best_training_job.final_hyper_parameter_tuning_job_objective_metric.value #=> Float
resp.best_training_job.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
resp.overall_best_training_job.training_job_definition_name #=> String
resp.overall_best_training_job.training_job_name #=> String
resp.overall_best_training_job.training_job_arn #=> String
resp.overall_best_training_job.tuning_job_name #=> String
resp.overall_best_training_job.creation_time #=> Time
resp.overall_best_training_job.training_start_time #=> Time
resp.overall_best_training_job.training_end_time #=> Time
resp.overall_best_training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
resp.overall_best_training_job.tuned_hyper_parameters #=> Hash
resp.overall_best_training_job.tuned_hyper_parameters["ParameterKey"] #=> String
resp.overall_best_training_job.failure_reason #=> String
resp.overall_best_training_job.final_hyper_parameter_tuning_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
resp.overall_best_training_job.final_hyper_parameter_tuning_job_objective_metric.metric_name #=> String
resp.overall_best_training_job.final_hyper_parameter_tuning_job_objective_metric.value #=> Float
resp.overall_best_training_job.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
resp.warm_start_config.parent_hyper_parameter_tuning_jobs #=> Array
resp.warm_start_config.parent_hyper_parameter_tuning_jobs[0].hyper_parameter_tuning_job_name #=> String
resp.warm_start_config.warm_start_type #=> String, one of "IdenticalDataAndAlgorithm", "TransferLearning"
resp.failure_reason #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :hyper_parameter_tuning_job_name (required, String)

    The name of the tuning job to describe.

Returns:

See Also:



5245
5246
5247
5248
# File 'lib/aws-sdk-sagemaker/client.rb', line 5245

def describe_hyper_parameter_tuning_job(params = {}, options = {})
  req = build_request(:describe_hyper_parameter_tuning_job, params)
  req.send_request(options)
end

#describe_labeling_job(params = {}) ⇒ Types::DescribeLabelingJobResponse

Gets information about a labeling job.

Examples:

Request syntax with placeholder values


resp = client.describe_labeling_job({
  labeling_job_name: "LabelingJobName", # required
})

Response structure


resp.labeling_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
resp.label_counters.total_labeled #=> Integer
resp.label_counters.human_labeled #=> Integer
resp.label_counters.machine_labeled #=> Integer
resp.label_counters.failed_non_retryable_error #=> Integer
resp.label_counters.unlabeled #=> Integer
resp.failure_reason #=> String
resp.creation_time #=> Time
resp.last_modified_time #=> Time
resp.job_reference_code #=> String
resp.labeling_job_name #=> String
resp.labeling_job_arn #=> String
resp.label_attribute_name #=> String
resp.input_config.data_source.s3_data_source.manifest_s3_uri #=> String
resp.input_config.data_attributes.content_classifiers #=> Array
resp.input_config.data_attributes.content_classifiers[0] #=> String, one of "FreeOfPersonallyIdentifiableInformation", "FreeOfAdultContent"
resp.output_config.s3_output_path #=> String
resp.output_config.kms_key_id #=> String
resp.role_arn #=> String
resp.label_category_config_s3_uri #=> String
resp.stopping_conditions.max_human_labeled_object_count #=> Integer
resp.stopping_conditions.max_percentage_of_input_dataset_labeled #=> Integer
resp.labeling_job_algorithms_config.labeling_job_algorithm_specification_arn #=> String
resp.labeling_job_algorithms_config.initial_active_learning_model_arn #=> String
resp.labeling_job_algorithms_config.labeling_job_resource_config.volume_kms_key_id #=> String
resp.human_task_config.workteam_arn #=> String
resp.human_task_config.ui_config.ui_template_s3_uri #=> String
resp.human_task_config.pre_human_task_lambda_arn #=> String
resp.human_task_config.task_keywords #=> Array
resp.human_task_config.task_keywords[0] #=> String
resp.human_task_config.task_title #=> String
resp.human_task_config.task_description #=> String
resp.human_task_config.number_of_human_workers_per_data_object #=> Integer
resp.human_task_config.task_time_limit_in_seconds #=> Integer
resp.human_task_config.task_availability_lifetime_in_seconds #=> Integer
resp.human_task_config.max_concurrent_task_count #=> Integer
resp.human_task_config.annotation_consolidation_config.annotation_consolidation_lambda_arn #=> String
resp.human_task_config.public_workforce_task_price.amount_in_usd.dollars #=> Integer
resp.human_task_config.public_workforce_task_price.amount_in_usd.cents #=> Integer
resp.human_task_config.public_workforce_task_price.amount_in_usd.tenth_fractions_of_a_cent #=> Integer
resp.tags #=> Array
resp.tags[0].key #=> String
resp.tags[0].value #=> String
resp.labeling_job_output.output_dataset_s3_uri #=> String
resp.labeling_job_output.final_active_learning_model_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :labeling_job_name (required, String)

    The name of the labeling job to return information for.

Returns:

See Also:



5334
5335
5336
5337
# File 'lib/aws-sdk-sagemaker/client.rb', line 5334

def describe_labeling_job(params = {}, options = {})
  req = build_request(:describe_labeling_job, params)
  req.send_request(options)
end

#describe_model(params = {}) ⇒ Types::DescribeModelOutput

Describes a model that you created using the ‘CreateModel` API.

Examples:

Request syntax with placeholder values


resp = client.describe_model({
  model_name: "ModelName", # required
})

Response structure


resp.model_name #=> String
resp.primary_container.container_hostname #=> String
resp.primary_container.image #=> String
resp.primary_container.mode #=> String, one of "SingleModel", "MultiModel"
resp.primary_container.model_data_url #=> String
resp.primary_container.environment #=> Hash
resp.primary_container.environment["EnvironmentKey"] #=> String
resp.primary_container.model_package_name #=> String
resp.containers #=> Array
resp.containers[0].container_hostname #=> String
resp.containers[0].image #=> String
resp.containers[0].mode #=> String, one of "SingleModel", "MultiModel"
resp.containers[0].model_data_url #=> String
resp.containers[0].environment #=> Hash
resp.containers[0].environment["EnvironmentKey"] #=> String
resp.containers[0].model_package_name #=> String
resp.execution_role_arn #=> String
resp.vpc_config.security_group_ids #=> Array
resp.vpc_config.security_group_ids[0] #=> String
resp.vpc_config.subnets #=> Array
resp.vpc_config.subnets[0] #=> String
resp.creation_time #=> Time
resp.model_arn #=> String
resp.enable_network_isolation #=> Boolean

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :model_name (required, String)

    The name of the model.

Returns:

See Also:



5392
5393
5394
5395
# File 'lib/aws-sdk-sagemaker/client.rb', line 5392

def describe_model(params = {}, options = {})
  req = build_request(:describe_model, params)
  req.send_request(options)
end

#describe_model_package(params = {}) ⇒ Types::DescribeModelPackageOutput

Returns a description of the specified model package, which is used to create Amazon SageMaker models or list them on AWS Marketplace.

To create models in Amazon SageMaker, buyers can subscribe to model packages listed on AWS Marketplace.

Examples:

Request syntax with placeholder values


resp = client.describe_model_package({
  model_package_name: "ArnOrName", # required
})

Response structure


resp.model_package_name #=> String
resp.model_package_arn #=> String
resp.model_package_description #=> String
resp.creation_time #=> Time
resp.inference_specification.containers #=> Array
resp.inference_specification.containers[0].container_hostname #=> String
resp.inference_specification.containers[0].image #=> String
resp.inference_specification.containers[0].image_digest #=> String
resp.inference_specification.containers[0].model_data_url #=> String
resp.inference_specification.containers[0].product_id #=> String
resp.inference_specification.supported_transform_instance_types #=> Array
resp.inference_specification.supported_transform_instance_types[0] #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
resp.inference_specification.supported_realtime_inference_instance_types #=> Array
resp.inference_specification.supported_realtime_inference_instance_types[0] #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.12xlarge", "ml.m5d.24xlarge", "ml.c4.large", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.large", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.12xlarge", "ml.r5.24xlarge", "ml.r5d.large", "ml.r5d.xlarge", "ml.r5d.2xlarge", "ml.r5d.4xlarge", "ml.r5d.12xlarge", "ml.r5d.24xlarge", "ml.inf1.xlarge", "ml.inf1.2xlarge", "ml.inf1.6xlarge", "ml.inf1.24xlarge"
resp.inference_specification.supported_content_types #=> Array
resp.inference_specification.supported_content_types[0] #=> String
resp.inference_specification.supported_response_mime_types #=> Array
resp.inference_specification.supported_response_mime_types[0] #=> String
resp.source_algorithm_specification.source_algorithms #=> Array
resp.source_algorithm_specification.source_algorithms[0].model_data_url #=> String
resp.source_algorithm_specification.source_algorithms[0].algorithm_name #=> String
resp.validation_specification.validation_role #=> String
resp.validation_specification.validation_profiles #=> Array
resp.validation_specification.validation_profiles[0].profile_name #=> String
resp.validation_specification.validation_profiles[0].transform_job_definition.max_concurrent_transforms #=> Integer
resp.validation_specification.validation_profiles[0].transform_job_definition.max_payload_in_mb #=> Integer
resp.validation_specification.validation_profiles[0].transform_job_definition.batch_strategy #=> String, one of "MultiRecord", "SingleRecord"
resp.validation_specification.validation_profiles[0].transform_job_definition.environment #=> Hash
resp.validation_specification.validation_profiles[0].transform_job_definition.environment["TransformEnvironmentKey"] #=> String
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_input.data_source.s3_data_source.s3_data_type #=> String, one of "ManifestFile", "S3Prefix", "AugmentedManifestFile"
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_input.data_source.s3_data_source.s3_uri #=> String
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_input.content_type #=> String
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_input.compression_type #=> String, one of "None", "Gzip"
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_input.split_type #=> String, one of "None", "Line", "RecordIO", "TFRecord"
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.s3_output_path #=> String
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.accept #=> String
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.assemble_with #=> String, one of "None", "Line"
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_output.kms_key_id #=> String
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.instance_count #=> Integer
resp.validation_specification.validation_profiles[0].transform_job_definition.transform_resources.volume_kms_key_id #=> String
resp.model_package_status #=> String, one of "Pending", "InProgress", "Completed", "Failed", "Deleting"
resp.model_package_status_details.validation_statuses #=> Array
resp.model_package_status_details.validation_statuses[0].name #=> String
resp.model_package_status_details.validation_statuses[0].status #=> String, one of "NotStarted", "InProgress", "Completed", "Failed"
resp.model_package_status_details.validation_statuses[0].failure_reason #=> String
resp.model_package_status_details.image_scan_statuses #=> Array
resp.model_package_status_details.image_scan_statuses[0].name #=> String
resp.model_package_status_details.image_scan_statuses[0].status #=> String, one of "NotStarted", "InProgress", "Completed", "Failed"
resp.model_package_status_details.image_scan_statuses[0].failure_reason #=> String
resp.certify_for_marketplace #=> Boolean

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :model_package_name (required, String)

    The name of the model package to describe.

Returns:

See Also:



5483
5484
5485
5486
# File 'lib/aws-sdk-sagemaker/client.rb', line 5483

def describe_model_package(params = {}, options = {})
  req = build_request(:describe_model_package, params)
  req.send_request(options)
end

#describe_monitoring_schedule(params = {}) ⇒ Types::DescribeMonitoringScheduleResponse

Describes the schedule for a monitoring job.

Examples:

Request syntax with placeholder values


resp = client.describe_monitoring_schedule({
  monitoring_schedule_name: "MonitoringScheduleName", # required
})

Response structure


resp.monitoring_schedule_arn #=> String
resp.monitoring_schedule_name #=> String
resp.monitoring_schedule_status #=> String, one of "Pending", "Failed", "Scheduled", "Stopped"
resp.failure_reason #=> String
resp.creation_time #=> Time
resp.last_modified_time #=> Time
resp.monitoring_schedule_config.schedule_config.schedule_expression #=> String
resp.monitoring_schedule_config.monitoring_job_definition.baseline_config.constraints_resource.s3_uri #=> String
resp.monitoring_schedule_config.monitoring_job_definition.baseline_config.statistics_resource.s3_uri #=> String
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_inputs #=> Array
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_inputs[0].endpoint_input.endpoint_name #=> String
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_inputs[0].endpoint_input.local_path #=> String
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_inputs[0].endpoint_input.s3_input_mode #=> String, one of "Pipe", "File"
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_inputs[0].endpoint_input.s3_data_distribution_type #=> String, one of "FullyReplicated", "ShardedByS3Key"
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_output_config.monitoring_outputs #=> Array
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_output_config.monitoring_outputs[0].s3_output.s3_uri #=> String
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_output_config.monitoring_outputs[0].s3_output.local_path #=> String
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_output_config.monitoring_outputs[0].s3_output.s3_upload_mode #=> String, one of "Continuous", "EndOfJob"
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_output_config.kms_key_id #=> String
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.instance_count #=> Integer
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.volume_size_in_gb #=> Integer
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_resources.cluster_config.volume_kms_key_id #=> String
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_app_specification.image_uri #=> String
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_app_specification.container_entrypoint #=> Array
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_app_specification.container_entrypoint[0] #=> String
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_app_specification.container_arguments #=> Array
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_app_specification.container_arguments[0] #=> String
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_app_specification.record_preprocessor_source_uri #=> String
resp.monitoring_schedule_config.monitoring_job_definition.monitoring_app_specification.post_analytics_processor_source_uri #=> String
resp.monitoring_schedule_config.monitoring_job_definition.stopping_condition.max_runtime_in_seconds #=> Integer
resp.monitoring_schedule_config.monitoring_job_definition.environment #=> Hash
resp.monitoring_schedule_config.monitoring_job_definition.environment["ProcessingEnvironmentKey"] #=> String
resp.monitoring_schedule_config.monitoring_job_definition.network_config.enable_network_isolation #=> Boolean
resp.monitoring_schedule_config.monitoring_job_definition.network_config.vpc_config.security_group_ids #=> Array
resp.monitoring_schedule_config.monitoring_job_definition.network_config.vpc_config.security_group_ids[0] #=> String
resp.monitoring_schedule_config.monitoring_job_definition.network_config.vpc_config.subnets #=> Array
resp.monitoring_schedule_config.monitoring_job_definition.network_config.vpc_config.subnets[0] #=> String
resp.monitoring_schedule_config.monitoring_job_definition.role_arn #=> String
resp.endpoint_name #=> String
resp.last_monitoring_execution_summary.monitoring_schedule_name #=> String
resp.last_monitoring_execution_summary.scheduled_time #=> Time
resp.last_monitoring_execution_summary.creation_time #=> Time
resp.last_monitoring_execution_summary.last_modified_time #=> Time
resp.last_monitoring_execution_summary.monitoring_execution_status #=> String, one of "Pending", "Completed", "CompletedWithViolations", "InProgress", "Failed", "Stopping", "Stopped"
resp.last_monitoring_execution_summary.processing_job_arn #=> String
resp.last_monitoring_execution_summary.endpoint_name #=> String
resp.last_monitoring_execution_summary.failure_reason #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :monitoring_schedule_name (required, String)

    Name of a previously created monitoring schedule.

Returns:

See Also:



5566
5567
5568
5569
# File 'lib/aws-sdk-sagemaker/client.rb', line 5566

def describe_monitoring_schedule(params = {}, options = {})
  req = build_request(:describe_monitoring_schedule, params)
  req.send_request(options)
end

#describe_notebook_instance(params = {}) ⇒ Types::DescribeNotebookInstanceOutput

Returns information about a notebook instance.

Examples:

Request syntax with placeholder values


resp = client.describe_notebook_instance({
  notebook_instance_name: "NotebookInstanceName", # required
})

Response structure


resp.notebook_instance_arn #=> String
resp.notebook_instance_name #=> String
resp.notebook_instance_status #=> String, one of "Pending", "InService", "Stopping", "Stopped", "Failed", "Deleting", "Updating"
resp.failure_reason #=> String
resp.url #=> String
resp.instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge"
resp.subnet_id #=> String
resp.security_groups #=> Array
resp.security_groups[0] #=> String
resp.role_arn #=> String
resp.kms_key_id #=> String
resp.network_interface_id #=> String
resp.last_modified_time #=> Time
resp.creation_time #=> Time
resp.notebook_instance_lifecycle_config_name #=> String
resp.direct_internet_access #=> String, one of "Enabled", "Disabled"
resp.volume_size_in_gb #=> Integer
resp.accelerator_types #=> Array
resp.accelerator_types[0] #=> String, one of "ml.eia1.medium", "ml.eia1.large", "ml.eia1.xlarge", "ml.eia2.medium", "ml.eia2.large", "ml.eia2.xlarge"
resp.default_code_repository #=> String
resp.additional_code_repositories #=> Array
resp.additional_code_repositories[0] #=> String
resp.root_access #=> String, one of "Enabled", "Disabled"

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :notebook_instance_name (required, String)

    The name of the notebook instance that you want information about.

Returns:

See Also:



5635
5636
5637
5638
# File 'lib/aws-sdk-sagemaker/client.rb', line 5635

def describe_notebook_instance(params = {}, options = {})
  req = build_request(:describe_notebook_instance, params)
  req.send_request(options)
end

#describe_notebook_instance_lifecycle_config(params = {}) ⇒ Types::DescribeNotebookInstanceLifecycleConfigOutput

Returns a description of a notebook instance lifecycle configuration.

For information about notebook instance lifestyle configurations, see [Step 2.1: (Optional) Customize a Notebook Instance].

[1]: docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html

Examples:

Request syntax with placeholder values


resp = client.describe_notebook_instance_lifecycle_config({
  notebook_instance_lifecycle_config_name: "NotebookInstanceLifecycleConfigName", # required
})

Response structure


resp.notebook_instance_lifecycle_config_arn #=> String
resp.notebook_instance_lifecycle_config_name #=> String
resp.on_create #=> Array
resp.on_create[0].content #=> String
resp.on_start #=> Array
resp.on_start[0].content #=> String
resp.last_modified_time #=> Time
resp.creation_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :notebook_instance_lifecycle_config_name (required, String)

    The name of the lifecycle configuration to describe.

Returns:

See Also:



5682
5683
5684
5685
# File 'lib/aws-sdk-sagemaker/client.rb', line 5682

def describe_notebook_instance_lifecycle_config(params = {}, options = {})
  req = build_request(:describe_notebook_instance_lifecycle_config, params)
  req.send_request(options)
end

#describe_processing_job(params = {}) ⇒ Types::DescribeProcessingJobResponse

Returns a description of a processing job.

Examples:

Request syntax with placeholder values


resp = client.describe_processing_job({
  processing_job_name: "ProcessingJobName", # required
})

Response structure


resp.processing_inputs #=> Array
resp.processing_inputs[0].input_name #=> String
resp.processing_inputs[0].s3_input.s3_uri #=> String
resp.processing_inputs[0].s3_input.local_path #=> String
resp.processing_inputs[0].s3_input.s3_data_type #=> String, one of "ManifestFile", "S3Prefix"
resp.processing_inputs[0].s3_input.s3_input_mode #=> String, one of "Pipe", "File"
resp.processing_inputs[0].s3_input.s3_data_distribution_type #=> String, one of "FullyReplicated", "ShardedByS3Key"
resp.processing_inputs[0].s3_input.s3_compression_type #=> String, one of "None", "Gzip"
resp.processing_output_config.outputs #=> Array
resp.processing_output_config.outputs[0].output_name #=> String
resp.processing_output_config.outputs[0].s3_output.s3_uri #=> String
resp.processing_output_config.outputs[0].s3_output.local_path #=> String
resp.processing_output_config.outputs[0].s3_output.s3_upload_mode #=> String, one of "Continuous", "EndOfJob"
resp.processing_output_config.kms_key_id #=> String
resp.processing_job_name #=> String
resp.processing_resources.cluster_config.instance_count #=> Integer
resp.processing_resources.cluster_config.instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
resp.processing_resources.cluster_config.volume_size_in_gb #=> Integer
resp.processing_resources.cluster_config.volume_kms_key_id #=> String
resp.stopping_condition.max_runtime_in_seconds #=> Integer
resp.app_specification.image_uri #=> String
resp.app_specification.container_entrypoint #=> Array
resp.app_specification.container_entrypoint[0] #=> String
resp.app_specification.container_arguments #=> Array
resp.app_specification.container_arguments[0] #=> String
resp.environment #=> Hash
resp.environment["ProcessingEnvironmentKey"] #=> String
resp.network_config.enable_network_isolation #=> Boolean
resp.network_config.vpc_config.security_group_ids #=> Array
resp.network_config.vpc_config.security_group_ids[0] #=> String
resp.network_config.vpc_config.subnets #=> Array
resp.network_config.vpc_config.subnets[0] #=> String
resp.role_arn #=> String
resp.experiment_config.experiment_name #=> String
resp.experiment_config.trial_name #=> String
resp.experiment_config.trial_component_display_name #=> String
resp.processing_job_arn #=> String
resp.processing_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
resp.exit_message #=> String
resp.failure_reason #=> String
resp.processing_end_time #=> Time
resp.processing_start_time #=> Time
resp.last_modified_time #=> Time
resp.creation_time #=> Time
resp.monitoring_schedule_arn #=> String
resp.auto_ml_job_arn #=> String
resp.training_job_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :processing_job_name (required, String)

    The name of the processing job. The name must be unique within an AWS Region in the AWS account.

Returns:

See Also:



5777
5778
5779
5780
# File 'lib/aws-sdk-sagemaker/client.rb', line 5777

def describe_processing_job(params = {}, options = {})
  req = build_request(:describe_processing_job, params)
  req.send_request(options)
end

#describe_subscribed_workteam(params = {}) ⇒ Types::DescribeSubscribedWorkteamResponse

Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the AWS Marketplace.

Examples:

Request syntax with placeholder values


resp = client.describe_subscribed_workteam({
  workteam_arn: "WorkteamArn", # required
})

Response structure


resp.subscribed_workteam.workteam_arn #=> String
resp.subscribed_workteam.marketplace_title #=> String
resp.subscribed_workteam.seller_name #=> String
resp.subscribed_workteam.marketplace_description #=> String
resp.subscribed_workteam.listing_id #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :workteam_arn (required, String)

    The Amazon Resource Name (ARN) of the subscribed work team to describe.

Returns:

See Also:



5811
5812
5813
5814
# File 'lib/aws-sdk-sagemaker/client.rb', line 5811

def describe_subscribed_workteam(params = {}, options = {})
  req = build_request(:describe_subscribed_workteam, params)
  req.send_request(options)
end

#describe_training_job(params = {}) ⇒ Types::DescribeTrainingJobResponse

Returns information about a training job.

Examples:

Request syntax with placeholder values


resp = client.describe_training_job({
  training_job_name: "TrainingJobName", # required
})

Response structure


resp.training_job_name #=> String
resp.training_job_arn #=> String
resp.tuning_job_arn #=> String
resp.labeling_job_arn #=> String
resp.auto_ml_job_arn #=> String
resp.model_artifacts.s3_model_artifacts #=> String
resp.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded"
resp.failure_reason #=> String
resp.hyper_parameters #=> Hash
resp.hyper_parameters["ParameterKey"] #=> String
resp.algorithm_specification.training_image #=> String
resp.algorithm_specification.algorithm_name #=> String
resp.algorithm_specification.training_input_mode #=> String, one of "Pipe", "File"
resp.algorithm_specification.metric_definitions #=> Array
resp.algorithm_specification.metric_definitions[0].name #=> String
resp.algorithm_specification.metric_definitions[0].regex #=> String
resp.algorithm_specification.enable_sage_maker_metrics_time_series #=> Boolean
resp.role_arn #=> String
resp.input_data_config #=> Array
resp.input_data_config[0].channel_name #=> String
resp.input_data_config[0].data_source.s3_data_source.s3_data_type #=> String, one of "ManifestFile", "S3Prefix", "AugmentedManifestFile"
resp.input_data_config[0].data_source.s3_data_source.s3_uri #=> String
resp.input_data_config[0].data_source.s3_data_source.s3_data_distribution_type #=> String, one of "FullyReplicated", "ShardedByS3Key"
resp.input_data_config[0].data_source.s3_data_source.attribute_names #=> Array
resp.input_data_config[0].data_source.s3_data_source.attribute_names[0] #=> String
resp.input_data_config[0].data_source.file_system_data_source.file_system_id #=> String
resp.input_data_config[0].data_source.file_system_data_source.file_system_access_mode #=> String, one of "rw", "ro"
resp.input_data_config[0].data_source.file_system_data_source.file_system_type #=> String, one of "EFS", "FSxLustre"
resp.input_data_config[0].data_source.file_system_data_source.directory_path #=> String
resp.input_data_config[0].content_type #=> String
resp.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
resp.input_data_config[0].record_wrapper_type #=> String, one of "None", "RecordIO"
resp.input_data_config[0].input_mode #=> String, one of "Pipe", "File"
resp.input_data_config[0].shuffle_config.seed #=> Integer
resp.output_data_config.kms_key_id #=> String
resp.output_data_config.s3_output_path #=> String
resp.resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge"
resp.resource_config.instance_count #=> Integer
resp.resource_config.volume_size_in_gb #=> Integer
resp.resource_config.volume_kms_key_id #=> String
resp.vpc_config.security_group_ids #=> Array
resp.vpc_config.security_group_ids[0] #=> String
resp.vpc_config.subnets #=> Array
resp.vpc_config.subnets[0] #=> String
resp.stopping_condition.max_runtime_in_seconds #=> Integer
resp.stopping_condition.max_wait_time_in_seconds #=> Integer
resp.creation_time #=> Time
resp.training_start_time #=> Time
resp.training_end_time #=> Time
resp.last_modified_time #=> Time
resp.secondary_status_transitions #=> Array
resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded"
resp.secondary_status_transitions[0].start_time #=> Time
resp.secondary_status_transitions[0].end_time #=> Time
resp.secondary_status_transitions[0].status_message #=> String
resp.final_metric_data_list #=> Array
resp.final_metric_data_list[0].metric_name #=> String
resp.final_metric_data_list[0].value #=> Float
resp.final_metric_data_list[0].timestamp #=> Time
resp.enable_network_isolation #=> Boolean
resp.enable_inter_container_traffic_encryption #=> Boolean
resp.enable_managed_spot_training #=> Boolean
resp.checkpoint_config.s3_uri #=> String
resp.checkpoint_config.local_path #=> String
resp.training_time_in_seconds #=> Integer
resp.billable_time_in_seconds #=> Integer
resp.debug_hook_config.local_path #=> String
resp.debug_hook_config.s3_output_path #=> String
resp.debug_hook_config.hook_parameters #=> Hash
resp.debug_hook_config.hook_parameters["ConfigKey"] #=> String
resp.debug_hook_config.collection_configurations #=> Array
resp.debug_hook_config.collection_configurations[0].collection_name #=> String
resp.debug_hook_config.collection_configurations[0].collection_parameters #=> Hash
resp.debug_hook_config.collection_configurations[0].collection_parameters["ConfigKey"] #=> String
resp.experiment_config.experiment_name #=> String
resp.experiment_config.trial_name #=> String
resp.experiment_config.trial_component_display_name #=> String
resp.debug_rule_configurations #=> Array
resp.debug_rule_configurations[0].rule_configuration_name #=> String
resp.debug_rule_configurations[0].local_path #=> String
resp.debug_rule_configurations[0].s3_output_path #=> String
resp.debug_rule_configurations[0].rule_evaluator_image #=> String
resp.debug_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
resp.debug_rule_configurations[0].volume_size_in_gb #=> Integer
resp.debug_rule_configurations[0].rule_parameters #=> Hash
resp.debug_rule_configurations[0].rule_parameters["ConfigKey"] #=> String
resp.tensor_board_output_config.local_path #=> String
resp.tensor_board_output_config.s3_output_path #=> String
resp.debug_rule_evaluation_statuses #=> Array
resp.debug_rule_evaluation_statuses[0].rule_configuration_name #=> String
resp.debug_rule_evaluation_statuses[0].rule_evaluation_job_arn #=> String
resp.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
resp.debug_rule_evaluation_statuses[0].status_details #=> String
resp.debug_rule_evaluation_statuses[0].last_modified_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :training_job_name (required, String)

    The name of the training job.

Returns:

See Also:



5966
5967
5968
5969
# File 'lib/aws-sdk-sagemaker/client.rb', line 5966

def describe_training_job(params = {}, options = {})
  req = build_request(:describe_training_job, params)
  req.send_request(options)
end

#describe_transform_job(params = {}) ⇒ Types::DescribeTransformJobResponse

Returns information about a transform job.

Examples:

Request syntax with placeholder values


resp = client.describe_transform_job({
  transform_job_name: "TransformJobName", # required
})

Response structure


resp.transform_job_name #=> String
resp.transform_job_arn #=> String
resp.transform_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
resp.failure_reason #=> String
resp.model_name #=> String
resp.max_concurrent_transforms #=> Integer
resp.max_payload_in_mb #=> Integer
resp.batch_strategy #=> String, one of "MultiRecord", "SingleRecord"
resp.environment #=> Hash
resp.environment["TransformEnvironmentKey"] #=> String
resp.transform_input.data_source.s3_data_source.s3_data_type #=> String, one of "ManifestFile", "S3Prefix", "AugmentedManifestFile"
resp.transform_input.data_source.s3_data_source.s3_uri #=> String
resp.transform_input.content_type #=> String
resp.transform_input.compression_type #=> String, one of "None", "Gzip"
resp.transform_input.split_type #=> String, one of "None", "Line", "RecordIO", "TFRecord"
resp.transform_output.s3_output_path #=> String
resp.transform_output.accept #=> String
resp.transform_output.assemble_with #=> String, one of "None", "Line"
resp.transform_output.kms_key_id #=> String
resp.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
resp.transform_resources.instance_count #=> Integer
resp.transform_resources.volume_kms_key_id #=> String
resp.creation_time #=> Time
resp.transform_start_time #=> Time
resp.transform_end_time #=> Time
resp.labeling_job_arn #=> String
resp.auto_ml_job_arn #=> String
resp.data_processing.input_filter #=> String
resp.data_processing.output_filter #=> String
resp.data_processing.join_source #=> String, one of "Input", "None"
resp.experiment_config.experiment_name #=> String
resp.experiment_config.trial_name #=> String
resp.experiment_config.trial_component_display_name #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :transform_job_name (required, String)

    The name of the transform job that you want to view details of.

Returns:

See Also:



6044
6045
6046
6047
# File 'lib/aws-sdk-sagemaker/client.rb', line 6044

def describe_transform_job(params = {}, options = {})
  req = build_request(:describe_transform_job, params)
  req.send_request(options)
end

#describe_trial(params = {}) ⇒ Types::DescribeTrialResponse

Provides a list of a trial’s properties.

Examples:

Request syntax with placeholder values


resp = client.describe_trial({
  trial_name: "ExperimentEntityName", # required
})

Response structure


resp.trial_name #=> String
resp.trial_arn #=> String
resp.display_name #=> String
resp.experiment_name #=> String
resp.source.source_arn #=> String
resp.source.source_type #=> String
resp.creation_time #=> Time
resp.created_by. #=> String
resp.created_by. #=> String
resp.created_by.domain_id #=> String
resp.last_modified_time #=> Time
resp.last_modified_by. #=> String
resp.last_modified_by. #=> String
resp.last_modified_by.domain_id #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :trial_name (required, String)

    The name of the trial to describe.

Returns:

See Also:



6093
6094
6095
6096
# File 'lib/aws-sdk-sagemaker/client.rb', line 6093

def describe_trial(params = {}, options = {})
  req = build_request(:describe_trial, params)
  req.send_request(options)
end

#describe_trial_component(params = {}) ⇒ Types::DescribeTrialComponentResponse

Provides a list of a trials component’s properties.

Examples:

Request syntax with placeholder values


resp = client.describe_trial_component({
  trial_component_name: "ExperimentEntityName", # required
})

Response structure


resp.trial_component_name #=> String
resp.trial_component_arn #=> String
resp.display_name #=> String
resp.source.source_arn #=> String
resp.source.source_type #=> String
resp.status.primary_status #=> String, one of "InProgress", "Completed", "Failed"
resp.status.message #=> String
resp.start_time #=> Time
resp.end_time #=> Time
resp.creation_time #=> Time
resp.created_by. #=> String
resp.created_by. #=> String
resp.created_by.domain_id #=> String
resp.last_modified_time #=> Time
resp.last_modified_by. #=> String
resp.last_modified_by. #=> String
resp.last_modified_by.domain_id #=> String
resp.parameters #=> Hash
resp.parameters["TrialComponentKey256"].string_value #=> String
resp.parameters["TrialComponentKey256"].number_value #=> Float
resp.input_artifacts #=> Hash
resp.input_artifacts["TrialComponentKey64"].media_type #=> String
resp.input_artifacts["TrialComponentKey64"].value #=> String
resp.output_artifacts #=> Hash
resp.output_artifacts["TrialComponentKey64"].media_type #=> String
resp.output_artifacts["TrialComponentKey64"].value #=> String
resp.metrics #=> Array
resp.metrics[0].metric_name #=> String
resp.metrics[0].source_arn #=> String
resp.metrics[0].time_stamp #=> Time
resp.metrics[0].max #=> Float
resp.metrics[0].min #=> Float
resp.metrics[0].last #=> Float
resp.metrics[0].count #=> Integer
resp.metrics[0].avg #=> Float
resp.metrics[0].std_dev #=> Float

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :trial_component_name (required, String)

    The name of the trial component to describe.

Returns:

See Also:



6170
6171
6172
6173
# File 'lib/aws-sdk-sagemaker/client.rb', line 6170

def describe_trial_component(params = {}, options = {})
  req = build_request(:describe_trial_component, params)
  req.send_request(options)
end

#describe_user_profile(params = {}) ⇒ Types::DescribeUserProfileResponse

Describes the user profile.

Examples:

Request syntax with placeholder values


resp = client.({
  domain_id: "DomainId", # required
  user_profile_name: "UserProfileName", # required
})

Response structure


resp.domain_id #=> String
resp. #=> String
resp. #=> String
resp.home_efs_file_system_uid #=> String
resp.status #=> String, one of "Deleting", "Failed", "InService", "Pending"
resp.last_modified_time #=> Time
resp.creation_time #=> Time
resp.failure_reason #=> String
resp.single_sign_on_user_identifier #=> String
resp.single_sign_on_user_value #=> String
resp..execution_role #=> String
resp..security_groups #=> Array
resp..security_groups[0] #=> String
resp..sharing_settings.notebook_output_option #=> String, one of "Allowed", "Disabled"
resp..sharing_settings.s3_output_path #=> String
resp..sharing_settings.s3_kms_key_id #=> String
resp..jupyter_server_app_settings.default_resource_spec.environment_arn #=> String
resp..jupyter_server_app_settings.default_resource_spec.instance_type #=> String, one of "system", "ml.t3.micro", "ml.t3.small", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.8xlarge", "ml.m5.12xlarge", "ml.m5.16xlarge", "ml.m5.24xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.12xlarge", "ml.c5.18xlarge", "ml.c5.24xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
resp..kernel_gateway_app_settings.default_resource_spec.environment_arn #=> String
resp..kernel_gateway_app_settings.default_resource_spec.instance_type #=> String, one of "system", "ml.t3.micro", "ml.t3.small", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.8xlarge", "ml.m5.12xlarge", "ml.m5.16xlarge", "ml.m5.24xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.12xlarge", "ml.c5.18xlarge", "ml.c5.24xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"
resp..tensor_board_app_settings.default_resource_spec.environment_arn #=> String
resp..tensor_board_app_settings.default_resource_spec.instance_type #=> String, one of "system", "ml.t3.micro", "ml.t3.small", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.8xlarge", "ml.m5.12xlarge", "ml.m5.16xlarge", "ml.m5.24xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.12xlarge", "ml.c5.18xlarge", "ml.c5.24xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge"

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :domain_id (required, String)

    The domain ID.

  • :user_profile_name (required, String)

    The user profile name.

Returns:

See Also:



6233
6234
6235
6236
# File 'lib/aws-sdk-sagemaker/client.rb', line 6233

def (params = {}, options = {})
  req = build_request(:describe_user_profile, params)
  req.send_request(options)
end

#describe_workteam(params = {}) ⇒ Types::DescribeWorkteamResponse

Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team’s Amazon Resource Name (ARN).

Examples:

Request syntax with placeholder values


resp = client.describe_workteam({
  workteam_name: "WorkteamName", # required
})

Response structure


resp.workteam.workteam_name #=> String
resp.workteam.member_definitions #=> Array
resp.workteam.member_definitions[0].cognito_member_definition.user_pool #=> String
resp.workteam.member_definitions[0].cognito_member_definition.user_group #=> String
resp.workteam.member_definitions[0].cognito_member_definition.client_id #=> String
resp.workteam.workteam_arn #=> String
resp.workteam.product_listing_ids #=> Array
resp.workteam.product_listing_ids[0] #=> String
resp.workteam.description #=> String
resp.workteam.sub_domain #=> String
resp.workteam.create_date #=> Time
resp.workteam.last_updated_date #=> Time
resp.workteam.notification_configuration.notification_topic_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :workteam_name (required, String)

    The name of the work team to return a description of.

Returns:

See Also:



6275
6276
6277
6278
# File 'lib/aws-sdk-sagemaker/client.rb', line 6275

def describe_workteam(params = {}, options = {})
  req = build_request(:describe_workteam, params)
  req.send_request(options)
end

#disassociate_trial_component(params = {}) ⇒ Types::DisassociateTrialComponentResponse

Disassociates a trial component from a trial. This doesn’t effect other trials the component is associated with. Before you can delete a component, you must disassociate the component from all trials it is associated with. To associate a trial component with a trial, call the AssociateTrialComponent API.

Examples:

Request syntax with placeholder values


resp = client.disassociate_trial_component({
  trial_component_name: "ExperimentEntityName", # required
  trial_name: "ExperimentEntityName", # required
})

Response structure


resp.trial_component_arn #=> String
resp.trial_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :trial_component_name (required, String)

    The name of the component to disassociate from the trial.

  • :trial_name (required, String)

    The name of the trial to disassociate from.

Returns:

See Also:



6313
6314
6315
6316
# File 'lib/aws-sdk-sagemaker/client.rb', line 6313

def disassociate_trial_component(params = {}, options = {})
  req = build_request(:disassociate_trial_component, params)
  req.send_request(options)
end

#get_search_suggestions(params = {}) ⇒ Types::GetSearchSuggestionsResponse

An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in ‘Search` queries. Provides suggestions for `HyperParameters`, `Tags`, and `Metrics`.

Examples:

Request syntax with placeholder values


resp = client.get_search_suggestions({
  resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent
  suggestion_query: {
    property_name_query: {
      property_name_hint: "PropertyNameHint", # required
    },
  },
})

Response structure


resp.property_name_suggestions #=> Array
resp.property_name_suggestions[0].property_name #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :resource (required, String)

    The name of the Amazon SageMaker resource to Search for. The only valid ‘Resource` value is `TrainingJob`.

  • :suggestion_query (Types::SuggestionQuery)

    Limits the property names that are included in the response.

Returns:

See Also:



6354
6355
6356
6357
# File 'lib/aws-sdk-sagemaker/client.rb', line 6354

def get_search_suggestions(params = {}, options = {})
  req = build_request(:get_search_suggestions, params)
  req.send_request(options)
end

#list_algorithms(params = {}) ⇒ Types::ListAlgorithmsOutput

Lists the machine learning algorithms that have been created.

Examples:

Request syntax with placeholder values


resp = client.list_algorithms({
  creation_time_after: Time.now,
  creation_time_before: Time.now,
  max_results: 1,
  name_contains: "NameContains",
  next_token: "NextToken",
  sort_by: "Name", # accepts Name, CreationTime
  sort_order: "Ascending", # accepts Ascending, Descending
})

Response structure


resp.algorithm_summary_list #=> Array
resp.algorithm_summary_list[0].algorithm_name #=> String
resp.algorithm_summary_list[0].algorithm_arn #=> String
resp.algorithm_summary_list[0].algorithm_description #=> String
resp.algorithm_summary_list[0].creation_time #=> Time
resp.algorithm_summary_list[0].algorithm_status #=> String, one of "Pending", "InProgress", "Completed", "Failed", "Deleting"
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only algorithms created after the specified time (timestamp).

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only algorithms created before the specified time (timestamp).

  • :max_results (Integer)

    The maximum number of algorithms to return in the response.

  • :name_contains (String)

    A string in the algorithm name. This filter returns only algorithms whose name contains the specified string.

  • :next_token (String)

    If the response to a previous ‘ListAlgorithms` request was truncated, the response includes a `NextToken`. To retrieve the next set of algorithms, use the token in the next request.

  • :sort_by (String)

    The parameter by which to sort the results. The default is ‘CreationTime`.

  • :sort_order (String)

    The sort order for the results. The default is ‘Ascending`.

Returns:

See Also:



6419
6420
6421
6422
# File 'lib/aws-sdk-sagemaker/client.rb', line 6419

def list_algorithms(params = {}, options = {})
  req = build_request(:list_algorithms, params)
  req.send_request(options)
end

#list_apps(params = {}) ⇒ Types::ListAppsResponse

Lists apps.

Examples:

Request syntax with placeholder values


resp = client.list_apps({
  next_token: "NextToken",
  max_results: 1,
  sort_order: "Ascending", # accepts Ascending, Descending
  sort_by: "CreationTime", # accepts CreationTime
  domain_id_equals: "DomainId",
  user_profile_name_equals: "UserProfileName",
})

Response structure


resp.apps #=> Array
resp.apps[0].domain_id #=> String
resp.apps[0]. #=> String
resp.apps[0].app_type #=> String, one of "JupyterServer", "KernelGateway", "TensorBoard"
resp.apps[0].app_name #=> String
resp.apps[0].status #=> String, one of "Deleted", "Deleting", "Failed", "InService", "Pending"
resp.apps[0].creation_time #=> Time
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

  • :max_results (Integer)

    Returns a list up to a specified limit.

  • :sort_order (String)

    The sort order for the results. The default is Ascending.

  • :sort_by (String)

    The parameter by which to sort the results. The default is CreationTime.

  • :domain_id_equals (String)

    A parameter to search for the domain ID.

  • :user_profile_name_equals (String)

    A parameter to search by user profile name.

Returns:

See Also:



6477
6478
6479
6480
# File 'lib/aws-sdk-sagemaker/client.rb', line 6477

def list_apps(params = {}, options = {})
  req = build_request(:list_apps, params)
  req.send_request(options)
end

#list_auto_ml_jobs(params = {}) ⇒ Types::ListAutoMLJobsResponse

Request a list of jobs.

Examples:

Request syntax with placeholder values


resp = client.list_auto_ml_jobs({
  creation_time_after: Time.now,
  creation_time_before: Time.now,
  last_modified_time_after: Time.now,
  last_modified_time_before: Time.now,
  name_contains: "AutoMLNameContains",
  status_equals: "Completed", # accepts Completed, InProgress, Failed, Stopped, Stopping
  sort_order: "Ascending", # accepts Ascending, Descending
  sort_by: "Name", # accepts Name, CreationTime, Status
  max_results: 1,
  next_token: "NextToken",
})

Response structure


resp.auto_ml_job_summaries #=> Array
resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
resp.auto_ml_job_summaries[0].creation_time #=> Time
resp.auto_ml_job_summaries[0].end_time #=> Time
resp.auto_ml_job_summaries[0].last_modified_time #=> Time
resp.auto_ml_job_summaries[0].failure_reason #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    Request a list of jobs, using a filter for time.

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    Request a list of jobs, using a filter for time.

  • :last_modified_time_after (Time, DateTime, Date, Integer, String)

    Request a list of jobs, using a filter for time.

  • :last_modified_time_before (Time, DateTime, Date, Integer, String)

    Request a list of jobs, using a filter for time.

  • :name_contains (String)

    Request a list of jobs, using a search filter for name.

  • :status_equals (String)

    Request a list of jobs, using a filter for status.

  • :sort_order (String)

    The sort order for the results. The default is Descending.

  • :sort_by (String)

    The parameter by which to sort the results. The default is AutoMLJobName.

  • :max_results (Integer)

    Request a list of jobs up to a specified limit.

  • :next_token (String)

    If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

Returns:

See Also:



6553
6554
6555
6556
# File 'lib/aws-sdk-sagemaker/client.rb', line 6553

def list_auto_ml_jobs(params = {}, options = {})
  req = build_request(:list_auto_ml_jobs, params)
  req.send_request(options)
end

#list_candidates_for_auto_ml_job(params = {}) ⇒ Types::ListCandidatesForAutoMLJobResponse

List the Candidates created for the job.

Examples:

Request syntax with placeholder values


resp = client.list_candidates_for_auto_ml_job({
  auto_ml_job_name: "AutoMLJobName", # required
  status_equals: "Completed", # accepts Completed, InProgress, Failed, Stopped, Stopping
  candidate_name_equals: "CandidateName",
  sort_order: "Ascending", # accepts Ascending, Descending
  sort_by: "CreationTime", # accepts CreationTime, Status, FinalObjectiveMetricValue
  max_results: 1,
  next_token: "NextToken",
})

Response structure


resp.candidates #=> Array
resp.candidates[0].candidate_name #=> String
resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
resp.candidates[0].candidate_steps #=> Array
resp.candidates[0].candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
resp.candidates[0].candidate_steps[0].candidate_step_arn #=> String
resp.candidates[0].candidate_steps[0].candidate_step_name #=> String
resp.candidates[0].candidate_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
resp.candidates[0].inference_containers #=> Array
resp.candidates[0].inference_containers[0].image #=> String
resp.candidates[0].inference_containers[0].model_data_url #=> String
resp.candidates[0].inference_containers[0].environment #=> Hash
resp.candidates[0].inference_containers[0].environment["EnvironmentKey"] #=> String
resp.candidates[0].creation_time #=> Time
resp.candidates[0].end_time #=> Time
resp.candidates[0].last_modified_time #=> Time
resp.candidates[0].failure_reason #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :auto_ml_job_name (required, String)

    List the Candidates created for the job by providing the job’s name.

  • :status_equals (String)

    List the Candidates for the job and filter by status.

  • :candidate_name_equals (String)

    List the Candidates for the job and filter by candidate name.

  • :sort_order (String)

    The sort order for the results. The default is Ascending.

  • :sort_by (String)

    The parameter by which to sort the results. The default is Descending.

  • :max_results (Integer)

    List the job’s Candidates up to a specified limit.

  • :next_token (String)

    If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

Returns:

See Also:



6627
6628
6629
6630
# File 'lib/aws-sdk-sagemaker/client.rb', line 6627

def list_candidates_for_auto_ml_job(params = {}, options = {})
  req = build_request(:list_candidates_for_auto_ml_job, params)
  req.send_request(options)
end

#list_code_repositories(params = {}) ⇒ Types::ListCodeRepositoriesOutput

Gets a list of the Git repositories in your account.

Examples:

Request syntax with placeholder values


resp = client.list_code_repositories({
  creation_time_after: Time.now,
  creation_time_before: Time.now,
  last_modified_time_after: Time.now,
  last_modified_time_before: Time.now,
  max_results: 1,
  name_contains: "CodeRepositoryNameContains",
  next_token: "NextToken",
  sort_by: "Name", # accepts Name, CreationTime, LastModifiedTime
  sort_order: "Ascending", # accepts Ascending, Descending
})

Response structure


resp.code_repository_summary_list #=> Array
resp.code_repository_summary_list[0].code_repository_name #=> String
resp.code_repository_summary_list[0].code_repository_arn #=> String
resp.code_repository_summary_list[0].creation_time #=> Time
resp.code_repository_summary_list[0].last_modified_time #=> Time
resp.code_repository_summary_list[0].git_config.repository_url #=> String
resp.code_repository_summary_list[0].git_config.branch #=> String
resp.code_repository_summary_list[0].git_config.secret_arn #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only Git repositories that were created after the specified time.

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only Git repositories that were created before the specified time.

  • :last_modified_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only Git repositories that were last modified after the specified time.

  • :last_modified_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only Git repositories that were last modified before the specified time.

  • :max_results (Integer)

    The maximum number of Git repositories to return in the response.

  • :name_contains (String)

    A string in the Git repositories name. This filter returns only repositories whose name contains the specified string.

  • :next_token (String)

    If the result of a ‘ListCodeRepositoriesOutput` request was truncated, the response includes a `NextToken`. To get the next set of Git repositories, use the token in the next request.

  • :sort_by (String)

    The field to sort results by. The default is ‘Name`.

  • :sort_order (String)

    The sort order for results. The default is ‘Ascending`.

Returns:

See Also:



6703
6704
6705
6706
# File 'lib/aws-sdk-sagemaker/client.rb', line 6703

def list_code_repositories(params = {}, options = {})
  req = build_request(:list_code_repositories, params)
  req.send_request(options)
end

#list_compilation_jobs(params = {}) ⇒ Types::ListCompilationJobsResponse

Lists model compilation jobs that satisfy various filters.

To create a model compilation job, use CreateCompilationJob. To get information about a particular model compilation job you have created, use DescribeCompilationJob.

Examples:

Request syntax with placeholder values


resp = client.list_compilation_jobs({
  next_token: "NextToken",
  max_results: 1,
  creation_time_after: Time.now,
  creation_time_before: Time.now,
  last_modified_time_after: Time.now,
  last_modified_time_before: Time.now,
  name_contains: "NameContains",
  status_equals: "INPROGRESS", # accepts INPROGRESS, COMPLETED, FAILED, STARTING, STOPPING, STOPPED
  sort_by: "Name", # accepts Name, CreationTime, Status
  sort_order: "Ascending", # accepts Ascending, Descending
})

Response structure


resp.compilation_job_summaries #=> Array
resp.compilation_job_summaries[0].compilation_job_name #=> String
resp.compilation_job_summaries[0].compilation_job_arn #=> String
resp.compilation_job_summaries[0].creation_time #=> Time
resp.compilation_job_summaries[0].compilation_start_time #=> Time
resp.compilation_job_summaries[0].compilation_end_time #=> Time
resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "rasp3b", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603"
resp.compilation_job_summaries[0].last_modified_time #=> Time
resp.compilation_job_summaries[0].compilation_job_status #=> String, one of "INPROGRESS", "COMPLETED", "FAILED", "STARTING", "STOPPING", "STOPPED"
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    If the result of the previous ‘ListCompilationJobs` request was truncated, the response includes a `NextToken`. To retrieve the next set of model compilation jobs, use the token in the next request.

  • :max_results (Integer)

    The maximum number of model compilation jobs to return in the response.

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns the model compilation jobs that were created after a specified time.

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns the model compilation jobs that were created before a specified time.

  • :last_modified_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns the model compilation jobs that were modified after a specified time.

  • :last_modified_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns the model compilation jobs that were modified before a specified time.

  • :name_contains (String)

    A filter that returns the model compilation jobs whose name contains a specified string.

  • :status_equals (String)

    A filter that retrieves model compilation jobs with a specific DescribeCompilationJobResponse$CompilationJobStatus status.

  • :sort_by (String)

    The field by which to sort results. The default is ‘CreationTime`.

  • :sort_order (String)

    The sort order for results. The default is ‘Ascending`.

Returns:

See Also:



6790
6791
6792
6793
# File 'lib/aws-sdk-sagemaker/client.rb', line 6790

def list_compilation_jobs(params = {}, options = {})
  req = build_request(:list_compilation_jobs, params)
  req.send_request(options)
end

#list_domains(params = {}) ⇒ Types::ListDomainsResponse

Lists the domains.

Examples:

Request syntax with placeholder values


resp = client.list_domains({
  next_token: "NextToken",
  max_results: 1,
})

Response structure


resp.domains #=> Array
resp.domains[0].domain_arn #=> String
resp.domains[0].domain_id #=> String
resp.domains[0].domain_name #=> String
resp.domains[0].status #=> String, one of "Deleting", "Failed", "InService", "Pending"
resp.domains[0].creation_time #=> Time
resp.domains[0].last_modified_time #=> Time
resp.domains[0].url #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

  • :max_results (Integer)

    Returns a list up to a specified limit.

Returns:

See Also:



6832
6833
6834
6835
# File 'lib/aws-sdk-sagemaker/client.rb', line 6832

def list_domains(params = {}, options = {})
  req = build_request(:list_domains, params)
  req.send_request(options)
end

#list_endpoint_configs(params = {}) ⇒ Types::ListEndpointConfigsOutput

Lists endpoint configurations.

Examples:

Request syntax with placeholder values


resp = client.list_endpoint_configs({
  sort_by: "Name", # accepts Name, CreationTime
  sort_order: "Ascending", # accepts Ascending, Descending
  next_token: "PaginationToken",
  max_results: 1,
  name_contains: "EndpointConfigNameContains",
  creation_time_before: Time.now,
  creation_time_after: Time.now,
})

Response structure


resp.endpoint_configs #=> Array
resp.endpoint_configs[0].endpoint_config_name #=> String
resp.endpoint_configs[0].endpoint_config_arn #=> String
resp.endpoint_configs[0].creation_time #=> Time
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :sort_by (String)

    The field to sort results by. The default is ‘CreationTime`.

  • :sort_order (String)

    The sort order for results. The default is ‘Descending`.

  • :next_token (String)

    If the result of the previous ‘ListEndpointConfig` request was truncated, the response includes a `NextToken`. To retrieve the next set of endpoint configurations, use the token in the next request.

  • :max_results (Integer)

    The maximum number of training jobs to return in the response.

  • :name_contains (String)

    A string in the endpoint configuration name. This filter returns only endpoint configurations whose name contains the specified string.

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only endpoint configurations created before the specified time (timestamp).

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only endpoint configurations with a creation time greater than or equal to the specified time (timestamp).

Returns:

See Also:



6894
6895
6896
6897
# File 'lib/aws-sdk-sagemaker/client.rb', line 6894

def list_endpoint_configs(params = {}, options = {})
  req = build_request(:list_endpoint_configs, params)
  req.send_request(options)
end

#list_endpoints(params = {}) ⇒ Types::ListEndpointsOutput

Lists endpoints.

Examples:

Request syntax with placeholder values


resp = client.list_endpoints({
  sort_by: "Name", # accepts Name, CreationTime, Status
  sort_order: "Ascending", # accepts Ascending, Descending
  next_token: "PaginationToken",
  max_results: 1,
  name_contains: "EndpointNameContains",
  creation_time_before: Time.now,
  creation_time_after: Time.now,
  last_modified_time_before: Time.now,
  last_modified_time_after: Time.now,
  status_equals: "OutOfService", # accepts OutOfService, Creating, Updating, SystemUpdating, RollingBack, InService, Deleting, Failed
})

Response structure


resp.endpoints #=> Array
resp.endpoints[0].endpoint_name #=> String
resp.endpoints[0].endpoint_arn #=> String
resp.endpoints[0].creation_time #=> Time
resp.endpoints[0].last_modified_time #=> Time
resp.endpoints[0].endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed"
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :sort_by (String)

    Sorts the list of results. The default is ‘CreationTime`.

  • :sort_order (String)

    The sort order for results. The default is ‘Descending`.

  • :next_token (String)

    If the result of a ‘ListEndpoints` request was truncated, the response includes a `NextToken`. To retrieve the next set of endpoints, use the token in the next request.

  • :max_results (Integer)

    The maximum number of endpoints to return in the response.

  • :name_contains (String)

    A string in endpoint names. This filter returns only endpoints whose name contains the specified string.

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only endpoints that were created before the specified time (timestamp).

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only endpoints with a creation time greater than or equal to the specified time (timestamp).

  • :last_modified_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only endpoints that were modified before the specified timestamp.

  • :last_modified_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only endpoints that were modified after the specified timestamp.

  • :status_equals (String)

    A filter that returns only endpoints with the specified status.

Returns:

See Also:



6972
6973
6974
6975
# File 'lib/aws-sdk-sagemaker/client.rb', line 6972

def list_endpoints(params = {}, options = {})
  req = build_request(:list_endpoints, params)
  req.send_request(options)
end

#list_experiments(params = {}) ⇒ Types::ListExperimentsResponse

Lists all the experiments in your account. The list can be filtered to show only experiments that were created in a specific time range. The list can be sorted by experiment name or creation time.

Examples:

Request syntax with placeholder values


resp = client.list_experiments({
  created_after: Time.now,
  created_before: Time.now,
  sort_by: "Name", # accepts Name, CreationTime
  sort_order: "Ascending", # accepts Ascending, Descending
  next_token: "NextToken",
  max_results: 1,
})

Response structure


resp.experiment_summaries #=> Array
resp.experiment_summaries[0].experiment_arn #=> String
resp.experiment_summaries[0].experiment_name #=> String
resp.experiment_summaries[0].display_name #=> String
resp.experiment_summaries[0].experiment_source.source_arn #=> String
resp.experiment_summaries[0].experiment_source.source_type #=> String
resp.experiment_summaries[0].creation_time #=> Time
resp.experiment_summaries[0].last_modified_time #=> Time
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :created_after (Time, DateTime, Date, Integer, String)

    A filter that returns only experiments created after the specified time.

  • :created_before (Time, DateTime, Date, Integer, String)

    A filter that returns only experiments created before the specified time.

  • :sort_by (String)

    The property used to sort results. The default value is ‘CreationTime`.

  • :sort_order (String)

    The sort order. The default value is ‘Descending`.

  • :next_token (String)

    If the previous call to ‘ListExperiments` didn’t return the full set of experiments, the call returns a token for getting the next set of experiments.

  • :max_results (Integer)

    The maximum number of experiments to return in the response.

Returns:

See Also:



7036
7037
7038
7039
# File 'lib/aws-sdk-sagemaker/client.rb', line 7036

def list_experiments(params = {}, options = {})
  req = build_request(:list_experiments, params)
  req.send_request(options)
end

#list_flow_definitions(params = {}) ⇒ Types::ListFlowDefinitionsResponse

Returns information about the flow definitions in your account.

Examples:

Request syntax with placeholder values


resp = client.list_flow_definitions({
  creation_time_after: Time.now,
  creation_time_before: Time.now,
  sort_order: "Ascending", # accepts Ascending, Descending
  next_token: "NextToken",
  max_results: 1,
})

Response structure


resp.flow_definition_summaries #=> Array
resp.flow_definition_summaries[0].flow_definition_name #=> String
resp.flow_definition_summaries[0].flow_definition_arn #=> String
resp.flow_definition_summaries[0].flow_definition_status #=> String, one of "Initializing", "Active", "Failed", "Deleting", "Deleted"
resp.flow_definition_summaries[0].creation_time #=> Time
resp.flow_definition_summaries[0].failure_reason #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only flow definitions with a creation time greater than or equal to the specified timestamp.

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only flow definitions that were created before the specified timestamp.

  • :sort_order (String)

    An optional value that specifies whether you want the results sorted in ‘Ascending` or `Descending` order.

  • :next_token (String)

    A token to resume pagination.

  • :max_results (Integer)

    The total number of items to return. If the total number of available items is more than the value specified in ‘MaxResults`, then a `NextToken` will be provided in the output that you can use to resume pagination.

Returns:

See Also:



7093
7094
7095
7096
# File 'lib/aws-sdk-sagemaker/client.rb', line 7093

def list_flow_definitions(params = {}, options = {})
  req = build_request(:list_flow_definitions, params)
  req.send_request(options)
end

#list_human_task_uis(params = {}) ⇒ Types::ListHumanTaskUisResponse

Returns information about the human task user interfaces in your account.

Examples:

Request syntax with placeholder values


resp = client.list_human_task_uis({
  creation_time_after: Time.now,
  creation_time_before: Time.now,
  sort_order: "Ascending", # accepts Ascending, Descending
  next_token: "NextToken",
  max_results: 1,
})

Response structure


resp.human_task_ui_summaries #=> Array
resp.human_task_ui_summaries[0].human_task_ui_name #=> String
resp.human_task_ui_summaries[0].human_task_ui_arn #=> String
resp.human_task_ui_summaries[0].creation_time #=> Time
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only human task user interfaces with a creation time greater than or equal to the specified timestamp.

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only human task user interfaces that were created before the specified timestamp.

  • :sort_order (String)

    An optional value that specifies whether you want the results sorted in ‘Ascending` or `Descending` order.

  • :next_token (String)

    A token to resume pagination.

  • :max_results (Integer)

    The total number of items to return. If the total number of available items is more than the value specified in ‘MaxResults`, then a `NextToken` will be provided in the output that you can use to resume pagination.

Returns:

See Also:



7149
7150
7151
7152
# File 'lib/aws-sdk-sagemaker/client.rb', line 7149

def list_human_task_uis(params = {}, options = {})
  req = build_request(:list_human_task_uis, params)
  req.send_request(options)
end

#list_hyper_parameter_tuning_jobs(params = {}) ⇒ Types::ListHyperParameterTuningJobsResponse

Gets a list of HyperParameterTuningJobSummary objects that describe the hyperparameter tuning jobs launched in your account.

Examples:

Request syntax with placeholder values


resp = client.list_hyper_parameter_tuning_jobs({
  next_token: "NextToken",
  max_results: 1,
  sort_by: "Name", # accepts Name, Status, CreationTime
  sort_order: "Ascending", # accepts Ascending, Descending
  name_contains: "NameContains",
  creation_time_after: Time.now,
  creation_time_before: Time.now,
  last_modified_time_after: Time.now,
  last_modified_time_before: Time.now,
  status_equals: "Completed", # accepts Completed, InProgress, Failed, Stopped, Stopping
})

Response structure


resp.hyper_parameter_tuning_job_summaries #=> Array
resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_name #=> String
resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_arn #=> String
resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random"
resp.hyper_parameter_tuning_job_summaries[0].creation_time #=> Time
resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_end_time #=> Time
resp.hyper_parameter_tuning_job_summaries[0].last_modified_time #=> Time
resp.hyper_parameter_tuning_job_summaries[0].training_job_status_counters.completed #=> Integer
resp.hyper_parameter_tuning_job_summaries[0].training_job_status_counters.in_progress #=> Integer
resp.hyper_parameter_tuning_job_summaries[0].training_job_status_counters.retryable_error #=> Integer
resp.hyper_parameter_tuning_job_summaries[0].training_job_status_counters.non_retryable_error #=> Integer
resp.hyper_parameter_tuning_job_summaries[0].training_job_status_counters.stopped #=> Integer
resp.hyper_parameter_tuning_job_summaries[0].objective_status_counters.succeeded #=> Integer
resp.hyper_parameter_tuning_job_summaries[0].objective_status_counters.pending #=> Integer
resp.hyper_parameter_tuning_job_summaries[0].objective_status_counters.failed #=> Integer
resp.hyper_parameter_tuning_job_summaries[0].resource_limits.max_number_of_training_jobs #=> Integer
resp.hyper_parameter_tuning_job_summaries[0].resource_limits.max_parallel_training_jobs #=> Integer
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    If the result of the previous ‘ListHyperParameterTuningJobs` request was truncated, the response includes a `NextToken`. To retrieve the next set of tuning jobs, use the token in the next request.

  • :max_results (Integer)

    The maximum number of tuning jobs to return. The default value is 10.

  • :sort_by (String)

    The field to sort results by. The default is ‘Name`.

  • :sort_order (String)

    The sort order for results. The default is ‘Ascending`.

  • :name_contains (String)

    A string in the tuning job name. This filter returns only tuning jobs whose name contains the specified string.

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only tuning jobs that were created after the specified time.

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only tuning jobs that were created before the specified time.

  • :last_modified_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only tuning jobs that were modified after the specified time.

  • :last_modified_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only tuning jobs that were modified before the specified time.

  • :status_equals (String)

    A filter that returns only tuning jobs with the specified status.

Returns:

See Also:



7240
7241
7242
7243
# File 'lib/aws-sdk-sagemaker/client.rb', line 7240

def list_hyper_parameter_tuning_jobs(params = {}, options = {})
  req = build_request(:list_hyper_parameter_tuning_jobs, params)
  req.send_request(options)
end

#list_labeling_jobs(params = {}) ⇒ Types::ListLabelingJobsResponse

Gets a list of labeling jobs.

Examples:

Request syntax with placeholder values


resp = client.list_labeling_jobs({
  creation_time_after: Time.now,
  creation_time_before: Time.now,
  last_modified_time_after: Time.now,
  last_modified_time_before: Time.now,
  max_results: 1,
  next_token: "NextToken",
  name_contains: "NameContains",
  sort_by: "Name", # accepts Name, CreationTime, Status
  sort_order: "Ascending", # accepts Ascending, Descending
  status_equals: "InProgress", # accepts InProgress, Completed, Failed, Stopping, Stopped
})

Response structure


resp.labeling_job_summary_list #=> Array
resp.labeling_job_summary_list[0].labeling_job_name #=> String
resp.labeling_job_summary_list[0].labeling_job_arn #=> String
resp.labeling_job_summary_list[0].creation_time #=> Time
resp.labeling_job_summary_list[0].last_modified_time #=> Time
resp.labeling_job_summary_list[0].labeling_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
resp.labeling_job_summary_list[0].label_counters.total_labeled #=> Integer
resp.labeling_job_summary_list[0].label_counters.human_labeled #=> Integer
resp.labeling_job_summary_list[0].label_counters.machine_labeled #=> Integer
resp.labeling_job_summary_list[0].label_counters.failed_non_retryable_error #=> Integer
resp.labeling_job_summary_list[0].label_counters.unlabeled #=> Integer
resp.labeling_job_summary_list[0].workteam_arn #=> String
resp.labeling_job_summary_list[0].pre_human_task_lambda_arn #=> String
resp.labeling_job_summary_list[0].annotation_consolidation_lambda_arn #=> String
resp.labeling_job_summary_list[0].failure_reason #=> String
resp.labeling_job_summary_list[0].labeling_job_output.output_dataset_s3_uri #=> String
resp.labeling_job_summary_list[0].labeling_job_output.final_active_learning_model_arn #=> String
resp.labeling_job_summary_list[0].input_config.data_source.s3_data_source.manifest_s3_uri #=> String
resp.labeling_job_summary_list[0].input_config.data_attributes.content_classifiers #=> Array
resp.labeling_job_summary_list[0].input_config.data_attributes.content_classifiers[0] #=> String, one of "FreeOfPersonallyIdentifiableInformation", "FreeOfAdultContent"
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only labeling jobs created after the specified time (timestamp).

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only labeling jobs created before the specified time (timestamp).

  • :last_modified_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only labeling jobs modified after the specified time (timestamp).

  • :last_modified_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only labeling jobs modified before the specified time (timestamp).

  • :max_results (Integer)

    The maximum number of labeling jobs to return in each page of the response.

  • :next_token (String)

    If the result of the previous ‘ListLabelingJobs` request was truncated, the response includes a `NextToken`. To retrieve the next set of labeling jobs, use the token in the next request.

  • :name_contains (String)

    A string in the labeling job name. This filter returns only labeling jobs whose name contains the specified string.

  • :sort_by (String)

    The field to sort results by. The default is ‘CreationTime`.

  • :sort_order (String)

    The sort order for results. The default is ‘Ascending`.

  • :status_equals (String)

    A filter that retrieves only labeling jobs with a specific status.

Returns:

See Also:



7333
7334
7335
7336
# File 'lib/aws-sdk-sagemaker/client.rb', line 7333

def list_labeling_jobs(params = {}, options = {})
  req = build_request(:list_labeling_jobs, params)
  req.send_request(options)
end

#list_labeling_jobs_for_workteam(params = {}) ⇒ Types::ListLabelingJobsForWorkteamResponse

Gets a list of labeling jobs assigned to a specified work team.

Examples:

Request syntax with placeholder values


resp = client.list_labeling_jobs_for_workteam({
  workteam_arn: "WorkteamArn", # required
  max_results: 1,
  next_token: "NextToken",
  creation_time_after: Time.now,
  creation_time_before: Time.now,
  job_reference_code_contains: "JobReferenceCodeContains",
  sort_by: "CreationTime", # accepts CreationTime
  sort_order: "Ascending", # accepts Ascending, Descending
})

Response structure


resp.labeling_job_summary_list #=> Array
resp.labeling_job_summary_list[0].labeling_job_name #=> String
resp.labeling_job_summary_list[0].job_reference_code #=> String
resp.labeling_job_summary_list[0]. #=> String
resp.labeling_job_summary_list[0].creation_time #=> Time
resp.labeling_job_summary_list[0].label_counters.human_labeled #=> Integer
resp.labeling_job_summary_list[0].label_counters.pending_human #=> Integer
resp.labeling_job_summary_list[0].label_counters.total #=> Integer
resp.labeling_job_summary_list[0].number_of_human_workers_per_data_object #=> Integer
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :workteam_arn (required, String)

    The Amazon Resource Name (ARN) of the work team for which you want to see labeling jobs for.

  • :max_results (Integer)

    The maximum number of labeling jobs to return in each page of the response.

  • :next_token (String)

    If the result of the previous ‘ListLabelingJobsForWorkteam` request was truncated, the response includes a `NextToken`. To retrieve the next set of labeling jobs, use the token in the next request.

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only labeling jobs created after the specified time (timestamp).

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only labeling jobs created before the specified time (timestamp).

  • :job_reference_code_contains (String)

    A filter the limits jobs to only the ones whose job reference code contains the specified string.

  • :sort_by (String)

    The field to sort results by. The default is ‘CreationTime`.

  • :sort_order (String)

    The sort order for results. The default is ‘Ascending`.

Returns:

See Also:



7406
7407
7408
7409
# File 'lib/aws-sdk-sagemaker/client.rb', line 7406

def list_labeling_jobs_for_workteam(params = {}, options = {})
  req = build_request(:list_labeling_jobs_for_workteam, params)
  req.send_request(options)
end

#list_model_packages(params = {}) ⇒ Types::ListModelPackagesOutput

Lists the model packages that have been created.

Examples:

Request syntax with placeholder values


resp = client.list_model_packages({
  creation_time_after: Time.now,
  creation_time_before: Time.now,
  max_results: 1,
  name_contains: "NameContains",
  next_token: "NextToken",
  sort_by: "Name", # accepts Name, CreationTime
  sort_order: "Ascending", # accepts Ascending, Descending
})

Response structure


resp.model_package_summary_list #=> Array
resp.model_package_summary_list[0].model_package_name #=> String
resp.model_package_summary_list[0].model_package_arn #=> String
resp.model_package_summary_list[0].model_package_description #=> String
resp.model_package_summary_list[0].creation_time #=> Time
resp.model_package_summary_list[0].model_package_status #=> String, one of "Pending", "InProgress", "Completed", "Failed", "Deleting"
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only model packages created after the specified time (timestamp).

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only model packages created before the specified time (timestamp).

  • :max_results (Integer)

    The maximum number of model packages to return in the response.

  • :name_contains (String)

    A string in the model package name. This filter returns only model packages whose name contains the specified string.

  • :next_token (String)

    If the response to a previous ‘ListModelPackages` request was truncated, the response includes a `NextToken`. To retrieve the next set of model packages, use the token in the next request.

  • :sort_by (String)

    The parameter by which to sort the results. The default is ‘CreationTime`.

  • :sort_order (String)

    The sort order for the results. The default is ‘Ascending`.

Returns:

See Also:



7471
7472
7473
7474
# File 'lib/aws-sdk-sagemaker/client.rb', line 7471

def list_model_packages(params = {}, options = {})
  req = build_request(:list_model_packages, params)
  req.send_request(options)
end

#list_models(params = {}) ⇒ Types::ListModelsOutput

Examples:

Request syntax with placeholder values


resp = client.list_models({
  sort_by: "Name", # accepts Name, CreationTime
  sort_order: "Ascending", # accepts Ascending, Descending
  next_token: "PaginationToken",
  max_results: 1,
  name_contains: "ModelNameContains",
  creation_time_before: Time.now,
  creation_time_after: Time.now,
})

Response structure


resp.models #=> Array
resp.models[0].model_name #=> String
resp.models[0].model_arn #=> String
resp.models[0].creation_time #=> Time
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :sort_by (String)

    Sorts the list of results. The default is ‘CreationTime`.

  • :sort_order (String)

    The sort order for results. The default is ‘Descending`.

  • :next_token (String)

    If the response to a previous ‘ListModels` request was truncated, the response includes a `NextToken`. To retrieve the next set of models, use the token in the next request.

  • :max_results (Integer)

    The maximum number of models to return in the response.

  • :name_contains (String)

    A string in the training job name. This filter returns only models in the training job whose name contains the specified string.

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only models created before the specified time (timestamp).

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only models with a creation time greater than or equal to the specified time (timestamp).

Returns:

See Also:



7537
7538
7539
7540
# File 'lib/aws-sdk-sagemaker/client.rb', line 7537

def list_models(params = {}, options = {})
  req = build_request(:list_models, params)
  req.send_request(options)
end

#list_monitoring_executions(params = {}) ⇒ Types::ListMonitoringExecutionsResponse

Returns list of all monitoring job executions.

Examples:

Request syntax with placeholder values


resp = client.list_monitoring_executions({
  monitoring_schedule_name: "MonitoringScheduleName",
  endpoint_name: "EndpointName",
  sort_by: "CreationTime", # accepts CreationTime, ScheduledTime, Status
  sort_order: "Ascending", # accepts Ascending, Descending
  next_token: "NextToken",
  max_results: 1,
  scheduled_time_before: Time.now,
  scheduled_time_after: Time.now,
  creation_time_before: Time.now,
  creation_time_after: Time.now,
  last_modified_time_before: Time.now,
  last_modified_time_after: Time.now,
  status_equals: "Pending", # accepts Pending, Completed, CompletedWithViolations, InProgress, Failed, Stopping, Stopped
})

Response structure


resp.monitoring_execution_summaries #=> Array
resp.monitoring_execution_summaries[0].monitoring_schedule_name #=> String
resp.monitoring_execution_summaries[0].scheduled_time #=> Time
resp.monitoring_execution_summaries[0].creation_time #=> Time
resp.monitoring_execution_summaries[0].last_modified_time #=> Time
resp.monitoring_execution_summaries[0].monitoring_execution_status #=> String, one of "Pending", "Completed", "CompletedWithViolations", "InProgress", "Failed", "Stopping", "Stopped"
resp.monitoring_execution_summaries[0].processing_job_arn #=> String
resp.monitoring_execution_summaries[0].endpoint_name #=> String
resp.monitoring_execution_summaries[0].failure_reason #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :monitoring_schedule_name (String)

    Name of a specific schedule to fetch jobs for.

  • :endpoint_name (String)

    Name of a specific endpoint to fetch jobs for.

  • :sort_by (String)

    Whether to sort results by ‘Status`, `CreationTime`, `ScheduledTime` field. The default is `CreationTime`.

  • :sort_order (String)

    Whether to sort the results in ‘Ascending` or `Descending` order. The default is `Descending`.

  • :next_token (String)

    The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.

  • :max_results (Integer)

    The maximum number of jobs to return in the response. The default value is 10.

  • :scheduled_time_before (Time, DateTime, Date, Integer, String)

    Filter for jobs scheduled before a specified time.

  • :scheduled_time_after (Time, DateTime, Date, Integer, String)

    Filter for jobs scheduled after a specified time.

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only jobs created before a specified time.

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only jobs created after a specified time.

  • :last_modified_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only jobs modified after a specified time.

  • :last_modified_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only jobs modified before a specified time.

  • :status_equals (String)

    A filter that retrieves only jobs with a specific status.

Returns:

See Also:



7627
7628
7629
7630
# File 'lib/aws-sdk-sagemaker/client.rb', line 7627

def list_monitoring_executions(params = {}, options = {})
  req = build_request(:list_monitoring_executions, params)
  req.send_request(options)
end

#list_monitoring_schedules(params = {}) ⇒ Types::ListMonitoringSchedulesResponse

Returns list of all monitoring schedules.

Examples:

Request syntax with placeholder values


resp = client.list_monitoring_schedules({
  endpoint_name: "EndpointName",
  sort_by: "Name", # accepts Name, CreationTime, Status
  sort_order: "Ascending", # accepts Ascending, Descending
  next_token: "NextToken",
  max_results: 1,
  name_contains: "NameContains",
  creation_time_before: Time.now,
  creation_time_after: Time.now,
  last_modified_time_before: Time.now,
  last_modified_time_after: Time.now,
  status_equals: "Pending", # accepts Pending, Failed, Scheduled, Stopped
})

Response structure


resp.monitoring_schedule_summaries #=> Array
resp.monitoring_schedule_summaries[0].monitoring_schedule_name #=> String
resp.monitoring_schedule_summaries[0].monitoring_schedule_arn #=> String
resp.monitoring_schedule_summaries[0].creation_time #=> Time
resp.monitoring_schedule_summaries[0].last_modified_time #=> Time
resp.monitoring_schedule_summaries[0].monitoring_schedule_status #=> String, one of "Pending", "Failed", "Scheduled", "Stopped"
resp.monitoring_schedule_summaries[0].endpoint_name #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :endpoint_name (String)

    Name of a specific endpoint to fetch schedules for.

  • :sort_by (String)

    Whether to sort results by ‘Status`, `CreationTime`, `ScheduledTime` field. The default is `CreationTime`.

  • :sort_order (String)

    Whether to sort the results in ‘Ascending` or `Descending` order. The default is `Descending`.

  • :next_token (String)

    The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.

  • :max_results (Integer)

    The maximum number of jobs to return in the response. The default value is 10.

  • :name_contains (String)

    Filter for monitoring schedules whose name contains a specified string.

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only monitoring schedules created before a specified time.

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only monitoring schedules created after a specified time.

  • :last_modified_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only monitoring schedules modified before a specified time.

  • :last_modified_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only monitoring schedules modified after a specified time.

  • :status_equals (String)

    A filter that returns only monitoring schedules modified before a specified time.

Returns:

See Also:



7713
7714
7715
7716
# File 'lib/aws-sdk-sagemaker/client.rb', line 7713

def list_monitoring_schedules(params = {}, options = {})
  req = build_request(:list_monitoring_schedules, params)
  req.send_request(options)
end

#list_notebook_instance_lifecycle_configs(params = {}) ⇒ Types::ListNotebookInstanceLifecycleConfigsOutput

Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig API.

Examples:

Request syntax with placeholder values


resp = client.list_notebook_instance_lifecycle_configs({
  next_token: "NextToken",
  max_results: 1,
  sort_by: "Name", # accepts Name, CreationTime, LastModifiedTime
  sort_order: "Ascending", # accepts Ascending, Descending
  name_contains: "NotebookInstanceLifecycleConfigNameContains",
  creation_time_before: Time.now,
  creation_time_after: Time.now,
  last_modified_time_before: Time.now,
  last_modified_time_after: Time.now,
})

Response structure


resp.next_token #=> String
resp.notebook_instance_lifecycle_configs #=> Array
resp.notebook_instance_lifecycle_configs[0].notebook_instance_lifecycle_config_name #=> String
resp.notebook_instance_lifecycle_configs[0].notebook_instance_lifecycle_config_arn #=> String
resp.notebook_instance_lifecycle_configs[0].creation_time #=> Time
resp.notebook_instance_lifecycle_configs[0].last_modified_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    If the result of a ‘ListNotebookInstanceLifecycleConfigs` request was truncated, the response includes a `NextToken`. To get the next set of lifecycle configurations, use the token in the next request.

  • :max_results (Integer)

    The maximum number of lifecycle configurations to return in the response.

  • :sort_by (String)

    Sorts the list of results. The default is ‘CreationTime`.

  • :sort_order (String)

    The sort order for results.

  • :name_contains (String)

    A string in the lifecycle configuration name. This filter returns only lifecycle configurations whose name contains the specified string.

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only lifecycle configurations that were created before the specified time (timestamp).

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only lifecycle configurations that were created after the specified time (timestamp).

  • :last_modified_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only lifecycle configurations that were modified before the specified time (timestamp).

  • :last_modified_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only lifecycle configurations that were modified after the specified time (timestamp).

Returns:

See Also:



7788
7789
7790
7791
# File 'lib/aws-sdk-sagemaker/client.rb', line 7788

def list_notebook_instance_lifecycle_configs(params = {}, options = {})
  req = build_request(:list_notebook_instance_lifecycle_configs, params)
  req.send_request(options)
end

#list_notebook_instances(params = {}) ⇒ Types::ListNotebookInstancesOutput

Returns a list of the Amazon SageMaker notebook instances in the requester’s account in an AWS Region.

Examples:

Request syntax with placeholder values


resp = client.list_notebook_instances({
  next_token: "NextToken",
  max_results: 1,
  sort_by: "Name", # accepts Name, CreationTime, Status
  sort_order: "Ascending", # accepts Ascending, Descending
  name_contains: "NotebookInstanceNameContains",
  creation_time_before: Time.now,
  creation_time_after: Time.now,
  last_modified_time_before: Time.now,
  last_modified_time_after: Time.now,
  status_equals: "Pending", # accepts Pending, InService, Stopping, Stopped, Failed, Deleting, Updating
  notebook_instance_lifecycle_config_name_contains: "NotebookInstanceLifecycleConfigName",
  default_code_repository_contains: "CodeRepositoryContains",
  additional_code_repository_equals: "CodeRepositoryNameOrUrl",
})

Response structure


resp.next_token #=> String
resp.notebook_instances #=> Array
resp.notebook_instances[0].notebook_instance_name #=> String
resp.notebook_instances[0].notebook_instance_arn #=> String
resp.notebook_instances[0].notebook_instance_status #=> String, one of "Pending", "InService", "Stopping", "Stopped", "Failed", "Deleting", "Updating"
resp.notebook_instances[0].url #=> String
resp.notebook_instances[0].instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge"
resp.notebook_instances[0].creation_time #=> Time
resp.notebook_instances[0].last_modified_time #=> Time
resp.notebook_instances[0].notebook_instance_lifecycle_config_name #=> String
resp.notebook_instances[0].default_code_repository #=> String
resp.notebook_instances[0].additional_code_repositories #=> Array
resp.notebook_instances[0].additional_code_repositories[0] #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    If the previous call to the ‘ListNotebookInstances` is truncated, the response includes a `NextToken`. You can use this token in your subsequent `ListNotebookInstances` request to fetch the next set of notebook instances.

    <note markdown=“1”> You might specify a filter or a sort order in your request. When response is truncated, you must use the same values for the filer and sort order in the next request.

    </note>
    
  • :max_results (Integer)

    The maximum number of notebook instances to return.

  • :sort_by (String)

    The field to sort results by. The default is ‘Name`.

  • :sort_order (String)

    The sort order for results.

  • :name_contains (String)

    A string in the notebook instances’ name. This filter returns only notebook instances whose name contains the specified string.

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only notebook instances that were created before the specified time (timestamp).

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only notebook instances that were created after the specified time (timestamp).

  • :last_modified_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only notebook instances that were modified before the specified time (timestamp).

  • :last_modified_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only notebook instances that were modified after the specified time (timestamp).

  • :status_equals (String)

    A filter that returns only notebook instances with the specified status.

  • :notebook_instance_lifecycle_config_name_contains (String)

    A string in the name of a notebook instances lifecycle configuration associated with this notebook instance. This filter returns only notebook instances associated with a lifecycle configuration with a name that contains the specified string.

  • :default_code_repository_contains (String)

    A string in the name or URL of a Git repository associated with this notebook instance. This filter returns only notebook instances associated with a git repository with a name that contains the specified string.

  • :additional_code_repository_equals (String)

    A filter that returns only notebook instances with associated with the specified git repository.

Returns:

See Also:



7900
7901
7902
7903
# File 'lib/aws-sdk-sagemaker/client.rb', line 7900

def list_notebook_instances(params = {}, options = {})
  req = build_request(:list_notebook_instances, params)
  req.send_request(options)
end

#list_processing_jobs(params = {}) ⇒ Types::ListProcessingJobsResponse

Lists processing jobs that satisfy various filters.

Examples:

Request syntax with placeholder values


resp = client.list_processing_jobs({
  creation_time_after: Time.now,
  creation_time_before: Time.now,
  last_modified_time_after: Time.now,
  last_modified_time_before: Time.now,
  name_contains: "String",
  status_equals: "InProgress", # accepts InProgress, Completed, Failed, Stopping, Stopped
  sort_by: "Name", # accepts Name, CreationTime, Status
  sort_order: "Ascending", # accepts Ascending, Descending
  next_token: "NextToken",
  max_results: 1,
})

Response structure


resp.processing_job_summaries #=> Array
resp.processing_job_summaries[0].processing_job_name #=> String
resp.processing_job_summaries[0].processing_job_arn #=> String
resp.processing_job_summaries[0].creation_time #=> Time
resp.processing_job_summaries[0].processing_end_time #=> Time
resp.processing_job_summaries[0].last_modified_time #=> Time
resp.processing_job_summaries[0].processing_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
resp.processing_job_summaries[0].failure_reason #=> String
resp.processing_job_summaries[0].exit_message #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only processing jobs created after the specified time.

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only processing jobs created after the specified time.

  • :last_modified_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only processing jobs modified after the specified time.

  • :last_modified_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only processing jobs modified before the specified time.

  • :name_contains (String)

    A string in the processing job name. This filter returns only processing jobs whose name contains the specified string.

  • :status_equals (String)

    A filter that retrieves only processing jobs with a specific status.

  • :sort_by (String)

    The field to sort results by. The default is ‘CreationTime`.

  • :sort_order (String)

    The sort order for results. The default is ‘Ascending`.

  • :next_token (String)

    If the result of the previous ‘ListProcessingJobs` request was truncated, the response includes a `NextToken`. To retrieve the next set of processing jobs, use the token in the next request.

  • :max_results (Integer)

    The maximum number of processing jobs to return in the response.

Returns:

See Also:



7981
7982
7983
7984
# File 'lib/aws-sdk-sagemaker/client.rb', line 7981

def list_processing_jobs(params = {}, options = {})
  req = build_request(:list_processing_jobs, params)
  req.send_request(options)
end

#list_subscribed_workteams(params = {}) ⇒ Types::ListSubscribedWorkteamsResponse

Gets a list of the work teams that you are subscribed to in the AWS Marketplace. The list may be empty if no work team satisfies the filter specified in the ‘NameContains` parameter.

Examples:

Request syntax with placeholder values


resp = client.list_subscribed_workteams({
  name_contains: "WorkteamName",
  next_token: "NextToken",
  max_results: 1,
})

Response structure


resp.subscribed_workteams #=> Array
resp.subscribed_workteams[0].workteam_arn #=> String
resp.subscribed_workteams[0].marketplace_title #=> String
resp.subscribed_workteams[0].seller_name #=> String
resp.subscribed_workteams[0].marketplace_description #=> String
resp.subscribed_workteams[0].listing_id #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name_contains (String)

    A string in the work team name. This filter returns only work teams whose name contains the specified string.

  • :next_token (String)

    If the result of the previous ‘ListSubscribedWorkteams` request was truncated, the response includes a `NextToken`. To retrieve the next set of labeling jobs, use the token in the next request.

  • :max_results (Integer)

    The maximum number of work teams to return in each page of the response.

Returns:

See Also:



8030
8031
8032
8033
# File 'lib/aws-sdk-sagemaker/client.rb', line 8030

def list_subscribed_workteams(params = {}, options = {})
  req = build_request(:list_subscribed_workteams, params)
  req.send_request(options)
end

#list_tags(params = {}) ⇒ Types::ListTagsOutput

Returns the tags for the specified Amazon SageMaker resource.

Examples:

Request syntax with placeholder values


resp = client.list_tags({
  resource_arn: "ResourceArn", # required
  next_token: "NextToken",
  max_results: 1,
})

Response structure


resp.tags #=> Array
resp.tags[0].key #=> String
resp.tags[0].value #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :resource_arn (required, String)

    The Amazon Resource Name (ARN) of the resource whose tags you want to retrieve.

  • :next_token (String)

    If the response to the previous ‘ListTags` request is truncated, Amazon SageMaker returns this token. To retrieve the next set of tags, use it in the subsequent request.

  • :max_results (Integer)

    Maximum number of tags to return.

Returns:

See Also:



8073
8074
8075
8076
# File 'lib/aws-sdk-sagemaker/client.rb', line 8073

def list_tags(params = {}, options = {})
  req = build_request(:list_tags, params)
  req.send_request(options)
end

#list_training_jobs(params = {}) ⇒ Types::ListTrainingJobsResponse

Lists training jobs.

Examples:

Request syntax with placeholder values


resp = client.list_training_jobs({
  next_token: "NextToken",
  max_results: 1,
  creation_time_after: Time.now,
  creation_time_before: Time.now,
  last_modified_time_after: Time.now,
  last_modified_time_before: Time.now,
  name_contains: "NameContains",
  status_equals: "InProgress", # accepts InProgress, Completed, Failed, Stopping, Stopped
  sort_by: "Name", # accepts Name, CreationTime, Status
  sort_order: "Ascending", # accepts Ascending, Descending
})

Response structure


resp.training_job_summaries #=> Array
resp.training_job_summaries[0].training_job_name #=> String
resp.training_job_summaries[0].training_job_arn #=> String
resp.training_job_summaries[0].creation_time #=> Time
resp.training_job_summaries[0].training_end_time #=> Time
resp.training_job_summaries[0].last_modified_time #=> Time
resp.training_job_summaries[0].training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    If the result of the previous ‘ListTrainingJobs` request was truncated, the response includes a `NextToken`. To retrieve the next set of training jobs, use the token in the next request.

  • :max_results (Integer)

    The maximum number of training jobs to return in the response.

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only training jobs created after the specified time (timestamp).

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only training jobs created before the specified time (timestamp).

  • :last_modified_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only training jobs modified after the specified time (timestamp).

  • :last_modified_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only training jobs modified before the specified time (timestamp).

  • :name_contains (String)

    A string in the training job name. This filter returns only training jobs whose name contains the specified string.

  • :status_equals (String)

    A filter that retrieves only training jobs with a specific status.

  • :sort_by (String)

    The field to sort results by. The default is ‘CreationTime`.

  • :sort_order (String)

    The sort order for results. The default is ‘Ascending`.

Returns:

See Also:



8152
8153
8154
8155
# File 'lib/aws-sdk-sagemaker/client.rb', line 8152

def list_training_jobs(params = {}, options = {})
  req = build_request(:list_training_jobs, params)
  req.send_request(options)
end

#list_training_jobs_for_hyper_parameter_tuning_job(params = {}) ⇒ Types::ListTrainingJobsForHyperParameterTuningJobResponse

Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.

Examples:

Request syntax with placeholder values


resp = client.list_training_jobs_for_hyper_parameter_tuning_job({
  hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
  next_token: "NextToken",
  max_results: 1,
  status_equals: "InProgress", # accepts InProgress, Completed, Failed, Stopping, Stopped
  sort_by: "Name", # accepts Name, CreationTime, Status, FinalObjectiveMetricValue
  sort_order: "Ascending", # accepts Ascending, Descending
})

Response structure


resp.training_job_summaries #=> Array
resp.training_job_summaries[0].training_job_definition_name #=> String
resp.training_job_summaries[0].training_job_name #=> String
resp.training_job_summaries[0].training_job_arn #=> String
resp.training_job_summaries[0].tuning_job_name #=> String
resp.training_job_summaries[0].creation_time #=> Time
resp.training_job_summaries[0].training_start_time #=> Time
resp.training_job_summaries[0].training_end_time #=> Time
resp.training_job_summaries[0].training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
resp.training_job_summaries[0].tuned_hyper_parameters #=> Hash
resp.training_job_summaries[0].tuned_hyper_parameters["ParameterKey"] #=> String
resp.training_job_summaries[0].failure_reason #=> String
resp.training_job_summaries[0].final_hyper_parameter_tuning_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
resp.training_job_summaries[0].final_hyper_parameter_tuning_job_objective_metric.metric_name #=> String
resp.training_job_summaries[0].final_hyper_parameter_tuning_job_objective_metric.value #=> Float
resp.training_job_summaries[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :hyper_parameter_tuning_job_name (required, String)

    The name of the tuning job whose training jobs you want to list.

  • :next_token (String)

    If the result of the previous ‘ListTrainingJobsForHyperParameterTuningJob` request was truncated, the response includes a `NextToken`. To retrieve the next set of training jobs, use the token in the next request.

  • :max_results (Integer)

    The maximum number of training jobs to return. The default value is 10.

  • :status_equals (String)

    A filter that returns only training jobs with the specified status.

  • :sort_by (String)

    The field to sort results by. The default is ‘Name`.

    If the value of this field is ‘FinalObjectiveMetricValue`, any training jobs that did not return an objective metric are not listed.

  • :sort_order (String)

    The sort order for results. The default is ‘Ascending`.

Returns:

See Also:



8225
8226
8227
8228
# File 'lib/aws-sdk-sagemaker/client.rb', line 8225

def list_training_jobs_for_hyper_parameter_tuning_job(params = {}, options = {})
  req = build_request(:list_training_jobs_for_hyper_parameter_tuning_job, params)
  req.send_request(options)
end

#list_transform_jobs(params = {}) ⇒ Types::ListTransformJobsResponse

Lists transform jobs.

Examples:

Request syntax with placeholder values


resp = client.list_transform_jobs({
  creation_time_after: Time.now,
  creation_time_before: Time.now,
  last_modified_time_after: Time.now,
  last_modified_time_before: Time.now,
  name_contains: "NameContains",
  status_equals: "InProgress", # accepts InProgress, Completed, Failed, Stopping, Stopped
  sort_by: "Name", # accepts Name, CreationTime, Status
  sort_order: "Ascending", # accepts Ascending, Descending
  next_token: "NextToken",
  max_results: 1,
})

Response structure


resp.transform_job_summaries #=> Array
resp.transform_job_summaries[0].transform_job_name #=> String
resp.transform_job_summaries[0].transform_job_arn #=> String
resp.transform_job_summaries[0].creation_time #=> Time
resp.transform_job_summaries[0].transform_end_time #=> Time
resp.transform_job_summaries[0].last_modified_time #=> Time
resp.transform_job_summaries[0].transform_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
resp.transform_job_summaries[0].failure_reason #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :creation_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only transform jobs created after the specified time.

  • :creation_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only transform jobs created before the specified time.

  • :last_modified_time_after (Time, DateTime, Date, Integer, String)

    A filter that returns only transform jobs modified after the specified time.

  • :last_modified_time_before (Time, DateTime, Date, Integer, String)

    A filter that returns only transform jobs modified before the specified time.

  • :name_contains (String)

    A string in the transform job name. This filter returns only transform jobs whose name contains the specified string.

  • :status_equals (String)

    A filter that retrieves only transform jobs with a specific status.

  • :sort_by (String)

    The field to sort results by. The default is ‘CreationTime`.

  • :sort_order (String)

    The sort order for results. The default is ‘Descending`.

  • :next_token (String)

    If the result of the previous ‘ListTransformJobs` request was truncated, the response includes a `NextToken`. To retrieve the next set of transform jobs, use the token in the next request.

  • :max_results (Integer)

    The maximum number of transform jobs to return in the response. The default value is ‘10`.

Returns:

See Also:



8306
8307
8308
8309
# File 'lib/aws-sdk-sagemaker/client.rb', line 8306

def list_transform_jobs(params = {}, options = {})
  req = build_request(:list_transform_jobs, params)
  req.send_request(options)
end

#list_trial_components(params = {}) ⇒ Types::ListTrialComponentsResponse

Lists the trial components in your account. You can filter the list to show only components that were created in a specific time range. You can sort the list by trial component name or creation time.

Examples:

Request syntax with placeholder values


resp = client.list_trial_components({
  source_arn: "String256",
  created_after: Time.now,
  created_before: Time.now,
  sort_by: "Name", # accepts Name, CreationTime
  sort_order: "Ascending", # accepts Ascending, Descending
  max_results: 1,
  next_token: "NextToken",
})

Response structure


resp.trial_component_summaries #=> Array
resp.trial_component_summaries[0].trial_component_name #=> String
resp.trial_component_summaries[0].trial_component_arn #=> String
resp.trial_component_summaries[0].display_name #=> String
resp.trial_component_summaries[0].trial_component_source.source_arn #=> String
resp.trial_component_summaries[0].trial_component_source.source_type #=> String
resp.trial_component_summaries[0].status.primary_status #=> String, one of "InProgress", "Completed", "Failed"
resp.trial_component_summaries[0].status.message #=> String
resp.trial_component_summaries[0].start_time #=> Time
resp.trial_component_summaries[0].end_time #=> Time
resp.trial_component_summaries[0].creation_time #=> Time
resp.trial_component_summaries[0].created_by. #=> String
resp.trial_component_summaries[0].created_by. #=> String
resp.trial_component_summaries[0].created_by.domain_id #=> String
resp.trial_component_summaries[0].last_modified_time #=> Time
resp.trial_component_summaries[0].last_modified_by. #=> String
resp.trial_component_summaries[0].last_modified_by. #=> String
resp.trial_component_summaries[0].last_modified_by.domain_id #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :source_arn (String)

    A filter that returns only components that have the specified source Amazon Resource Name (ARN).

  • :created_after (Time, DateTime, Date, Integer, String)

    A filter that returns only components created after the specified time.

  • :created_before (Time, DateTime, Date, Integer, String)

    A filter that returns only components created before the specified time.

  • :sort_by (String)

    The property used to sort results. The default value is ‘CreationTime`.

  • :sort_order (String)

    The sort order. The default value is ‘Descending`.

  • :max_results (Integer)

    The maximum number of components to return in the response.

  • :next_token (String)

    If the previous call to ‘ListTrialComponents` didn’t return the full set of components, the call returns a token for getting the next set of components.

Returns:

See Also:



8385
8386
8387
8388
# File 'lib/aws-sdk-sagemaker/client.rb', line 8385

def list_trial_components(params = {}, options = {})
  req = build_request(:list_trial_components, params)
  req.send_request(options)
end

#list_trials(params = {}) ⇒ Types::ListTrialsResponse

Lists the trials in your account. Specify an experiment name to limit the list to the trials that are part of that experiment. The list can be filtered to show only trials that were created in a specific time range. The list can be sorted by trial name or creation time.

Examples:

Request syntax with placeholder values


resp = client.list_trials({
  experiment_name: "ExperimentEntityName",
  created_after: Time.now,
  created_before: Time.now,
  sort_by: "Name", # accepts Name, CreationTime
  sort_order: "Ascending", # accepts Ascending, Descending
  max_results: 1,
  next_token: "NextToken",
})

Response structure


resp.trial_summaries #=> Array
resp.trial_summaries[0].trial_arn #=> String
resp.trial_summaries[0].trial_name #=> String
resp.trial_summaries[0].display_name #=> String
resp.trial_summaries[0].trial_source.source_arn #=> String
resp.trial_summaries[0].trial_source.source_type #=> String
resp.trial_summaries[0].creation_time #=> Time
resp.trial_summaries[0].last_modified_time #=> Time
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :experiment_name (String)

    A filter that returns only trials that are part of the specified experiment.

  • :created_after (Time, DateTime, Date, Integer, String)

    A filter that returns only trials created after the specified time.

  • :created_before (Time, DateTime, Date, Integer, String)

    A filter that returns only trials created before the specified time.

  • :sort_by (String)

    The property used to sort results. The default value is ‘CreationTime`.

  • :sort_order (String)

    The sort order. The default value is ‘Descending`.

  • :max_results (Integer)

    The maximum number of trials to return in the response.

  • :next_token (String)

    If the previous call to ‘ListTrials` didn’t return the full set of trials, the call returns a token for getting the next set of trials.

Returns:

See Also:



8452
8453
8454
8455
# File 'lib/aws-sdk-sagemaker/client.rb', line 8452

def list_trials(params = {}, options = {})
  req = build_request(:list_trials, params)
  req.send_request(options)
end

#list_user_profiles(params = {}) ⇒ Types::ListUserProfilesResponse

Lists user profiles.

Examples:

Request syntax with placeholder values


resp = client.list_user_profiles({
  next_token: "NextToken",
  max_results: 1,
  sort_order: "Ascending", # accepts Ascending, Descending
  sort_by: "CreationTime", # accepts CreationTime, LastModifiedTime
  domain_id_equals: "DomainId",
  user_profile_name_contains: "UserProfileName",
})

Response structure


resp.user_profiles #=> Array
resp.user_profiles[0].domain_id #=> String
resp.user_profiles[0]. #=> String
resp.user_profiles[0].status #=> String, one of "Deleting", "Failed", "InService", "Pending"
resp.user_profiles[0].creation_time #=> Time
resp.user_profiles[0].last_modified_time #=> Time
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.

  • :max_results (Integer)

    Returns a list up to a specified limit.

  • :sort_order (String)

    The sort order for the results. The default is Ascending.

  • :sort_by (String)

    The parameter by which to sort the results. The default is CreationTime.

  • :domain_id_equals (String)

    A parameter by which to filter the results.

  • :user_profile_name_contains (String)

    A parameter by which to filter the results.

Returns:

See Also:



8509
8510
8511
8512
# File 'lib/aws-sdk-sagemaker/client.rb', line 8509

def list_user_profiles(params = {}, options = {})
  req = build_request(:list_user_profiles, params)
  req.send_request(options)
end

#list_workteams(params = {}) ⇒ Types::ListWorkteamsResponse

Gets a list of work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the ‘NameContains` parameter.

Examples:

Request syntax with placeholder values


resp = client.list_workteams({
  sort_by: "Name", # accepts Name, CreateDate
  sort_order: "Ascending", # accepts Ascending, Descending
  name_contains: "WorkteamName",
  next_token: "NextToken",
  max_results: 1,
})

Response structure


resp.workteams #=> Array
resp.workteams[0].workteam_name #=> String
resp.workteams[0].member_definitions #=> Array
resp.workteams[0].member_definitions[0].cognito_member_definition.user_pool #=> String
resp.workteams[0].member_definitions[0].cognito_member_definition.user_group #=> String
resp.workteams[0].member_definitions[0].cognito_member_definition.client_id #=> String
resp.workteams[0].workteam_arn #=> String
resp.workteams[0].product_listing_ids #=> Array
resp.workteams[0].product_listing_ids[0] #=> String
resp.workteams[0].description #=> String
resp.workteams[0].sub_domain #=> String
resp.workteams[0].create_date #=> Time
resp.workteams[0].last_updated_date #=> Time
resp.workteams[0].notification_configuration.notification_topic_arn #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :sort_by (String)

    The field to sort results by. The default is ‘CreationTime`.

  • :sort_order (String)

    The sort order for results. The default is ‘Ascending`.

  • :name_contains (String)

    A string in the work team’s name. This filter returns only work teams whose name contains the specified string.

  • :next_token (String)

    If the result of the previous ‘ListWorkteams` request was truncated, the response includes a `NextToken`. To retrieve the next set of labeling jobs, use the token in the next request.

  • :max_results (Integer)

    The maximum number of work teams to return in each page of the response.

Returns:

See Also:



8574
8575
8576
8577
# File 'lib/aws-sdk-sagemaker/client.rb', line 8574

def list_workteams(params = {}, options = {})
  req = build_request(:list_workteams, params)
  req.send_request(options)
end

#render_ui_template(params = {}) ⇒ Types::RenderUiTemplateResponse

Renders the UI template so that you can preview the worker’s experience.

Examples:

Request syntax with placeholder values


resp = client.render_ui_template({
  ui_template: { # required
    content: "TemplateContent", # required
  },
  task: { # required
    input: "TaskInput", # required
  },
  role_arn: "RoleArn", # required
})

Response structure


resp.rendered_content #=> String
resp.errors #=> Array
resp.errors[0].code #=> String
resp.errors[0].message #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :ui_template (required, Types::UiTemplate)

    A ‘Template` object containing the worker UI template to render.

  • :task (required, Types::RenderableTask)

    A ‘RenderableTask` object containing a representative task to render.

  • :role_arn (required, String)

    The Amazon Resource Name (ARN) that has access to the S3 objects that are used by the template.

Returns:

See Also:



8620
8621
8622
8623
# File 'lib/aws-sdk-sagemaker/client.rb', line 8620

def render_ui_template(params = {}, options = {})
  req = build_request(:render_ui_template, params)
  req.send_request(options)
end

#search(params = {}) ⇒ Types::SearchResponse

Finds Amazon SageMaker resources that match a search query. Matching resource objects are returned as a list of ‘SearchResult` objects in the response. You can sort the search results by any resource property in a ascending or descending order.

You can query against the following value types: numerical, text, Booleans, and timestamps.

Examples:

Request syntax with placeholder values


resp = client.search({
  resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent
  search_expression: {
    filters: [
      {
        name: "ResourcePropertyName", # required
        operator: "Equals", # accepts Equals, NotEquals, GreaterThan, GreaterThanOrEqualTo, LessThan, LessThanOrEqualTo, Contains, Exists, NotExists
        value: "FilterValue",
      },
    ],
    nested_filters: [
      {
        nested_property_name: "ResourcePropertyName", # required
        filters: [ # required
          {
            name: "ResourcePropertyName", # required
            operator: "Equals", # accepts Equals, NotEquals, GreaterThan, GreaterThanOrEqualTo, LessThan, LessThanOrEqualTo, Contains, Exists, NotExists
            value: "FilterValue",
          },
        ],
      },
    ],
    sub_expressions: [
      {
        # recursive SearchExpression
      },
    ],
    operator: "And", # accepts And, Or
  },
  sort_by: "ResourcePropertyName",
  sort_order: "Ascending", # accepts Ascending, Descending
  next_token: "NextToken",
  max_results: 1,
})

Response structure


resp.results #=> Array
resp.results[0].training_job.training_job_name #=> String
resp.results[0].training_job.training_job_arn #=> String
resp.results[0].training_job.tuning_job_arn #=> String
resp.results[0].training_job.labeling_job_arn #=> String
resp.results[0].training_job.auto_ml_job_arn #=> String
resp.results[0].training_job.model_artifacts.s3_model_artifacts #=> String
resp.results[0].training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded"
resp.results[0].training_job.failure_reason #=> String
resp.results[0].training_job.hyper_parameters #=> Hash
resp.results[0].training_job.hyper_parameters["ParameterKey"] #=> String
resp.results[0].training_job.algorithm_specification.training_image #=> String
resp.results[0].training_job.algorithm_specification.algorithm_name #=> String
resp.results[0].training_job.algorithm_specification.training_input_mode #=> String, one of "Pipe", "File"
resp.results[0].training_job.algorithm_specification.metric_definitions #=> Array
resp.results[0].training_job.algorithm_specification.metric_definitions[0].name #=> String
resp.results[0].training_job.algorithm_specification.metric_definitions[0].regex #=> String
resp.results[0].training_job.algorithm_specification.enable_sage_maker_metrics_time_series #=> Boolean
resp.results[0].training_job.role_arn #=> String
resp.results[0].training_job.input_data_config #=> Array
resp.results[0].training_job.input_data_config[0].channel_name #=> String
resp.results[0].training_job.input_data_config[0].data_source.s3_data_source.s3_data_type #=> String, one of "ManifestFile", "S3Prefix", "AugmentedManifestFile"
resp.results[0].training_job.input_data_config[0].data_source.s3_data_source.s3_uri #=> String
resp.results[0].training_job.input_data_config[0].data_source.s3_data_source.s3_data_distribution_type #=> String, one of "FullyReplicated", "ShardedByS3Key"
resp.results[0].training_job.input_data_config[0].data_source.s3_data_source.attribute_names #=> Array
resp.results[0].training_job.input_data_config[0].data_source.s3_data_source.attribute_names[0] #=> String
resp.results[0].training_job.input_data_config[0].data_source.file_system_data_source.file_system_id #=> String
resp.results[0].training_job.input_data_config[0].data_source.file_system_data_source.file_system_access_mode #=> String, one of "rw", "ro"
resp.results[0].training_job.input_data_config[0].data_source.file_system_data_source.file_system_type #=> String, one of "EFS", "FSxLustre"
resp.results[0].training_job.input_data_config[0].data_source.file_system_data_source.directory_path #=> String
resp.results[0].training_job.input_data_config[0].content_type #=> String
resp.results[0].training_job.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
resp.results[0].training_job.input_data_config[0].record_wrapper_type #=> String, one of "None", "RecordIO"
resp.results[0].training_job.input_data_config[0].input_mode #=> String, one of "Pipe", "File"
resp.results[0].training_job.input_data_config[0].shuffle_config.seed #=> Integer
resp.results[0].training_job.output_data_config.kms_key_id #=> String
resp.results[0].training_job.output_data_config.s3_output_path #=> String
resp.results[0].training_job.resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge"
resp.results[0].training_job.resource_config.instance_count #=> Integer
resp.results[0].training_job.resource_config.volume_size_in_gb #=> Integer
resp.results[0].training_job.resource_config.volume_kms_key_id #=> String
resp.results[0].training_job.vpc_config.security_group_ids #=> Array
resp.results[0].training_job.vpc_config.security_group_ids[0] #=> String
resp.results[0].training_job.vpc_config.subnets #=> Array
resp.results[0].training_job.vpc_config.subnets[0] #=> String
resp.results[0].training_job.stopping_condition.max_runtime_in_seconds #=> Integer
resp.results[0].training_job.stopping_condition.max_wait_time_in_seconds #=> Integer
resp.results[0].training_job.creation_time #=> Time
resp.results[0].training_job.training_start_time #=> Time
resp.results[0].training_job.training_end_time #=> Time
resp.results[0].training_job.last_modified_time #=> Time
resp.results[0].training_job.secondary_status_transitions #=> Array
resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded"
resp.results[0].training_job.secondary_status_transitions[0].start_time #=> Time
resp.results[0].training_job.secondary_status_transitions[0].end_time #=> Time
resp.results[0].training_job.secondary_status_transitions[0].status_message #=> String
resp.results[0].training_job.final_metric_data_list #=> Array
resp.results[0].training_job.final_metric_data_list[0].metric_name #=> String
resp.results[0].training_job.final_metric_data_list[0].value #=> Float
resp.results[0].training_job.final_metric_data_list[0].timestamp #=> Time
resp.results[0].training_job.enable_network_isolation #=> Boolean
resp.results[0].training_job.enable_inter_container_traffic_encryption #=> Boolean
resp.results[0].training_job.enable_managed_spot_training #=> Boolean
resp.results[0].training_job.checkpoint_config.s3_uri #=> String
resp.results[0].training_job.checkpoint_config.local_path #=> String
resp.results[0].training_job.training_time_in_seconds #=> Integer
resp.results[0].training_job.billable_time_in_seconds #=> Integer
resp.results[0].training_job.debug_hook_config.local_path #=> String
resp.results[0].training_job.debug_hook_config.s3_output_path #=> String
resp.results[0].training_job.debug_hook_config.hook_parameters #=> Hash
resp.results[0].training_job.debug_hook_config.hook_parameters["ConfigKey"] #=> String
resp.results[0].training_job.debug_hook_config.collection_configurations #=> Array
resp.results[0].training_job.debug_hook_config.collection_configurations[0].collection_name #=> String
resp.results[0].training_job.debug_hook_config.collection_configurations[0].collection_parameters #=> Hash
resp.results[0].training_job.debug_hook_config.collection_configurations[0].collection_parameters["ConfigKey"] #=> String
resp.results[0].training_job.experiment_config.experiment_name #=> String
resp.results[0].training_job.experiment_config.trial_name #=> String
resp.results[0].training_job.experiment_config.trial_component_display_name #=> String
resp.results[0].training_job.debug_rule_configurations #=> Array
resp.results[0].training_job.debug_rule_configurations[0].rule_configuration_name #=> String
resp.results[0].training_job.debug_rule_configurations[0].local_path #=> String
resp.results[0].training_job.debug_rule_configurations[0].s3_output_path #=> String
resp.results[0].training_job.debug_rule_configurations[0].rule_evaluator_image #=> String
resp.results[0].training_job.debug_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
resp.results[0].training_job.debug_rule_configurations[0].volume_size_in_gb #=> Integer
resp.results[0].training_job.debug_rule_configurations[0].rule_parameters #=> Hash
resp.results[0].training_job.debug_rule_configurations[0].rule_parameters["ConfigKey"] #=> String
resp.results[0].training_job.tensor_board_output_config.local_path #=> String
resp.results[0].training_job.tensor_board_output_config.s3_output_path #=> String
resp.results[0].training_job.debug_rule_evaluation_statuses #=> Array
resp.results[0].training_job.debug_rule_evaluation_statuses[0].rule_configuration_name #=> String
resp.results[0].training_job.debug_rule_evaluation_statuses[0].rule_evaluation_job_arn #=> String
resp.results[0].training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
resp.results[0].training_job.debug_rule_evaluation_statuses[0].status_details #=> String
resp.results[0].training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
resp.results[0].training_job.tags #=> Array
resp.results[0].training_job.tags[0].key #=> String
resp.results[0].training_job.tags[0].value #=> String
resp.results[0].experiment.experiment_name #=> String
resp.results[0].experiment.experiment_arn #=> String
resp.results[0].experiment.display_name #=> String
resp.results[0].experiment.source.source_arn #=> String
resp.results[0].experiment.source.source_type #=> String
resp.results[0].experiment.description #=> String
resp.results[0].experiment.creation_time #=> Time
resp.results[0].experiment.created_by. #=> String
resp.results[0].experiment.created_by. #=> String
resp.results[0].experiment.created_by.domain_id #=> String
resp.results[0].experiment.last_modified_time #=> Time
resp.results[0].experiment.last_modified_by. #=> String
resp.results[0].experiment.last_modified_by. #=> String
resp.results[0].experiment.last_modified_by.domain_id #=> String
resp.results[0].experiment.tags #=> Array
resp.results[0].experiment.tags[0].key #=> String
resp.results[0].experiment.tags[0].value #=> String
resp.results[0].trial.trial_name #=> String
resp.results[0].trial.trial_arn #=> String
resp.results[0].trial.display_name #=> String
resp.results[0].trial.experiment_name #=> String
resp.results[0].trial.source.source_arn #=> String
resp.results[0].trial.source.source_type #=> String
resp.results[0].trial.creation_time #=> Time
resp.results[0].trial.created_by. #=> String
resp.results[0].trial.created_by. #=> String
resp.results[0].trial.created_by.domain_id #=> String
resp.results[0].trial.last_modified_time #=> Time
resp.results[0].trial.last_modified_by. #=> String
resp.results[0].trial.last_modified_by. #=> String
resp.results[0].trial.last_modified_by.domain_id #=> String
resp.results[0].trial.tags #=> Array
resp.results[0].trial.tags[0].key #=> String
resp.results[0].trial.tags[0].value #=> String
resp.results[0].trial.trial_component_summaries #=> Array
resp.results[0].trial.trial_component_summaries[0].trial_component_name #=> String
resp.results[0].trial.trial_component_summaries[0].trial_component_arn #=> String
resp.results[0].trial.trial_component_summaries[0].trial_component_source.source_arn #=> String
resp.results[0].trial.trial_component_summaries[0].trial_component_source.source_type #=> String
resp.results[0].trial.trial_component_summaries[0].creation_time #=> Time
resp.results[0].trial.trial_component_summaries[0].created_by. #=> String
resp.results[0].trial.trial_component_summaries[0].created_by. #=> String
resp.results[0].trial.trial_component_summaries[0].created_by.domain_id #=> String
resp.results[0].trial_component.trial_component_name #=> String
resp.results[0].trial_component.display_name #=> String
resp.results[0].trial_component.trial_component_arn #=> String
resp.results[0].trial_component.source.source_arn #=> String
resp.results[0].trial_component.source.source_type #=> String
resp.results[0].trial_component.status.primary_status #=> String, one of "InProgress", "Completed", "Failed"
resp.results[0].trial_component.status.message #=> String
resp.results[0].trial_component.start_time #=> Time
resp.results[0].trial_component.end_time #=> Time
resp.results[0].trial_component.creation_time #=> Time
resp.results[0].trial_component.created_by. #=> String
resp.results[0].trial_component.created_by. #=> String
resp.results[0].trial_component.created_by.domain_id #=> String
resp.results[0].trial_component.last_modified_time #=> Time
resp.results[0].trial_component.last_modified_by. #=> String
resp.results[0].trial_component.last_modified_by. #=> String
resp.results[0].trial_component.last_modified_by.domain_id #=> String
resp.results[0].trial_component.parameters #=> Hash
resp.results[0].trial_component.parameters["TrialComponentKey256"].string_value #=> String
resp.results[0].trial_component.parameters["TrialComponentKey256"].number_value #=> Float
resp.results[0].trial_component.input_artifacts #=> Hash
resp.results[0].trial_component.input_artifacts["TrialComponentKey64"].media_type #=> String
resp.results[0].trial_component.input_artifacts["TrialComponentKey64"].value #=> String
resp.results[0].trial_component.output_artifacts #=> Hash
resp.results[0].trial_component.output_artifacts["TrialComponentKey64"].media_type #=> String
resp.results[0].trial_component.output_artifacts["TrialComponentKey64"].value #=> String
resp.results[0].trial_component.metrics #=> Array
resp.results[0].trial_component.metrics[0].metric_name #=> String
resp.results[0].trial_component.metrics[0].source_arn #=> String
resp.results[0].trial_component.metrics[0].time_stamp #=> Time
resp.results[0].trial_component.metrics[0].max #=> Float
resp.results[0].trial_component.metrics[0].min #=> Float
resp.results[0].trial_component.metrics[0].last #=> Float
resp.results[0].trial_component.metrics[0].count #=> Integer
resp.results[0].trial_component.metrics[0].avg #=> Float
resp.results[0].trial_component.metrics[0].std_dev #=> Float
resp.results[0].trial_component.source_detail.source_arn #=> String
resp.results[0].trial_component.source_detail.training_job.training_job_name #=> String
resp.results[0].trial_component.source_detail.training_job.training_job_arn #=> String
resp.results[0].trial_component.source_detail.training_job.tuning_job_arn #=> String
resp.results[0].trial_component.source_detail.training_job.labeling_job_arn #=> String
resp.results[0].trial_component.source_detail.training_job.auto_ml_job_arn #=> String
resp.results[0].trial_component.source_detail.training_job.model_artifacts.s3_model_artifacts #=> String
resp.results[0].trial_component.source_detail.training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
resp.results[0].trial_component.source_detail.training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded"
resp.results[0].trial_component.source_detail.training_job.failure_reason #=> String
resp.results[0].trial_component.source_detail.training_job.hyper_parameters #=> Hash
resp.results[0].trial_component.source_detail.training_job.hyper_parameters["ParameterKey"] #=> String
resp.results[0].trial_component.source_detail.training_job.algorithm_specification.training_image #=> String
resp.results[0].trial_component.source_detail.training_job.algorithm_specification.algorithm_name #=> String
resp.results[0].trial_component.source_detail.training_job.algorithm_specification.training_input_mode #=> String, one of "Pipe", "File"
resp.results[0].trial_component.source_detail.training_job.algorithm_specification.metric_definitions #=> Array
resp.results[0].trial_component.source_detail.training_job.algorithm_specification.metric_definitions[0].name #=> String
resp.results[0].trial_component.source_detail.training_job.algorithm_specification.metric_definitions[0].regex #=> String
resp.results[0].trial_component.source_detail.training_job.algorithm_specification.enable_sage_maker_metrics_time_series #=> Boolean
resp.results[0].trial_component.source_detail.training_job.role_arn #=> String
resp.results[0].trial_component.source_detail.training_job.input_data_config #=> Array
resp.results[0].trial_component.source_detail.training_job.input_data_config[0].channel_name #=> String
resp.results[0].trial_component.source_detail.training_job.input_data_config[0].data_source.s3_data_source.s3_data_type #=> String, one of "ManifestFile", "S3Prefix", "AugmentedManifestFile"
resp.results[0].trial_component.source_detail.training_job.input_data_config[0].data_source.s3_data_source.s3_uri #=> String
resp.results[0].trial_component.source_detail.training_job.input_data_config[0].data_source.s3_data_source.s3_data_distribution_type #=> String, one of "FullyReplicated", "ShardedByS3Key"
resp.results[0].trial_component.source_detail.training_job.input_data_config[0].data_source.s3_data_source.attribute_names #=> Array
resp.results[0].trial_component.source_detail.training_job.input_data_config[0].data_source.s3_data_source.attribute_names[0] #=> String
resp.results[0].trial_component.source_detail.training_job.input_data_config[0].data_source.file_system_data_source.file_system_id #=> String
resp.results[0].trial_component.source_detail.training_job.input_data_config[0].data_source.file_system_data_source.file_system_access_mode #=> String, one of "rw", "ro"
resp.results[0].trial_component.source_detail.training_job.input_data_config[0].data_source.file_system_data_source.file_system_type #=> String, one of "EFS", "FSxLustre"
resp.results[0].trial_component.source_detail.training_job.input_data_config[0].data_source.file_system_data_source.directory_path #=> String
resp.results[0].trial_component.source_detail.training_job.input_data_config[0].content_type #=> String
resp.results[0].trial_component.source_detail.training_job.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
resp.results[0].trial_component.source_detail.training_job.input_data_config[0].record_wrapper_type #=> String, one of "None", "RecordIO"
resp.results[0].trial_component.source_detail.training_job.input_data_config[0].input_mode #=> String, one of "Pipe", "File"
resp.results[0].trial_component.source_detail.training_job.input_data_config[0].shuffle_config.seed #=> Integer
resp.results[0].trial_component.source_detail.training_job.output_data_config.kms_key_id #=> String
resp.results[0].trial_component.source_detail.training_job.output_data_config.s3_output_path #=> String
resp.results[0].trial_component.source_detail.training_job.resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge"
resp.results[0].trial_component.source_detail.training_job.resource_config.instance_count #=> Integer
resp.results[0].trial_component.source_detail.training_job.resource_config.volume_size_in_gb #=> Integer
resp.results[0].trial_component.source_detail.training_job.resource_config.volume_kms_key_id #=> String
resp.results[0].trial_component.source_detail.training_job.vpc_config.security_group_ids #=> Array
resp.results[0].trial_component.source_detail.training_job.vpc_config.security_group_ids[0] #=> String
resp.results[0].trial_component.source_detail.training_job.vpc_config.subnets #=> Array
resp.results[0].trial_component.source_detail.training_job.vpc_config.subnets[0] #=> String
resp.results[0].trial_component.source_detail.training_job.stopping_condition.max_runtime_in_seconds #=> Integer
resp.results[0].trial_component.source_detail.training_job.stopping_condition.max_wait_time_in_seconds #=> Integer
resp.results[0].trial_component.source_detail.training_job.creation_time #=> Time
resp.results[0].trial_component.source_detail.training_job.training_start_time #=> Time
resp.results[0].trial_component.source_detail.training_job.training_end_time #=> Time
resp.results[0].trial_component.source_detail.training_job.last_modified_time #=> Time
resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions #=> Array
resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded"
resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].start_time #=> Time
resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].end_time #=> Time
resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status_message #=> String
resp.results[0].trial_component.source_detail.training_job.final_metric_data_list #=> Array
resp.results[0].trial_component.source_detail.training_job.final_metric_data_list[0].metric_name #=> String
resp.results[0].trial_component.source_detail.training_job.final_metric_data_list[0].value #=> Float
resp.results[0].trial_component.source_detail.training_job.final_metric_data_list[0].timestamp #=> Time
resp.results[0].trial_component.source_detail.training_job.enable_network_isolation #=> Boolean
resp.results[0].trial_component.source_detail.training_job.enable_inter_container_traffic_encryption #=> Boolean
resp.results[0].trial_component.source_detail.training_job.enable_managed_spot_training #=> Boolean
resp.results[0].trial_component.source_detail.training_job.checkpoint_config.s3_uri #=> String
resp.results[0].trial_component.source_detail.training_job.checkpoint_config.local_path #=> String
resp.results[0].trial_component.source_detail.training_job.training_time_in_seconds #=> Integer
resp.results[0].trial_component.source_detail.training_job.billable_time_in_seconds #=> Integer
resp.results[0].trial_component.source_detail.training_job.debug_hook_config.local_path #=> String
resp.results[0].trial_component.source_detail.training_job.debug_hook_config.s3_output_path #=> String
resp.results[0].trial_component.source_detail.training_job.debug_hook_config.hook_parameters #=> Hash
resp.results[0].trial_component.source_detail.training_job.debug_hook_config.hook_parameters["ConfigKey"] #=> String
resp.results[0].trial_component.source_detail.training_job.debug_hook_config.collection_configurations #=> Array
resp.results[0].trial_component.source_detail.training_job.debug_hook_config.collection_configurations[0].collection_name #=> String
resp.results[0].trial_component.source_detail.training_job.debug_hook_config.collection_configurations[0].collection_parameters #=> Hash
resp.results[0].trial_component.source_detail.training_job.debug_hook_config.collection_configurations[0].collection_parameters["ConfigKey"] #=> String
resp.results[0].trial_component.source_detail.training_job.experiment_config.experiment_name #=> String
resp.results[0].trial_component.source_detail.training_job.experiment_config.trial_name #=> String
resp.results[0].trial_component.source_detail.training_job.experiment_config.trial_component_display_name #=> String
resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations #=> Array
resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].rule_configuration_name #=> String
resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].local_path #=> String
resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].s3_output_path #=> String
resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].rule_evaluator_image #=> String
resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].instance_type #=> String, one of "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].volume_size_in_gb #=> Integer
resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].rule_parameters #=> Hash
resp.results[0].trial_component.source_detail.training_job.debug_rule_configurations[0].rule_parameters["ConfigKey"] #=> String
resp.results[0].trial_component.source_detail.training_job.tensor_board_output_config.local_path #=> String
resp.results[0].trial_component.source_detail.training_job.tensor_board_output_config.s3_output_path #=> String
resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses #=> Array
resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].rule_configuration_name #=> String
resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].rule_evaluation_job_arn #=> String
resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].status_details #=> String
resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
resp.results[0].trial_component.source_detail.training_job.tags #=> Array
resp.results[0].trial_component.source_detail.training_job.tags[0].key #=> String
resp.results[0].trial_component.source_detail.training_job.tags[0].value #=> String
resp.results[0].trial_component.tags #=> Array
resp.results[0].trial_component.tags[0].key #=> String
resp.results[0].trial_component.tags[0].value #=> String
resp.results[0].trial_component.parents #=> Array
resp.results[0].trial_component.parents[0].trial_name #=> String
resp.results[0].trial_component.parents[0].experiment_name #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :resource (required, String)

    The name of the Amazon SageMaker resource to search for. Currently, the only valid ‘Resource` value is `TrainingJob`.

  • :search_expression (Types::SearchExpression)

    A Boolean conditional statement. Resource objects must satisfy this condition to be included in search results. You must provide at least one subexpression, filter, or nested filter. The maximum number of recursive ‘SubExpressions`, `NestedFilters`, and `Filters` that can be included in a `SearchExpression` object is 50.

  • :sort_by (String)

    The name of the resource property used to sort the ‘SearchResults`. The default is `LastModifiedTime`.

  • :sort_order (String)

    How ‘SearchResults` are ordered. Valid values are `Ascending` or `Descending`. The default is `Descending`.

  • :next_token (String)

    If more than ‘MaxResults` resource objects match the specified `SearchExpression`, the `SearchResponse` includes a `NextToken`. The `NextToken` can be passed to the next `SearchRequest` to continue retrieving results for the specified `SearchExpression` and `Sort` parameters.

  • :max_results (Integer)

    The maximum number of results to return in a ‘SearchResponse`.

Returns:

See Also:



8995
8996
8997
8998
# File 'lib/aws-sdk-sagemaker/client.rb', line 8995

def search(params = {}, options = {})
  req = build_request(:search, params)
  req.send_request(options)
end

#start_monitoring_schedule(params = {}) ⇒ Struct

Starts a previously stopped monitoring schedule.

<note markdown=“1”> New monitoring schedules are immediately started after creation.

</note>

Examples:

Request syntax with placeholder values


resp = client.start_monitoring_schedule({
  monitoring_schedule_name: "MonitoringScheduleName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :monitoring_schedule_name (required, String)

    The name of the schedule to start.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



9021
9022
9023
9024
# File 'lib/aws-sdk-sagemaker/client.rb', line 9021

def start_monitoring_schedule(params = {}, options = {})
  req = build_request(:start_monitoring_schedule, params)
  req.send_request(options)
end

#start_notebook_instance(params = {}) ⇒ Struct

Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume. After configuring the notebook instance, Amazon SageMaker sets the notebook instance status to ‘InService`. A notebook instance’s status must be ‘InService` before you can connect to your Jupyter notebook.

Examples:

Request syntax with placeholder values


resp = client.start_notebook_instance({
  notebook_instance_name: "NotebookInstanceName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :notebook_instance_name (required, String)

    The name of the notebook instance to start.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



9047
9048
9049
9050
# File 'lib/aws-sdk-sagemaker/client.rb', line 9047

def start_notebook_instance(params = {}, options = {})
  req = build_request(:start_notebook_instance, params)
  req.send_request(options)
end

#stop_auto_ml_job(params = {}) ⇒ Struct

A method for forcing the termination of a running job.

Examples:

Request syntax with placeholder values


resp = client.stop_auto_ml_job({
  auto_ml_job_name: "AutoMLJobName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :auto_ml_job_name (required, String)

    The name of the object you are requesting.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



9069
9070
9071
9072
# File 'lib/aws-sdk-sagemaker/client.rb', line 9069

def stop_auto_ml_job(params = {}, options = {})
  req = build_request(:stop_auto_ml_job, params)
  req.send_request(options)
end

#stop_compilation_job(params = {}) ⇒ Struct

Stops a model compilation job.

To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn’t stopped, it sends the SIGKILL signal.

When it receives a ‘StopCompilationJob` request, Amazon SageMaker changes the CompilationJobSummary$CompilationJobStatus of the job to `Stopping`. After Amazon SageMaker stops the job, it sets the CompilationJobSummary$CompilationJobStatus to `Stopped`.

Examples:

Request syntax with placeholder values


resp = client.stop_compilation_job({
  compilation_job_name: "EntityName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :compilation_job_name (required, String)

    The name of the model compilation job to stop.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



9100
9101
9102
9103
# File 'lib/aws-sdk-sagemaker/client.rb', line 9100

def stop_compilation_job(params = {}, options = {})
  req = build_request(:stop_compilation_job, params)
  req.send_request(options)
end

#stop_hyper_parameter_tuning_job(params = {}) ⇒ Struct

Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched.

All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the tuning job moves to the ‘Stopped` state, it releases all reserved resources for the tuning job.

Examples:

Request syntax with placeholder values


resp = client.stop_hyper_parameter_tuning_job({
  hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :hyper_parameter_tuning_job_name (required, String)

    The name of the tuning job to stop.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



9129
9130
9131
9132
# File 'lib/aws-sdk-sagemaker/client.rb', line 9129

def stop_hyper_parameter_tuning_job(params = {}, options = {})
  req = build_request(:stop_hyper_parameter_tuning_job, params)
  req.send_request(options)
end

#stop_labeling_job(params = {}) ⇒ Struct

Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.

Examples:

Request syntax with placeholder values


resp = client.stop_labeling_job({
  labeling_job_name: "LabelingJobName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :labeling_job_name (required, String)

    The name of the labeling job to stop.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



9153
9154
9155
9156
# File 'lib/aws-sdk-sagemaker/client.rb', line 9153

def stop_labeling_job(params = {}, options = {})
  req = build_request(:stop_labeling_job, params)
  req.send_request(options)
end

#stop_monitoring_schedule(params = {}) ⇒ Struct

Stops a previously started monitoring schedule.

Examples:

Request syntax with placeholder values


resp = client.stop_monitoring_schedule({
  monitoring_schedule_name: "MonitoringScheduleName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :monitoring_schedule_name (required, String)

    The name of the schedule to stop.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



9175
9176
9177
9178
# File 'lib/aws-sdk-sagemaker/client.rb', line 9175

def stop_monitoring_schedule(params = {}, options = {})
  req = build_request(:stop_monitoring_schedule, params)
  req.send_request(options)
end

#stop_notebook_instance(params = {}) ⇒ Struct

Terminates the ML compute instance. Before terminating the instance, Amazon SageMaker disconnects the ML storage volume from it. Amazon SageMaker preserves the ML storage volume. Amazon SageMaker stops charging you for the ML compute instance when you call ‘StopNotebookInstance`.

To access data on the ML storage volume for a notebook instance that has been terminated, call the ‘StartNotebookInstance` API. `StartNotebookInstance` launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work.

Examples:

Request syntax with placeholder values


resp = client.stop_notebook_instance({
  notebook_instance_name: "NotebookInstanceName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :notebook_instance_name (required, String)

    The name of the notebook instance to terminate.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



9207
9208
9209
9210
# File 'lib/aws-sdk-sagemaker/client.rb', line 9207

def stop_notebook_instance(params = {}, options = {})
  req = build_request(:stop_notebook_instance, params)
  req.send_request(options)
end

#stop_processing_job(params = {}) ⇒ Struct

Stops a processing job.

Examples:

Request syntax with placeholder values


resp = client.stop_processing_job({
  processing_job_name: "ProcessingJobName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :processing_job_name (required, String)

    The name of the processing job to stop.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



9229
9230
9231
9232
# File 'lib/aws-sdk-sagemaker/client.rb', line 9229

def stop_processing_job(params = {}, options = {})
  req = build_request(:stop_processing_job, params)
  req.send_request(options)
end

#stop_training_job(params = {}) ⇒ Struct

Stops a training job. To stop a job, Amazon SageMaker sends the algorithm the ‘SIGTERM` signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost.

When it receives a ‘StopTrainingJob` request, Amazon SageMaker changes the status of the job to `Stopping`. After Amazon SageMaker stops the job, it sets the status to `Stopped`.

Examples:

Request syntax with placeholder values


resp = client.stop_training_job({
  training_job_name: "TrainingJobName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :training_job_name (required, String)

    The name of the training job to stop.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



9258
9259
9260
9261
# File 'lib/aws-sdk-sagemaker/client.rb', line 9258

def stop_training_job(params = {}, options = {})
  req = build_request(:stop_training_job, params)
  req.send_request(options)
end

#stop_transform_job(params = {}) ⇒ Struct

Stops a transform job.

When Amazon SageMaker receives a ‘StopTransformJob` request, the status of the job changes to `Stopping`. After Amazon SageMaker stops the job, the status is set to `Stopped`. When you stop a transform job before it is completed, Amazon SageMaker doesn’t store the job’s output in Amazon S3.

Examples:

Request syntax with placeholder values


resp = client.stop_transform_job({
  transform_job_name: "TransformJobName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :transform_job_name (required, String)

    The name of the transform job to stop.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



9286
9287
9288
9289
# File 'lib/aws-sdk-sagemaker/client.rb', line 9286

def stop_transform_job(params = {}, options = {})
  req = build_request(:stop_transform_job, params)
  req.send_request(options)
end

#update_code_repository(params = {}) ⇒ Types::UpdateCodeRepositoryOutput

Updates the specified Git repository with the specified values.

Examples:

Request syntax with placeholder values


resp = client.update_code_repository({
  code_repository_name: "EntityName", # required
  git_config: {
    secret_arn: "SecretArn",
  },
})

Response structure


resp.code_repository_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :code_repository_name (required, String)

    The name of the Git repository to update.

  • :git_config (Types::GitConfigForUpdate)

    The configuration of the git repository, including the URL and the Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the repository. The secret must have a staging label of ‘AWSCURRENT` and must be in the following format:

    ‘UserName, “password”: Password`

Returns:

See Also:



9326
9327
9328
9329
# File 'lib/aws-sdk-sagemaker/client.rb', line 9326

def update_code_repository(params = {}, options = {})
  req = build_request(:update_code_repository, params)
  req.send_request(options)
end

#update_domain(params = {}) ⇒ Types::UpdateDomainResponse

Updates a domain. Changes will impact all of the people in the domain.

Examples:

Request syntax with placeholder values


resp = client.update_domain({
  domain_id: "DomainId", # required
  default_user_settings: {
    execution_role: "RoleArn",
    security_groups: ["SecurityGroupId"],
    sharing_settings: {
      notebook_output_option: "Allowed", # accepts Allowed, Disabled
      s3_output_path: "S3Uri",
      s3_kms_key_id: "KmsKeyId",
    },
    jupyter_server_app_settings: {
      default_resource_spec: {
        environment_arn: "EnvironmentArn",
        instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
      },
    },
    kernel_gateway_app_settings: {
      default_resource_spec: {
        environment_arn: "EnvironmentArn",
        instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
      },
    },
    tensor_board_app_settings: {
      default_resource_spec: {
        environment_arn: "EnvironmentArn",
        instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
      },
    },
  },
})

Response structure


resp.domain_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :domain_id (required, String)

    The domain ID.

  • :default_user_settings (Types::UserSettings)

    A collection of settings.

Returns:

See Also:



9384
9385
9386
9387
# File 'lib/aws-sdk-sagemaker/client.rb', line 9384

def update_domain(params = {}, options = {})
  req = build_request(:update_domain, params)
  req.send_request(options)
end

#update_endpoint(params = {}) ⇒ Types::UpdateEndpointOutput

Deploys the new ‘EndpointConfig` specified in the request, switches to using newly created endpoint, and then deletes resources provisioned for the endpoint using the previous `EndpointConfig` (there is no availability loss).

When Amazon SageMaker receives the request, it sets the endpoint status to ‘Updating`. After updating the endpoint, it sets the status to `InService`. To check the status of an endpoint, use the

DescribeEndpoint][1

API.

<note markdown=“1”> You must not delete an ‘EndpointConfig` in use by an endpoint that is live or while the `UpdateEndpoint` or `CreateEndpoint` operations are being performed on the endpoint. To update an endpoint, you must create a new `EndpointConfig`.

</note>

[1]: docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html

Examples:

Request syntax with placeholder values


resp = client.update_endpoint({
  endpoint_name: "EndpointName", # required
  endpoint_config_name: "EndpointConfigName", # required
})

Response structure


resp.endpoint_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :endpoint_name (required, String)

    The name of the endpoint whose configuration you want to update.

  • :endpoint_config_name (required, String)

    The name of the new endpoint configuration.

Returns:

See Also:



9435
9436
9437
9438
# File 'lib/aws-sdk-sagemaker/client.rb', line 9435

def update_endpoint(params = {}, options = {})
  req = build_request(:update_endpoint, params)
  req.send_request(options)
end

#update_endpoint_weights_and_capacities(params = {}) ⇒ Types::UpdateEndpointWeightsAndCapacitiesOutput

Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint. When it receives the request, Amazon SageMaker sets the endpoint status to ‘Updating`. After updating the endpoint, it sets the status to `InService`. To check the status of an endpoint, use the [DescribeEndpoint] API.

[1]: docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html

Examples:

Request syntax with placeholder values


resp = client.update_endpoint_weights_and_capacities({
  endpoint_name: "EndpointName", # required
  desired_weights_and_capacities: [ # required
    {
      variant_name: "VariantName", # required
      desired_weight: 1.0,
      desired_instance_count: 1,
    },
  ],
})

Response structure


resp.endpoint_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :endpoint_name (required, String)

    The name of an existing Amazon SageMaker endpoint.

  • :desired_weights_and_capacities (required, Array<Types::DesiredWeightAndCapacity>)

    An object that provides new capacity and weight values for a variant.

Returns:

See Also:



9482
9483
9484
9485
# File 'lib/aws-sdk-sagemaker/client.rb', line 9482

def update_endpoint_weights_and_capacities(params = {}, options = {})
  req = build_request(:update_endpoint_weights_and_capacities, params)
  req.send_request(options)
end

#update_experiment(params = {}) ⇒ Types::UpdateExperimentResponse

Adds, updates, or removes the description of an experiment. Updates the display name of an experiment.

Examples:

Request syntax with placeholder values


resp = client.update_experiment({
  experiment_name: "ExperimentEntityName", # required
  display_name: "ExperimentEntityName",
  description: "ExperimentDescription",
})

Response structure


resp.experiment_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :experiment_name (required, String)

    The name of the experiment to update.

  • :display_name (String)

    The name of the experiment as displayed. The name doesn’t need to be unique. If ‘DisplayName` isn’t specified, ‘ExperimentName` is displayed.

  • :description (String)

    The description of the experiment.

Returns:

See Also:



9521
9522
9523
9524
# File 'lib/aws-sdk-sagemaker/client.rb', line 9521

def update_experiment(params = {}, options = {})
  req = build_request(:update_experiment, params)
  req.send_request(options)
end

#update_monitoring_schedule(params = {}) ⇒ Types::UpdateMonitoringScheduleResponse

Updates a previously created schedule.

Examples:

Request syntax with placeholder values


resp = client.update_monitoring_schedule({
  monitoring_schedule_name: "MonitoringScheduleName", # required
  monitoring_schedule_config: { # required
    schedule_config: {
      schedule_expression: "ScheduleExpression", # required
    },
    monitoring_job_definition: { # required
      baseline_config: {
        constraints_resource: {
          s3_uri: "S3Uri",
        },
        statistics_resource: {
          s3_uri: "S3Uri",
        },
      },
      monitoring_inputs: [ # required
        {
          endpoint_input: { # required
            endpoint_name: "EndpointName", # required
            local_path: "ProcessingLocalPath", # required
            s3_input_mode: "Pipe", # accepts Pipe, File
            s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
          },
        },
      ],
      monitoring_output_config: { # required
        monitoring_outputs: [ # required
          {
            s3_output: { # required
              s3_uri: "MonitoringS3Uri", # required
              local_path: "ProcessingLocalPath", # required
              s3_upload_mode: "Continuous", # accepts Continuous, EndOfJob
            },
          },
        ],
        kms_key_id: "KmsKeyId",
      },
      monitoring_resources: { # required
        cluster_config: { # required
          instance_count: 1, # required
          instance_type: "ml.t3.medium", # required, accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
          volume_size_in_gb: 1, # required
          volume_kms_key_id: "KmsKeyId",
        },
      },
      monitoring_app_specification: { # required
        image_uri: "ImageUri", # required
        container_entrypoint: ["ContainerEntrypointString"],
        container_arguments: ["ContainerArgument"],
        record_preprocessor_source_uri: "S3Uri",
        post_analytics_processor_source_uri: "S3Uri",
      },
      stopping_condition: {
        max_runtime_in_seconds: 1, # required
      },
      environment: {
        "ProcessingEnvironmentKey" => "ProcessingEnvironmentValue",
      },
      network_config: {
        enable_network_isolation: false,
        vpc_config: {
          security_group_ids: ["SecurityGroupId"], # required
          subnets: ["SubnetId"], # required
        },
      },
      role_arn: "RoleArn", # required
    },
  },
})

Response structure


resp.monitoring_schedule_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :monitoring_schedule_name (required, String)

    The name of the monitoring schedule. The name must be unique within an AWS Region within an AWS account.

  • :monitoring_schedule_config (required, Types::MonitoringScheduleConfig)

    The configuration object that specifies the monitoring schedule and defines the monitoring job.

Returns:

See Also:



9620
9621
9622
9623
# File 'lib/aws-sdk-sagemaker/client.rb', line 9620

def update_monitoring_schedule(params = {}, options = {})
  req = build_request(:update_monitoring_schedule, params)
  req.send_request(options)
end

#update_notebook_instance(params = {}) ⇒ Struct

Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.

Examples:

Request syntax with placeholder values


resp = client.update_notebook_instance({
  notebook_instance_name: "NotebookInstanceName", # required
  instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
  role_arn: "RoleArn",
  lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
  disassociate_lifecycle_config: false,
  volume_size_in_gb: 1,
  default_code_repository: "CodeRepositoryNameOrUrl",
  additional_code_repositories: ["CodeRepositoryNameOrUrl"],
  accelerator_types: ["ml.eia1.medium"], # accepts ml.eia1.medium, ml.eia1.large, ml.eia1.xlarge, ml.eia2.medium, ml.eia2.large, ml.eia2.xlarge
  disassociate_accelerator_types: false,
  disassociate_default_code_repository: false,
  disassociate_additional_code_repositories: false,
  root_access: "Enabled", # accepts Enabled, Disabled
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :notebook_instance_name (required, String)

    The name of the notebook instance to update.

  • :instance_type (String)

    The Amazon ML compute instance type.

  • :role_arn (String)

    The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume to access the notebook instance. For more information, see [Amazon SageMaker Roles].

    <note markdown=“1”> To be able to pass this role to Amazon SageMaker, the caller of this API must have the ‘iam:PassRole` permission.

    </note>
    

    [1]: docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html

  • :lifecycle_config_name (String)

    The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see [Step 2.1: (Optional) Customize a Notebook Instance].

    [1]: docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html

  • :disassociate_lifecycle_config (Boolean)

    Set to ‘true` to remove the notebook instance lifecycle configuration currently associated with the notebook instance. This operation is idempotent. If you specify a lifecycle configuration that is not associated with the notebook instance when you call this method, it does not throw an error.

  • :volume_size_in_gb (Integer)

    The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB. ML storage volumes are encrypted, so Amazon SageMaker can’t determine the amount of available free space on the volume. Because of this, you can increase the volume size when you update a notebook instance, but you can’t decrease the volume size. If you want to decrease the size of the ML storage volume in use, create a new notebook instance with the desired size.

  • :default_code_repository (String)

    The Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in [AWS CodeCommit] or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see [Associating Git Repositories with Amazon SageMaker Notebook Instances].

    [1]: docs.aws.amazon.com/codecommit/latest/userguide/welcome.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html

  • :additional_code_repositories (Array<String>)

    An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in

    AWS CodeCommit][1

    or in any other Git repository. These repositories

    are cloned at the same level as the default repository of your notebook instance. For more information, see [Associating Git Repositories with Amazon SageMaker Notebook Instances].

    [1]: docs.aws.amazon.com/codecommit/latest/userguide/welcome.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html

  • :accelerator_types (Array<String>)

    A list of the Elastic Inference (EI) instance types to associate with this notebook instance. Currently only one EI instance type can be associated with a notebook instance. For more information, see [Using Elastic Inference in Amazon SageMaker].

    [1]: docs.aws.amazon.com/sagemaker/latest/dg/ei.html

  • :disassociate_accelerator_types (Boolean)

    A list of the Elastic Inference (EI) instance types to remove from this notebook instance. This operation is idempotent. If you specify an accelerator type that is not associated with the notebook instance when you call this method, it does not throw an error.

  • :disassociate_default_code_repository (Boolean)

    The name or URL of the default Git repository to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.

  • :disassociate_additional_code_repositories (Boolean)

    A list of names or URLs of the default Git repositories to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.

  • :root_access (String)

    Whether root access is enabled or disabled for users of the notebook instance. The default value is ‘Enabled`.

    <note markdown=“1”> If you set this to ‘Disabled`, users don’t have root access on the notebook instance, but lifecycle configuration scripts still run with root permissions.

    </note>
    

Returns:

  • (Struct)

    Returns an empty response.

See Also:



9765
9766
9767
9768
# File 'lib/aws-sdk-sagemaker/client.rb', line 9765

def update_notebook_instance(params = {}, options = {})
  req = build_request(:update_notebook_instance, params)
  req.send_request(options)
end

#update_notebook_instance_lifecycle_config(params = {}) ⇒ Struct

Updates a notebook instance lifecycle configuration created with the CreateNotebookInstanceLifecycleConfig API.

Examples:

Request syntax with placeholder values


resp = client.update_notebook_instance_lifecycle_config({
  notebook_instance_lifecycle_config_name: "NotebookInstanceLifecycleConfigName", # required
  on_create: [
    {
      content: "NotebookInstanceLifecycleConfigContent",
    },
  ],
  on_start: [
    {
      content: "NotebookInstanceLifecycleConfigContent",
    },
  ],
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :notebook_instance_lifecycle_config_name (required, String)

    The name of the lifecycle configuration.

  • :on_create (Array<Types::NotebookInstanceLifecycleHook>)

    The shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.

  • :on_start (Array<Types::NotebookInstanceLifecycleHook>)

    The shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



9807
9808
9809
9810
# File 'lib/aws-sdk-sagemaker/client.rb', line 9807

def update_notebook_instance_lifecycle_config(params = {}, options = {})
  req = build_request(:update_notebook_instance_lifecycle_config, params)
  req.send_request(options)
end

#update_trial(params = {}) ⇒ Types::UpdateTrialResponse

Updates the display name of a trial.

Examples:

Request syntax with placeholder values


resp = client.update_trial({
  trial_name: "ExperimentEntityName", # required
  display_name: "ExperimentEntityName",
})

Response structure


resp.trial_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :trial_name (required, String)

    The name of the trial to update.

  • :display_name (String)

    The name of the trial as displayed. The name doesn’t need to be unique. If ‘DisplayName` isn’t specified, ‘TrialName` is displayed.

Returns:

See Also:



9840
9841
9842
9843
# File 'lib/aws-sdk-sagemaker/client.rb', line 9840

def update_trial(params = {}, options = {})
  req = build_request(:update_trial, params)
  req.send_request(options)
end

#update_trial_component(params = {}) ⇒ Types::UpdateTrialComponentResponse

Updates one or more properties of a trial component.

Examples:

Request syntax with placeholder values


resp = client.update_trial_component({
  trial_component_name: "ExperimentEntityName", # required
  display_name: "ExperimentEntityName",
  status: {
    primary_status: "InProgress", # accepts InProgress, Completed, Failed
    message: "TrialComponentStatusMessage",
  },
  start_time: Time.now,
  end_time: Time.now,
  parameters: {
    "TrialComponentKey256" => {
      string_value: "StringParameterValue",
      number_value: 1.0,
    },
  },
  parameters_to_remove: ["TrialComponentKey256"],
  input_artifacts: {
    "TrialComponentKey64" => {
      media_type: "MediaType",
      value: "TrialComponentArtifactValue", # required
    },
  },
  input_artifacts_to_remove: ["TrialComponentKey256"],
  output_artifacts: {
    "TrialComponentKey64" => {
      media_type: "MediaType",
      value: "TrialComponentArtifactValue", # required
    },
  },
  output_artifacts_to_remove: ["TrialComponentKey256"],
})

Response structure


resp.trial_component_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :trial_component_name (required, String)

    The name of the component to update.

  • :display_name (String)

    The name of the component as displayed. The name doesn’t need to be unique. If ‘DisplayName` isn’t specified, ‘TrialComponentName` is displayed.

  • :status (Types::TrialComponentStatus)

    The new status of the component.

  • :start_time (Time, DateTime, Date, Integer, String)

    When the component started.

  • :end_time (Time, DateTime, Date, Integer, String)

    When the component ended.

  • :parameters (Hash<String,Types::TrialComponentParameterValue>)

    Replaces all of the component’s hyperparameters with the specified hyperparameters.

  • :parameters_to_remove (Array<String>)

    The hyperparameters to remove from the component.

  • :input_artifacts (Hash<String,Types::TrialComponentArtifact>)

    Replaces all of the component’s input artifacts with the specified artifacts.

  • :input_artifacts_to_remove (Array<String>)

    The input artifacts to remove from the component.

  • :output_artifacts (Hash<String,Types::TrialComponentArtifact>)

    Replaces all of the component’s output artifacts with the specified artifacts.

  • :output_artifacts_to_remove (Array<String>)

    The output artifacts to remove from the component.

Returns:

See Also:



9931
9932
9933
9934
# File 'lib/aws-sdk-sagemaker/client.rb', line 9931

def update_trial_component(params = {}, options = {})
  req = build_request(:update_trial_component, params)
  req.send_request(options)
end

#update_user_profile(params = {}) ⇒ Types::UpdateUserProfileResponse

Updates a user profile.

Examples:

Request syntax with placeholder values


resp = client.({
  domain_id: "DomainId", # required
  user_profile_name: "UserProfileName", # required
  user_settings: {
    execution_role: "RoleArn",
    security_groups: ["SecurityGroupId"],
    sharing_settings: {
      notebook_output_option: "Allowed", # accepts Allowed, Disabled
      s3_output_path: "S3Uri",
      s3_kms_key_id: "KmsKeyId",
    },
    jupyter_server_app_settings: {
      default_resource_spec: {
        environment_arn: "EnvironmentArn",
        instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
      },
    },
    kernel_gateway_app_settings: {
      default_resource_spec: {
        environment_arn: "EnvironmentArn",
        instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
      },
    },
    tensor_board_app_settings: {
      default_resource_spec: {
        environment_arn: "EnvironmentArn",
        instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
      },
    },
  },
})

Response structure


resp. #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :domain_id (required, String)

    The domain ID.

  • :user_profile_name (required, String)

    The user profile name.

  • :user_settings (Types::UserSettings)

    A collection of settings.

Returns:

See Also:



9993
9994
9995
9996
# File 'lib/aws-sdk-sagemaker/client.rb', line 9993

def (params = {}, options = {})
  req = build_request(:update_user_profile, params)
  req.send_request(options)
end

#update_workteam(params = {}) ⇒ Types::UpdateWorkteamResponse

Updates an existing work team with new member definitions or description.

Examples:

Request syntax with placeholder values


resp = client.update_workteam({
  workteam_name: "WorkteamName", # required
  member_definitions: [
    {
      cognito_member_definition: {
        user_pool: "CognitoUserPool", # required
        user_group: "CognitoUserGroup", # required
        client_id: "CognitoClientId", # required
      },
    },
  ],
  description: "String200",
  notification_configuration: {
    notification_topic_arn: "NotificationTopicArn",
  },
})

Response structure


resp.workteam.workteam_name #=> String
resp.workteam.member_definitions #=> Array
resp.workteam.member_definitions[0].cognito_member_definition.user_pool #=> String
resp.workteam.member_definitions[0].cognito_member_definition.user_group #=> String
resp.workteam.member_definitions[0].cognito_member_definition.client_id #=> String
resp.workteam.workteam_arn #=> String
resp.workteam.product_listing_ids #=> Array
resp.workteam.product_listing_ids[0] #=> String
resp.workteam.description #=> String
resp.workteam.sub_domain #=> String
resp.workteam.create_date #=> Time
resp.workteam.last_updated_date #=> Time
resp.workteam.notification_configuration.notification_topic_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :workteam_name (required, String)

    The name of the work team to update.

  • :member_definitions (Array<Types::MemberDefinition>)

    A list of ‘MemberDefinition` objects that contain the updated work team members.

  • :description (String)

    An updated description for the work team.

  • :notification_configuration (Types::NotificationConfiguration)

    Configures SNS topic notifications for available or expiring work items

Returns:

See Also:



10058
10059
10060
10061
# File 'lib/aws-sdk-sagemaker/client.rb', line 10058

def update_workteam(params = {}, options = {})
  req = build_request(:update_workteam, params)
  req.send_request(options)
end

#wait_until(waiter_name, params = {}, options = {}) {|w.waiter| ... } ⇒ Boolean

Polls an API operation until a resource enters a desired state.

## Basic Usage

A waiter will call an API operation until:

  • It is successful

  • It enters a terminal state

  • It makes the maximum number of attempts

In between attempts, the waiter will sleep.

# polls in a loop, sleeping between attempts
client.wait_until(waiter_name, params)

## Configuration

You can configure the maximum number of polling attempts, and the delay (in seconds) between each polling attempt. You can pass configuration as the final arguments hash.

# poll for ~25 seconds
client.wait_until(waiter_name, params, {
  max_attempts: 5,
  delay: 5,
})

## Callbacks

You can be notified before each polling attempt and before each delay. If you throw ‘:success` or `:failure` from these callbacks, it will terminate the waiter.

started_at = Time.now
client.wait_until(waiter_name, params, {

  # disable max attempts
  max_attempts: nil,

  # poll for 1 hour, instead of a number of attempts
  before_wait: -> (attempts, response) do
    throw :failure if Time.now - started_at > 3600
  end
})

## Handling Errors

When a waiter is unsuccessful, it will raise an error. All of the failure errors extend from Waiters::Errors::WaiterFailed.

begin
  client.wait_until(...)
rescue Aws::Waiters::Errors::WaiterFailed
  # resource did not enter the desired state in time
end

## Valid Waiters

The following table lists the valid waiter names, the operations they call, and the default ‘:delay` and `:max_attempts` values.

| waiter_name | params | :delay | :max_attempts | | ———————————– | —————————– | ——– | ————- | | endpoint_deleted | #describe_endpoint | 30 | 60 | | endpoint_in_service | #describe_endpoint | 30 | 120 | | notebook_instance_deleted | #describe_notebook_instance | 30 | 60 | | notebook_instance_in_service | #describe_notebook_instance | 30 | 60 | | notebook_instance_stopped | #describe_notebook_instance | 30 | 60 | | processing_job_completed_or_stopped | #describe_processing_job | 60 | 60 | | training_job_completed_or_stopped | #describe_training_job | 120 | 180 | | transform_job_completed_or_stopped | #describe_transform_job | 60 | 60 |

Parameters:

  • waiter_name (Symbol)
  • params (Hash) (defaults to: {})

    ({})

  • options (Hash) (defaults to: {})

    ({})

Options Hash (options):

  • :max_attempts (Integer)
  • :delay (Integer)
  • :before_attempt (Proc)
  • :before_wait (Proc)

Yields:

  • (w.waiter)

Returns:

  • (Boolean)

    Returns ‘true` if the waiter was successful.

Raises:

  • (Errors::FailureStateError)

    Raised when the waiter terminates because the waiter has entered a state that it will not transition out of, preventing success.

  • (Errors::TooManyAttemptsError)

    Raised when the configured maximum number of attempts have been made, and the waiter is not yet successful.

  • (Errors::UnexpectedError)

    Raised when an error is encounted while polling for a resource that is not expected.

  • (Errors::NoSuchWaiterError)

    Raised when you request to wait for an unknown state.



10175
10176
10177
10178
10179
# File 'lib/aws-sdk-sagemaker/client.rb', line 10175

def wait_until(waiter_name, params = {}, options = {})
  w = waiter(waiter_name, options)
  yield(w.waiter) if block_given? # deprecated
  w.wait(params)
end

#waiter_namesObject

This method is part of a private API. You should avoid using this method if possible, as it may be removed or be changed in the future.

Deprecated.


10183
10184
10185
# File 'lib/aws-sdk-sagemaker/client.rb', line 10183

def waiter_names
  waiters.keys
end