Class: Aws::SageMaker::Types::TrainingSpecification
- Inherits:
-
Struct
- Object
- Struct
- Aws::SageMaker::Types::TrainingSpecification
- Includes:
- Aws::Structure
- Defined in:
- lib/aws-sdk-sagemaker/types.rb
Overview
When making an API call, you may pass TrainingSpecification data as a hash:
{
training_image: "Image", # required
training_image_digest: "ImageDigest",
supported_hyper_parameters: [
{
name: "ParameterName", # required
description: "EntityDescription",
type: "Integer", # required, accepts Integer, Continuous, Categorical, FreeText
range: {
integer_parameter_range_specification: {
min_value: "ParameterValue", # required
max_value: "ParameterValue", # required
},
continuous_parameter_range_specification: {
min_value: "ParameterValue", # required
max_value: "ParameterValue", # required
},
categorical_parameter_range_specification: {
values: ["ParameterValue"], # required
},
},
is_tunable: false,
is_required: false,
default_value: "ParameterValue",
},
],
supported_training_instance_types: ["ml.m4.xlarge"], # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge
supports_distributed_training: false,
metric_definitions: [
{
name: "MetricName", # required
regex: "MetricRegex", # required
},
],
training_channels: [ # required
{
name: "ChannelName", # required
description: "EntityDescription",
is_required: false,
supported_content_types: ["ContentType"], # required
supported_compression_types: ["None"], # accepts None, Gzip
supported_input_modes: ["Pipe"], # required, accepts Pipe, File
},
],
supported_tuning_job_objective_metrics: [
{
type: "Maximize", # required, accepts Maximize, Minimize
metric_name: "MetricName", # required
},
],
}
Defines how the algorithm is used for a training job.
Instance Attribute Summary collapse
-
#metric_definitions ⇒ Array<Types::MetricDefinition>
A list of ‘MetricDefinition` objects, which are used for parsing metrics generated by the algorithm.
-
#supported_hyper_parameters ⇒ Array<Types::HyperParameterSpecification>
A list of the ‘HyperParameterSpecification` objects, that define the supported hyperparameters.
-
#supported_training_instance_types ⇒ Array<String>
A list of the instance types that this algorithm can use for training.
-
#supported_tuning_job_objective_metrics ⇒ Array<Types::HyperParameterTuningJobObjective>
A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.
-
#supports_distributed_training ⇒ Boolean
Indicates whether the algorithm supports distributed training.
-
#training_channels ⇒ Array<Types::ChannelSpecification>
A list of ‘ChannelSpecification` objects, which specify the input sources to be used by the algorithm.
-
#training_image ⇒ String
The Amazon ECR registry path of the Docker image that contains the training algorithm.
-
#training_image_digest ⇒ String
An MD5 hash of the training algorithm that identifies the Docker image used for training.
Instance Attribute Details
#metric_definitions ⇒ Array<Types::MetricDefinition>
A list of ‘MetricDefinition` objects, which are used for parsing metrics generated by the algorithm.
18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18536 class TrainingSpecification < Struct.new( :training_image, :training_image_digest, :supported_hyper_parameters, :supported_training_instance_types, :supports_distributed_training, :metric_definitions, :training_channels, :supported_tuning_job_objective_metrics) include Aws::Structure end |
#supported_hyper_parameters ⇒ Array<Types::HyperParameterSpecification>
A list of the ‘HyperParameterSpecification` objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>
18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18536 class TrainingSpecification < Struct.new( :training_image, :training_image_digest, :supported_hyper_parameters, :supported_training_instance_types, :supports_distributed_training, :metric_definitions, :training_channels, :supported_tuning_job_objective_metrics) include Aws::Structure end |
#supported_training_instance_types ⇒ Array<String>
A list of the instance types that this algorithm can use for training.
18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18536 class TrainingSpecification < Struct.new( :training_image, :training_image_digest, :supported_hyper_parameters, :supported_training_instance_types, :supports_distributed_training, :metric_definitions, :training_channels, :supported_tuning_job_objective_metrics) include Aws::Structure end |
#supported_tuning_job_objective_metrics ⇒ Array<Types::HyperParameterTuningJobObjective>
A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.
18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18536 class TrainingSpecification < Struct.new( :training_image, :training_image_digest, :supported_hyper_parameters, :supported_training_instance_types, :supports_distributed_training, :metric_definitions, :training_channels, :supported_tuning_job_objective_metrics) include Aws::Structure end |
#supports_distributed_training ⇒ Boolean
Indicates whether the algorithm supports distributed training. If set to false, buyers can’t request more than one instance during training.
18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18536 class TrainingSpecification < Struct.new( :training_image, :training_image_digest, :supported_hyper_parameters, :supported_training_instance_types, :supports_distributed_training, :metric_definitions, :training_channels, :supported_tuning_job_objective_metrics) include Aws::Structure end |
#training_channels ⇒ Array<Types::ChannelSpecification>
A list of ‘ChannelSpecification` objects, which specify the input sources to be used by the algorithm.
18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18536 class TrainingSpecification < Struct.new( :training_image, :training_image_digest, :supported_hyper_parameters, :supported_training_instance_types, :supports_distributed_training, :metric_definitions, :training_channels, :supported_tuning_job_objective_metrics) include Aws::Structure end |
#training_image ⇒ String
The Amazon ECR registry path of the Docker image that contains the training algorithm.
18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18536 class TrainingSpecification < Struct.new( :training_image, :training_image_digest, :supported_hyper_parameters, :supported_training_instance_types, :supports_distributed_training, :metric_definitions, :training_channels, :supported_tuning_job_objective_metrics) include Aws::Structure end |
#training_image_digest ⇒ String
An MD5 hash of the training algorithm that identifies the Docker image used for training.
18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18536 class TrainingSpecification < Struct.new( :training_image, :training_image_digest, :supported_hyper_parameters, :supported_training_instance_types, :supports_distributed_training, :metric_definitions, :training_channels, :supported_tuning_job_objective_metrics) include Aws::Structure end |