Class: Aws::SageMaker::Types::HyperParameterTuningJobConfig
- Inherits:
-
Struct
- Object
- Struct
- Aws::SageMaker::Types::HyperParameterTuningJobConfig
- Includes:
- Aws::Structure
- Defined in:
- lib/aws-sdk-sagemaker/types.rb
Overview
When making an API call, you may pass HyperParameterTuningJobConfig data as a hash:
{
strategy: "Bayesian", # required, accepts Bayesian, Random
hyper_parameter_tuning_job_objective: {
type: "Maximize", # required, accepts Maximize, Minimize
metric_name: "MetricName", # required
},
resource_limits: { # required
max_number_of_training_jobs: 1, # required
max_parallel_training_jobs: 1, # required
},
parameter_ranges: {
integer_parameter_ranges: [
{
name: "ParameterKey", # required
min_value: "ParameterValue", # required
max_value: "ParameterValue", # required
scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
},
],
continuous_parameter_ranges: [
{
name: "ParameterKey", # required
min_value: "ParameterValue", # required
max_value: "ParameterValue", # required
scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
},
],
categorical_parameter_ranges: [
{
name: "ParameterKey", # required
values: ["ParameterValue"], # required
},
],
},
training_job_early_stopping_type: "Off", # accepts Off, Auto
tuning_job_completion_criteria: {
target_objective_metric_value: 1.0, # required
},
}
Configures a hyperparameter tuning job.
Instance Attribute Summary collapse
-
#hyper_parameter_tuning_job_objective ⇒ Types::HyperParameterTuningJobObjective
The HyperParameterTuningJobObjective object that specifies the objective metric for this tuning job.
-
#parameter_ranges ⇒ Types::ParameterRanges
The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches.
-
#resource_limits ⇒ Types::ResourceLimits
The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.
-
#strategy ⇒ String
Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches.
-
#training_job_early_stopping_type ⇒ String
Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job.
-
#tuning_job_completion_criteria ⇒ Types::TuningJobCompletionCriteria
The tuning job’s completion criteria.
Instance Attribute Details
#hyper_parameter_tuning_job_objective ⇒ Types::HyperParameterTuningJobObjective
The HyperParameterTuningJobObjective object that specifies the objective metric for this tuning job.
10745 10746 10747 10748 10749 10750 10751 10752 10753 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 10745 class HyperParameterTuningJobConfig < Struct.new( :strategy, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria) include Aws::Structure end |
#parameter_ranges ⇒ Types::ParameterRanges
The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches.
10745 10746 10747 10748 10749 10750 10751 10752 10753 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 10745 class HyperParameterTuningJobConfig < Struct.new( :strategy, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria) include Aws::Structure end |
#resource_limits ⇒ Types::ResourceLimits
The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.
10745 10746 10747 10748 10749 10750 10751 10752 10753 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 10745 class HyperParameterTuningJobConfig < Struct.new( :strategy, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria) include Aws::Structure end |
#strategy ⇒ String
Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search strategy, set this to ‘Bayesian`. To randomly search, set it to `Random`. For information about search strategies, see [How Hyperparameter Tuning Works].
[1]: docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
10745 10746 10747 10748 10749 10750 10751 10752 10753 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 10745 class HyperParameterTuningJobConfig < Struct.new( :strategy, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria) include Aws::Structure end |
#training_job_early_stopping_type ⇒ String
Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is ‘OFF`):
OFF
: Training jobs launched by the hyperparameter tuning job do not use
early stopping.
AUTO
: Amazon SageMaker stops training jobs launched by the
hyperparameter tuning job when they are unlikely to perform better
than previously completed training jobs. For more information, see
[Stop Training Jobs Early][1].
[1]: docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
10745 10746 10747 10748 10749 10750 10751 10752 10753 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 10745 class HyperParameterTuningJobConfig < Struct.new( :strategy, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria) include Aws::Structure end |
#tuning_job_completion_criteria ⇒ Types::TuningJobCompletionCriteria
The tuning job’s completion criteria.
10745 10746 10747 10748 10749 10750 10751 10752 10753 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 10745 class HyperParameterTuningJobConfig < Struct.new( :strategy, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria) include Aws::Structure end |