Module: Enumerable

Overview

The Enumerable mixin provides collection classes with several traversal and searching methods, and with the ability to sort. The class must provide a method each, which yields successive members of the collection. If Enumerable#max, #min, or #sort is used, the objects in the collection must also implement a meaningful <=> operator, as these methods rely on an ordering between members of the collection.

Instance Method Summary collapse

Instance Method Details

#all? {|obj| ... } ⇒ Boolean

Passes each element of the collection to the given block. The method returns true if the block never returns false or nil. If the block is not given, Ruby adds an implicit block of { |obj| obj } which will cause #all? to return true when none of the collection members are false or nil.

%w[ant bear cat].all? { |word| word.length >= 3 } #=> true
%w[ant bear cat].all? { |word| word.length >= 4 } #=> false
[nil, true, 99].all?                              #=> false

Yields:

  • (obj)

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1093
1094
1095
1096
1097
1098
1099
# File 'enum.c', line 1093

static VALUE
enum_all(VALUE obj)
{
    struct MEMO *memo = MEMO_NEW(Qtrue, 0, 0);
    rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)memo);
    return memo->v1;
}

#any? {|obj| ... } ⇒ Boolean

Passes each element of the collection to the given block. The method returns true if the block ever returns a value other than false or nil. If the block is not given, Ruby adds an implicit block of { |obj| obj } that will cause #any? to return true if at least one of the collection members is not false or nil.

%w[ant bear cat].any? { |word| word.length >= 3 } #=> true
%w[ant bear cat].any? { |word| word.length >= 4 } #=> true
[nil, true, 99].any?                              #=> true

Yields:

  • (obj)

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1127
1128
1129
1130
1131
1132
1133
# File 'enum.c', line 1127

static VALUE
enum_any(VALUE obj)
{
    struct MEMO *memo = MEMO_NEW(Qfalse, 0, 0);
    rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)memo);
    return memo->v1;
}

#chunk {|elt| ... } ⇒ Object

Enumerates over the items, chunking them together based on the return value of the block.

Consecutive elements which return the same block value are chunked together.

For example, consecutive even numbers and odd numbers can be chunked as follows.

[3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5].chunk { |n|
  n.even?
}.each { |even, ary|
  p [even, ary]
}
#=> [false, [3, 1]]
#   [true, [4]]
#   [false, [1, 5, 9]]
#   [true, [2, 6]]
#   [false, [5, 3, 5]]

This method is especially useful for sorted series of elements. The following example counts words for each initial letter.

open("/usr/share/dict/words", "r:iso-8859-1") { |f|
  f.chunk { |line| line.ord }.each { |ch, lines| p [ch.chr, lines.length] }
}
#=> ["\n", 1]
#   ["A", 1327]
#   ["B", 1372]
#   ["C", 1507]
#   ["D", 791]
#   ...

The following key values have special meaning:

  • nil and :_separator specifies that the elements should be dropped.

  • :_alone specifies that the element should be chunked by itself.

Any other symbols that begin with an underscore will raise an error:

items.chunk { |item| :_underscore }
#=> RuntimeError: symbols beginning with an underscore are reserved

nil and :_separator can be used to ignore some elements.

For example, the sequence of hyphens in svn log can be eliminated as follows:

sep = "-"*72 + "\n"
IO.popen("svn log README") { |f|
  f.chunk { |line|
    line != sep || nil
  }.each { |_, lines|
    pp lines
  }
}
#=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n",
#    "\n",
#    "* README, README.ja: Update the portability section.\n",
#    "\n"]
#   ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n",
#    "\n",
#    "* README, README.ja: Add a note about default C flags.\n",
#    "\n"]
#   ...

Paragraphs separated by empty lines can be parsed as follows:

File.foreach("README").chunk { |line|
  /\A\s*\z/ !~ line || nil
}.each { |_, lines|
  pp lines
}

:_alone can be used to force items into their own chunk. For example, you can put lines that contain a URL by themselves, and chunk the rest of the lines together, like this:

pattern = /http/
open(filename) { |f|
  f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines|
    pp lines
  }
}

Yields:

  • (elt)


2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
# File 'enum.c', line 2904

static VALUE
enum_chunk(VALUE enumerable)
{
    VALUE enumerator;

    if (!rb_block_given_p())
	rb_raise(rb_eArgError, "no block given");

    enumerator = rb_obj_alloc(rb_cEnumerator);
    rb_ivar_set(enumerator, rb_intern("chunk_enumerable"), enumerable);
    rb_ivar_set(enumerator, rb_intern("chunk_categorize"), rb_block_proc());
    rb_block_call(enumerator, idInitialize, 0, 0, chunk_i, enumerator);
    return enumerator;
}

#chunk_while {|elt_before, elt_after| ... } ⇒ Object

Creates an enumerator for each chunked elements. The beginnings of chunks are defined by the block.

This method split each chunk using adjacent elements, elt_before and elt_after, in the receiver enumerator. This method split chunks between elt_before and elt_after where the block returns false.

The block is called the length of the receiver enumerator minus one.

The result enumerator yields the chunked elements as an array. So each method can be called as follows:

enum.chunk_while { |elt_before, elt_after| bool }.each { |ary| ... }

Other methods of the Enumerator class and Enumerable module, such as to_a, map, etc., are also usable.

For example, one-by-one increasing subsequence can be chunked as follows:

a = [1,2,4,9,10,11,12,15,16,19,20,21]
b = a.chunk_while {|i, j| i+1 == j }
p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
d = c.join(",")
p d #=> "1,2,4,9-12,15,16,19-21"

Increasing (non-decreasing) subsequence can be chunked as follows:

a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
p a.chunk_while {|i, j| i <= j }.to_a
#=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]

Adjacent evens and odds can be chunked as follows: (Enumerable#chunk is another way to do it.)

a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
p a.chunk_while {|i, j| i.even? == j.even? }.to_a
#=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]

Yields:

  • (elt_before, elt_after)


3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
# File 'enum.c', line 3454

static VALUE
enum_chunk_while(VALUE enumerable)
{
    VALUE enumerator;
    VALUE pred;

    pred = rb_block_proc();

    enumerator = rb_obj_alloc(rb_cEnumerator);
    rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable);
    rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred);
    rb_ivar_set(enumerator, rb_intern("slicewhen_inverted"), Qtrue);

    rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
    return enumerator;
}

#collect {|obj| ... } ⇒ Array #map {|obj| ... } ⇒ Array #collectObject #mapObject

Returns a new array with the results of running block once for every element in enum.

If no block is given, an enumerator is returned instead.

(1..4).map { |i| i*i }      #=> [1, 4, 9, 16]
(1..4).collect { "cat"  }   #=> ["cat", "cat", "cat", "cat"]

Overloads:

  • #collect {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #map {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



468
469
470
471
472
473
474
475
476
477
478
479
# File 'enum.c', line 468

static VALUE
enum_collect(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, collect_i, ary);

    return ary;
}

#flat_map {|obj| ... } ⇒ Array #collect_concat {|obj| ... } ⇒ Array #flat_mapObject #collect_concatObject

Returns a new array with the concatenated results of running block once for every element in enum.

If no block is given, an enumerator is returned instead.

[1, 2, 3, 4].flat_map { |e| [e, -e] } #=> [1, -1, 2, -2, 3, -3, 4, -4]
[[1, 2], [3, 4]].flat_map { |e| e + [100] } #=> [1, 2, 100, 3, 4, 100]

Overloads:

  • #flat_map {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #collect_concat {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



515
516
517
518
519
520
521
522
523
524
525
526
# File 'enum.c', line 515

static VALUE
enum_flat_map(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);

    return ary;
}

#countInteger #count(item) ⇒ Integer #count {|obj| ... } ⇒ Integer

Returns the number of items in enum through enumeration. If an argument is given, the number of items in enum that are equal to item are counted. If a block is given, it counts the number of elements yielding a true value.

ary = [1, 2, 4, 2]
ary.count               #=> 4
ary.count(2)            #=> 2
ary.count{ |x| x%2==0 } #=> 3

Overloads:



172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# File 'enum.c', line 172

static VALUE
enum_count(int argc, VALUE *argv, VALUE obj)
{
    VALUE item = Qnil;
    struct MEMO *memo;
    rb_block_call_func *func;

    if (argc == 0) {
	if (rb_block_given_p()) {
	    func = count_iter_i;
	}
	else {
	    func = count_all_i;
	}
    }
    else {
	rb_scan_args(argc, argv, "1", &item);
	if (rb_block_given_p()) {
	    rb_warn("given block not used");
	}
        func = count_i;
    }

    memo = MEMO_NEW(item, 0, 0);
    rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
    return INT2NUM(memo->u3.cnt);
}

#cycle(n = nil) {|obj| ... } ⇒ nil #cycle(n = nil) ⇒ Object

Calls block for each element of enum repeatedly n times or forever if none or nil is given. If a non-positive number is given or the collection is empty, does nothing. Returns nil if the loop has finished without getting interrupted.

Enumerable#cycle saves elements in an internal array so changes to enum after the first pass have no effect.

If no block is given, an enumerator is returned instead.

a = ["a", "b", "c"]
a.cycle { |x| puts x }  # print, a, b, c, a, b, c,.. forever.
a.cycle(2) { |x| puts x }  # print, a, b, c, a, b, c.

Overloads:

  • #cycle(n = nil) {|obj| ... } ⇒ nil

    Yields:

    • (obj)

    Returns:

    • (nil)


2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
# File 'enum.c', line 2713

static VALUE
enum_cycle(int argc, VALUE *argv, VALUE obj)
{
    VALUE ary;
    VALUE nv = Qnil;
    long n, i, len;

    rb_scan_args(argc, argv, "01", &nv);

    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_cycle_size);
    if (NIL_P(nv)) {
        n = -1;
    }
    else {
        n = NUM2LONG(nv);
        if (n <= 0) return Qnil;
    }
    ary = rb_ary_new();
    RBASIC_CLEAR_CLASS(ary);
    rb_block_call(obj, id_each, 0, 0, cycle_i, ary);
    len = RARRAY_LEN(ary);
    if (len == 0) return Qnil;
    while (n < 0 || 0 < --n) {
        for (i=0; i<len; i++) {
            rb_yield(RARRAY_AREF(ary, i));
        }
    }
    return Qnil;
}

#detect(ifnone = nil) {|obj| ... } ⇒ Object? #find(ifnone = nil) {|obj| ... } ⇒ Object? #detect(ifnone = nil) ⇒ Object #find(ifnone = nil) ⇒ Object

Passes each entry in enum to block. Returns the first for which block is not false. If no object matches, calls ifnone and returns its result when it is specified, or returns nil otherwise.

If no block is given, an enumerator is returned instead.

(1..10).detect	{ |i| i % 5 == 0 and i % 7 == 0 }   #=> nil
(1..100).find	{ |i| i % 5 == 0 and i % 7 == 0 }   #=> 35

Overloads:

  • #detect(ifnone = nil) {|obj| ... } ⇒ Object?

    Yields:

    • (obj)

    Returns:

  • #find(ifnone = nil) {|obj| ... } ⇒ Object?

    Yields:

    • (obj)

    Returns:



233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# File 'enum.c', line 233

static VALUE
enum_find(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;
    VALUE if_none;

    rb_scan_args(argc, argv, "01", &if_none);
    RETURN_ENUMERATOR(obj, argc, argv);
    memo = MEMO_NEW(Qundef, 0, 0);
    rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo);
    if (memo->u3.cnt) {
	return memo->v1;
    }
    if (!NIL_P(if_none)) {
	return rb_funcallv(if_none, id_call, 0, 0);
    }
    return Qnil;
}

#drop(n) ⇒ Array

Drops first n elements from enum, and returns rest elements in an array.

a = [1, 2, 3, 4, 5, 0]
a.drop(3)             #=> [4, 5, 0]

Returns:



2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
# File 'enum.c', line 2602

static VALUE
enum_drop(VALUE obj, VALUE n)
{
    VALUE result;
    struct MEMO *memo;
    long len = NUM2LONG(n);

    if (len < 0) {
	rb_raise(rb_eArgError, "attempt to drop negative size");
    }

    result = rb_ary_new();
    memo = MEMO_NEW(result, 0, len);
    rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo);
    return result;
}

#drop_while {|arr| ... } ⇒ Array #drop_whileObject

Drops elements up to, but not including, the first element for which the block returns nil or false and returns an array containing the remaining elements.

If no block is given, an enumerator is returned instead.

a = [1, 2, 3, 4, 5, 0]
a.drop_while { |i| i < 3 }   #=> [3, 4, 5, 0]

Overloads:

  • #drop_while {|arr| ... } ⇒ Array

    Yields:

    • (arr)

    Returns:



2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
# File 'enum.c', line 2651

static VALUE
enum_drop_while(VALUE obj)
{
    VALUE result;
    struct MEMO *memo;

    RETURN_ENUMERATOR(obj, 0, 0);
    result = rb_ary_new();
    memo = MEMO_NEW(result, 0, FALSE);
    rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo);
    return result;
}

#each_cons(n) { ... } ⇒ nil #each_cons(n) ⇒ Object

Iterates the given block for each array of consecutive <n> elements. If no block is given, returns an enumerator.

e.g.:

(1..10).each_cons(3) { |a| p a }
# outputs below
[1, 2, 3]
[2, 3, 4]
[3, 4, 5]
[4, 5, 6]
[5, 6, 7]
[6, 7, 8]
[7, 8, 9]
[8, 9, 10]

Overloads:

  • #each_cons(n) { ... } ⇒ nil

    Yields:

    Returns:

    • (nil)


2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
# File 'enum.c', line 2302

static VALUE
enum_each_cons(VALUE obj, VALUE n)
{
    long size = NUM2LONG(n);
    struct MEMO *memo;
    int arity;

    if (size <= 0) rb_raise(rb_eArgError, "invalid size");
    RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_cons_size);
    arity = rb_block_arity();
    if (enum_size_over_p(obj, size)) return Qnil;
    memo = MEMO_NEW(rb_ary_new2(size), dont_recycle_block_arg(arity), size);
    rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo);

    return Qnil;
}

#each_entry {|obj| ... } ⇒ Enumerator #each_entryObject

Calls block once for each element in self, passing that element as a parameter, converting multiple values from yield to an array.

If no block is given, an enumerator is returned instead.

class Foo
  include Enumerable
  def each
    yield 1
    yield 1, 2
    yield
  end
end
Foo.new.each_entry{ |o| p o }

produces:

1
[1, 2]
nil

Overloads:



2159
2160
2161
2162
2163
2164
2165
# File 'enum.c', line 2159

static VALUE
enum_each_entry(int argc, VALUE *argv, VALUE obj)
{
    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
    rb_block_call(obj, id_each, argc, argv, each_val_i, 0);
    return obj;
}

#each_slice(n) { ... } ⇒ nil #each_slice(n) ⇒ Object

Iterates the given block for each slice of <n> elements. If no block is given, returns an enumerator.

(1..10).each_slice(3) { |a| p a }
# outputs below
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
[10]

Overloads:

  • #each_slice(n) { ... } ⇒ nil

    Yields:

    Returns:

    • (nil)


2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
# File 'enum.c', line 2224

static VALUE
enum_each_slice(VALUE obj, VALUE n)
{
    long size = NUM2LONG(n);
    VALUE ary;
    struct MEMO *memo;
    int arity;

    if (size <= 0) rb_raise(rb_eArgError, "invalid slice size");
    RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_slice_size);
    size = limit_by_enum_size(obj, size);
    ary = rb_ary_new2(size);
    arity = rb_block_arity();
    memo = MEMO_NEW(ary, dont_recycle_block_arg(arity), size);
    rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo);
    ary = memo->v1;
    if (RARRAY_LEN(ary) > 0) rb_yield(ary);

    return Qnil;
}

#each_with_index(*args) {|obj, i| ... } ⇒ Enumerator #each_with_index(*args) ⇒ Object

Calls block with two arguments, the item and its index, for each item in enum. Given arguments are passed through to #each().

If no block is given, an enumerator is returned instead.

hash = Hash.new
%w(cat dog wombat).each_with_index { |item, index|
  hash[item] = index
}
hash   #=> {"cat"=>0, "dog"=>1, "wombat"=>2}

Overloads:



2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
# File 'enum.c', line 2073

static VALUE
enum_each_with_index(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;

    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);

    memo = MEMO_NEW(0, 0, 0);
    rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)memo);
    return obj;
}

#each_with_object(obj) {|(*args), memo_obj| ... } ⇒ Object #each_with_object(obj) ⇒ Object

Iterates the given block for each element with an arbitrary object given, and returns the initially given object.

If no block is given, returns an enumerator.

evens = (1..10).each_with_object([]) { |i, a| a << i*2 }
#=> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Overloads:

  • #each_with_object(obj) {|(*args), memo_obj| ... } ⇒ Object

    Yields:

    • ((*args), memo_obj)

    Returns:



2340
2341
2342
2343
2344
2345
2346
2347
2348
# File 'enum.c', line 2340

static VALUE
enum_each_with_object(VALUE obj, VALUE memo)
{
    RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enum_size);

    rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo);

    return memo;
}

#to_a(*args) ⇒ Array #entries(*args) ⇒ Array

Returns an array containing the items in enum.

(1..7).to_a                       #=> [1, 2, 3, 4, 5, 6, 7]
{ 'a'=>1, 'b'=>2, 'c'=>3 }.to_a   #=> [["a", 1], ["b", 2], ["c", 3]]

require 'prime'
Prime.entries 10                  #=> [2, 3, 5, 7]

Overloads:



541
542
543
544
545
546
547
548
549
550
# File 'enum.c', line 541

static VALUE
enum_to_a(int argc, VALUE *argv, VALUE obj)
{
    VALUE ary = rb_ary_new();

    rb_block_call(obj, id_each, argc, argv, collect_all, ary);
    OBJ_INFECT(ary, obj);

    return ary;
}

#detect(ifnone = nil) {|obj| ... } ⇒ Object? #find(ifnone = nil) {|obj| ... } ⇒ Object? #detect(ifnone = nil) ⇒ Object #find(ifnone = nil) ⇒ Object

Passes each entry in enum to block. Returns the first for which block is not false. If no object matches, calls ifnone and returns its result when it is specified, or returns nil otherwise.

If no block is given, an enumerator is returned instead.

(1..10).detect	{ |i| i % 5 == 0 and i % 7 == 0 }   #=> nil
(1..100).find	{ |i| i % 5 == 0 and i % 7 == 0 }   #=> 35

Overloads:

  • #detect(ifnone = nil) {|obj| ... } ⇒ Object?

    Yields:

    • (obj)

    Returns:

  • #find(ifnone = nil) {|obj| ... } ⇒ Object?

    Yields:

    • (obj)

    Returns:



233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# File 'enum.c', line 233

static VALUE
enum_find(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;
    VALUE if_none;

    rb_scan_args(argc, argv, "01", &if_none);
    RETURN_ENUMERATOR(obj, argc, argv);
    memo = MEMO_NEW(Qundef, 0, 0);
    rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo);
    if (memo->u3.cnt) {
	return memo->v1;
    }
    if (!NIL_P(if_none)) {
	return rb_funcallv(if_none, id_call, 0, 0);
    }
    return Qnil;
}

#find_all {|obj| ... } ⇒ Array #select {|obj| ... } ⇒ Array #find_allObject #selectObject

Returns an array containing all elements of enum for which the given block returns a true value.

If no block is given, an Enumerator is returned instead.

(1..10).find_all { |i|  i % 3 == 0 }   #=> [3, 6, 9]

[1,2,3,4,5].select { |num|  num.even?  }   #=> [2, 4]

See also Enumerable#reject.

Overloads:

  • #find_all {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #select {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



380
381
382
383
384
385
386
387
388
389
390
391
# File 'enum.c', line 380

static VALUE
enum_find_all(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, find_all_i, ary);

    return ary;
}

#find_index(value) ⇒ Integer? #find_index {|obj| ... } ⇒ Integer? #find_indexObject

Compares each entry in enum with value or passes to block. Returns the index for the first for which the evaluated value is non-false. If no object matches, returns nil

If neither block nor argument is given, an enumerator is returned instead.

(1..10).find_index  { |i| i % 5 == 0 and i % 7 == 0 }  #=> nil
(1..100).find_index { |i| i % 5 == 0 and i % 7 == 0 }  #=> 34
(1..100).find_index(50)                                #=> 49

Overloads:



299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# File 'enum.c', line 299

static VALUE
enum_find_index(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;	/* [return value, current index, ] */
    VALUE condition_value = Qnil;
    rb_block_call_func *func;

    if (argc == 0) {
        RETURN_ENUMERATOR(obj, 0, 0);
        func = find_index_iter_i;
    }
    else {
	rb_scan_args(argc, argv, "1", &condition_value);
	if (rb_block_given_p()) {
	    rb_warn("given block not used");
	}
        func = find_index_i;
    }

    memo = MEMO_NEW(Qnil, condition_value, 0);
    rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
    return memo->v1;
}

#firstObject? #first(n) ⇒ Array

Returns the first element, or the first n elements, of the enumerable. If the enumerable is empty, the first form returns nil, and the second form returns an empty array.

%w[foo bar baz].first     #=> "foo"
%w[foo bar baz].first(2)  #=> ["foo", "bar"]
%w[foo bar baz].first(10) #=> ["foo", "bar", "baz"]
[].first                  #=> nil
[].first(10)              #=> []

Overloads:



835
836
837
838
839
840
841
842
843
844
845
846
847
848
# File 'enum.c', line 835

static VALUE
enum_first(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;
    rb_check_arity(argc, 0, 1);
    if (argc > 0) {
	return enum_take(obj, argv[0]);
    }
    else {
	memo = MEMO_NEW(Qnil, 0, 0);
	rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo);
	return memo->v1;
    }
}

#flat_map {|obj| ... } ⇒ Array #collect_concat {|obj| ... } ⇒ Array #flat_mapObject #collect_concatObject

Returns a new array with the concatenated results of running block once for every element in enum.

If no block is given, an enumerator is returned instead.

[1, 2, 3, 4].flat_map { |e| [e, -e] } #=> [1, -1, 2, -2, 3, -3, 4, -4]
[[1, 2], [3, 4]].flat_map { |e| e + [100] } #=> [1, 2, 100, 3, 4, 100]

Overloads:

  • #flat_map {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #collect_concat {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



515
516
517
518
519
520
521
522
523
524
525
526
# File 'enum.c', line 515

static VALUE
enum_flat_map(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);

    return ary;
}

#grep(pattern) ⇒ Array #grep(pattern) {|obj| ... } ⇒ Array

Returns an array of every element in enum for which Pattern === element. If the optional block is supplied, each matching element is passed to it, and the block's result is stored in the output array.

(1..100).grep 38..44   #=> [38, 39, 40, 41, 42, 43, 44]
c = IO.constants
c.grep(/SEEK/)         #=> [:SEEK_SET, :SEEK_CUR, :SEEK_END]
res = c.grep(/SEEK/) { |v| IO.const_get(v) }
res                    #=> [0, 1, 2]

Overloads:

  • #grep(pattern) ⇒ Array

    Returns:

  • #grep(pattern) {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



84
85
86
87
88
89
90
91
92
93
# File 'enum.c', line 84

static VALUE
enum_grep(VALUE obj, VALUE pat)
{
    VALUE ary = rb_ary_new();
    struct MEMO *memo = MEMO_NEW(pat, ary, Qtrue);

    rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)memo);

    return ary;
}

#grep_v(pattern) ⇒ Array #grep_v(pattern) {|obj| ... } ⇒ Array

Inverted version of Enumerable#grep. Returns an array of every element in enum for which not Pattern === element.

(1..10).grep_v 2..5   #=> [1, 6, 7, 8, 9, 10]
res =(1..10).grep_v(2..5) { |v| v * 2 }
res                    #=> [2, 12, 14, 16, 18, 20]

Overloads:

  • #grep_v(pattern) ⇒ Array

    Returns:

  • #grep_v(pattern) {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



110
111
112
113
114
115
116
117
118
119
# File 'enum.c', line 110

static VALUE
enum_grep_v(VALUE obj, VALUE pat)
{
    VALUE ary = rb_ary_new();
    struct MEMO *memo = MEMO_NEW(pat, ary, Qfalse);

    rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)memo);

    return ary;
}

#group_by {|obj| ... } ⇒ Hash #group_byObject

Groups the collection by result of the block. Returns a hash where the keys are the evaluated result from the block and the values are arrays of elements in the collection that correspond to the key.

If no block is given an enumerator is returned.

(1..6).group_by { |i| i%3 }   #=> {0=>[3, 6], 1=>[1, 4], 2=>[2, 5]}

Overloads:

  • #group_by {|obj| ... } ⇒ Hash

    Yields:

    • (obj)

    Returns:



790
791
792
793
794
795
796
797
798
799
800
801
802
# File 'enum.c', line 790

static VALUE
enum_group_by(VALUE obj)
{
    VALUE hash;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    hash = rb_hash_new();
    rb_block_call(obj, id_each, 0, 0, group_by_i, hash);
    OBJ_INFECT(hash, obj);

    return hash;
}

#include?(obj) ⇒ Boolean #member?(obj) ⇒ Boolean

Returns true if any member of enum equals obj. Equality is tested using ==.

IO.constants.include? :SEEK_SET          #=> true
IO.constants.include? :SEEK_NO_FURTHER   #=> false
IO.constants.member? :SEEK_SET          #=> true
IO.constants.member? :SEEK_NO_FURTHER   #=> false

Overloads:

  • #include?(obj) ⇒ Boolean

    Returns:

    • (Boolean)
  • #member?(obj) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2037
2038
2039
2040
2041
2042
2043
2044
# File 'enum.c', line 2037

static VALUE
enum_member(VALUE obj, VALUE val)
{
    struct MEMO *memo = MEMO_NEW(val, Qfalse, 0);

    rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
    return memo->v2;
}

#inject(initial, sym) ⇒ Object #inject(sym) ⇒ Object #inject(initial) {|memo, obj| ... } ⇒ Object #inject {|memo, obj| ... } ⇒ Object #reduce(initial, sym) ⇒ Object #reduce(sym) ⇒ Object #reduce(initial) {|memo, obj| ... } ⇒ Object #reduce {|memo, obj| ... } ⇒ Object

Combines all elements of enum by applying a binary operation, specified by a block or a symbol that names a method or operator.

If you specify a block, then for each element in enum the block is passed an accumulator value (memo) and the element. If you specify a symbol instead, then each element in the collection will be passed to the named method of memo. In either case, the result becomes the new value for memo. At the end of the iteration, the final value of memo is the return value for the method.

If you do not explicitly specify an initial value for memo, then the first element of collection is used as the initial value of memo.

# Sum some numbers
(5..10).reduce(:+)                             #=> 45
# Same using a block and inject
(5..10).inject { |sum, n| sum + n }            #=> 45
# Multiply some numbers
(5..10).reduce(1, :*)                          #=> 151200
# Same using a block
(5..10).inject(1) { |product, n| product * n } #=> 151200
# find the longest word
longest = %w{ cat sheep bear }.inject do |memo, word|
   memo.length > word.length ? memo : word
end
longest                                        #=> "sheep"

Overloads:

  • #inject(initial, sym) ⇒ Object

    Returns:

  • #inject(sym) ⇒ Object

    Returns:

  • #inject(initial) {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #inject {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #reduce(initial, sym) ⇒ Object

    Returns:

  • #reduce(sym) ⇒ Object

    Returns:

  • #reduce(initial) {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #reduce {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:



674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
# File 'enum.c', line 674

static VALUE
enum_inject(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;
    VALUE init, op;
    rb_block_call_func *iter = inject_i;
    ID id;

    switch (rb_scan_args(argc, argv, "02", &init, &op)) {
      case 0:
	init = Qundef;
	break;
      case 1:
	if (rb_block_given_p()) {
	    break;
	}
	id = rb_check_id(&init);
	op = id ? ID2SYM(id) : init;
	init = Qundef;
	iter = inject_op_i;
	break;
      case 2:
	if (rb_block_given_p()) {
	    rb_warning("given block not used");
	}
	id = rb_check_id(&op);
	if (id) op = ID2SYM(id);
	iter = inject_op_i;
	break;
    }
    memo = MEMO_NEW(init, Qnil, op);
    rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
    if (memo->v1 == Qundef) return Qnil;
    return memo->v1;
}

#lazyObject

Returns a lazy enumerator, whose methods map/collect, flat_map/collect_concat, select/find_all, reject, grep, grep_v, zip, take, take_while, drop, and drop_while enumerate values only on an as-needed basis. However, if a block is given to zip, values are enumerated immediately.

Example

The following program finds pythagorean triples:

def pythagorean_triples
  (1..Float::INFINITY).lazy.flat_map {|z|
    (1..z).flat_map {|x|
      (x..z).select {|y|
        x**2 + y**2 == z**2
      }.map {|y|
        [x, y, z]
      }
    }
  }
end
# show first ten pythagorean triples
p pythagorean_triples.take(10).force # take is lazy, so force is needed
p pythagorean_triples.first(10)      # first is eager
# show pythagorean triples less than 100
p pythagorean_triples.take_while { |*, z| z < 100 }.force


1452
1453
1454
1455
1456
1457
1458
1459
# File 'enumerator.c', line 1452

static VALUE
enumerable_lazy(VALUE obj)
{
    VALUE result = lazy_to_enum_i(obj, sym_each, 0, 0, lazyenum_size);
    /* Qfalse indicates that the Enumerator::Lazy has no method name */
    rb_ivar_set(result, id_method, Qfalse);
    return result;
}

#collect {|obj| ... } ⇒ Array #map {|obj| ... } ⇒ Array #collectObject #mapObject

Returns a new array with the results of running block once for every element in enum.

If no block is given, an enumerator is returned instead.

(1..4).map { |i| i*i }      #=> [1, 4, 9, 16]
(1..4).collect { "cat"  }   #=> ["cat", "cat", "cat", "cat"]

Overloads:

  • #collect {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #map {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



468
469
470
471
472
473
474
475
476
477
478
479
# File 'enum.c', line 468

static VALUE
enum_collect(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, collect_i, ary);

    return ary;
}

#maxObject #max {|a, b| ... } ⇒ Object #max(n) ⇒ Object #max(n) {|a, b| ... } ⇒ Object

Returns the object in enum with the maximum value. The first form assumes all objects implement Comparable; the second uses the block to return a <=> b.

a = %w(albatross dog horse)
a.max                                   #=> "horse"
a.max { |a, b| a.length <=> b.length }  #=> "albatross"

If the n argument is given, maximum n elements are returned as an array.

a = %w[albatross dog horse]
a.max(2)                                  #=> ["horse", "dog"]
a.max(2) {|a, b| a.length <=> b.length }  #=> ["albatross", "horse"]

Overloads:



1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
# File 'enum.c', line 1565

static VALUE
enum_max(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo = MEMO_NEW(Qundef, 0, 0);
    VALUE result;
    VALUE num;

    rb_scan_args(argc, argv, "01", &num);

    if (!NIL_P(num))
       return nmin_run(obj, num, 0, 1);

    if (rb_block_given_p()) {
	rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo);
    }
    else {
	rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo);
    }
    result = memo->v1;
    if (result == Qundef) return Qnil;
    return result;
}

#max_by {|obj| ... } ⇒ Object #max_byObject #max_by(n) {|obj| ... } ⇒ Object #max_by(n) ⇒ Object

Returns the object in enum that gives the maximum value from the given block.

If no block is given, an enumerator is returned instead.

a = %w(albatross dog horse)
a.max_by { |x| x.length }   #=> "albatross"

If the n argument is given, minimum n elements are returned as an array.

a = %w[albatross dog horse]
a.max_by(2) {|x| x.length } #=> ["albatross", "horse"]

enum.max_by(n) can be used to implement weighted random sampling. Following example implements and use Enumerable#wsample.

module Enumerable
  # weighted random sampling.
  #
  # Pavlos S. Efraimidis, Paul G. Spirakis
  # Weighted random sampling with a reservoir
  # Information Processing Letters
  # Volume 97, Issue 5 (16 March 2006)
  def wsample(n)
    self.max_by(n) {|v| rand ** (1.0/yield(v)) }
  end
end
e = (-20..20).to_a*10000
a = e.wsample(20000) {|x|
  Math.exp(-(x/5.0)**2) # normal distribution
}
# a is 20000 samples from e.
p a.length #=> 20000
h = a.group_by {|x| x }
-10.upto(10) {|x| puts "*" * (h[x].length/30.0).to_i if h[x] }
#=> *
#   ***
#   ******
#   ***********
#   ******************
#   *****************************
#   *****************************************
#   ****************************************************
#   ***************************************************************
#   ********************************************************************
#   ***********************************************************************
#   ***********************************************************************
#   **************************************************************
#   ****************************************************
#   ***************************************
#   ***************************
#   ******************
#   ***********
#   *******
#   ***
#   *

Overloads:

  • #max_by {|obj| ... } ⇒ Object

    Yields:

    • (obj)

    Returns:

  • #max_by(n) {|obj| ... } ⇒ Object

    Yields:

    • (obj)

    Returns:



1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
# File 'enum.c', line 1886

static VALUE
enum_max_by(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;
    VALUE num;

    rb_scan_args(argc, argv, "01", &num);

    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);

    if (!NIL_P(num))
        return nmin_run(obj, num, 1, 1);

    memo = MEMO_NEW(Qundef, Qnil, 0);
    rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo);
    return memo->v2;
}

#include?(obj) ⇒ Boolean #member?(obj) ⇒ Boolean

Returns true if any member of enum equals obj. Equality is tested using ==.

IO.constants.include? :SEEK_SET          #=> true
IO.constants.include? :SEEK_NO_FURTHER   #=> false
IO.constants.member? :SEEK_SET          #=> true
IO.constants.member? :SEEK_NO_FURTHER   #=> false

Overloads:

  • #include?(obj) ⇒ Boolean

    Returns:

    • (Boolean)
  • #member?(obj) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2037
2038
2039
2040
2041
2042
2043
2044
# File 'enum.c', line 2037

static VALUE
enum_member(VALUE obj, VALUE val)
{
    struct MEMO *memo = MEMO_NEW(val, Qfalse, 0);

    rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
    return memo->v2;
}

#minObject #min {|a, b| ... } ⇒ Object #min(n) ⇒ Array #min(n) {|a, b| ... } ⇒ Array

Returns the object in enum with the minimum value. The first form assumes all objects implement Comparable; the second uses the block to return a <=> b.

a = %w(albatross dog horse)
a.min                                   #=> "albatross"
a.min { |a, b| a.length <=> b.length }  #=> "dog"

If the n argument is given, minimum n elements are returned as an array.

a = %w[albatross dog horse]
a.min(2)                                  #=> ["albatross", "dog"]
a.min(2) {|a, b| a.length <=> b.length }  #=> ["dog", "horse"]

Overloads:



1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
# File 'enum.c', line 1479

static VALUE
enum_min(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo = MEMO_NEW(Qundef, 0, 0);
    VALUE result;
    VALUE num;

    rb_scan_args(argc, argv, "01", &num);

    if (!NIL_P(num))
       return nmin_run(obj, num, 0, 0);

    if (rb_block_given_p()) {
	rb_block_call(obj, id_each, 0, 0, min_ii, (VALUE)memo);
    }
    else {
	rb_block_call(obj, id_each, 0, 0, min_i, (VALUE)memo);
    }
    result = memo->v1;
    if (result == Qundef) return Qnil;
    return result;
}

#min_by {|obj| ... } ⇒ Object #min_byObject #min_by(n) {|obj| ... } ⇒ Array #min_by(n) ⇒ Object

Returns the object in enum that gives the minimum value from the given block.

If no block is given, an enumerator is returned instead.

a = %w(albatross dog horse)
a.min_by { |x| x.length }   #=> "dog"

If the n argument is given, minimum n elements are returned as an array.

a = %w[albatross dog horse]
p a.min_by(2) {|x| x.length } #=> ["dog", "horse"]

Overloads:

  • #min_by {|obj| ... } ⇒ Object

    Yields:

    • (obj)

    Returns:

  • #min_by(n) {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
# File 'enum.c', line 1781

static VALUE
enum_min_by(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;
    VALUE num;

    rb_scan_args(argc, argv, "01", &num);

    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);

    if (!NIL_P(num))
        return nmin_run(obj, num, 1, 0);

    memo = MEMO_NEW(Qundef, Qnil, 0);
    rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo);
    return memo->v2;
}

#minmaxArray #minmax {|a, b| ... } ⇒ Array

Returns a two element array which contains the minimum and the maximum value in the enumerable. The first form assumes all objects implement Comparable; the second uses the block to return a <=> b.

a = %w(albatross dog horse)
a.minmax                                  #=> ["albatross", "horse"]
a.minmax { |a, b| a.length <=> b.length } #=> ["dog", "albatross"]

Overloads:

  • #minmaxArray

    Returns:

  • #minmax {|a, b| ... } ⇒ Array

    Yields:

    • (a, b)

    Returns:



1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
# File 'enum.c', line 1715

static VALUE
enum_minmax(VALUE obj)
{
    struct MEMO *memo = MEMO_NEW(Qundef, Qundef, Qundef);
    struct minmax_t *m = (struct minmax_t *)&memo->v1;

    m->min = Qundef;
    m->last = Qundef;
    if (rb_block_given_p()) {
	rb_block_call(obj, id_each, 0, 0, minmax_ii, (VALUE)memo);
	if (m->last != Qundef)
	    minmax_ii_update(m->last, m->last, m);
    }
    else {
	rb_block_call(obj, id_each, 0, 0, minmax_i, (VALUE)memo);
	if (m->last != Qundef)
	    minmax_i_update(m->last, m->last, m);
    }
    if (m->min != Qundef) {
	return rb_assoc_new(m->min, m->max);
    }
    return rb_assoc_new(Qnil, Qnil);
}

#minmax_by {|obj| ... } ⇒ Array #minmax_byObject

Returns a two element array containing the objects in enum that correspond to the minimum and maximum values respectively from the given block.

If no block is given, an enumerator is returned instead.

a = %w(albatross dog horse)
a.minmax_by { |x| x.length }   #=> ["dog", "albatross"]

Overloads:

  • #minmax_by {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
# File 'enum.c', line 1989

static VALUE
enum_minmax_by(VALUE obj)
{
    VALUE memo;
    struct minmax_by_t *m = NEW_MEMO_FOR(struct minmax_by_t, memo);

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    m->min_bv = Qundef;
    m->max_bv = Qundef;
    m->min = Qnil;
    m->max = Qnil;
    m->last_bv = Qundef;
    m->last = Qundef;
    rb_block_call(obj, id_each, 0, 0, minmax_by_i, memo);
    if (m->last_bv != Qundef)
        minmax_by_i_update(m->last_bv, m->last_bv, m->last, m->last, m);
    m = MEMO_FOR(struct minmax_by_t, memo);
    return rb_assoc_new(m->min, m->max);
}

#none? {|obj| ... } ⇒ Boolean

Passes each element of the collection to the given block. The method returns true if the block never returns true for all elements. If the block is not given, none? will return true only if none of the collection members is true.

%w{ant bear cat}.none? { |word| word.length == 5 } #=> true
%w{ant bear cat}.none? { |word| word.length >= 4 } #=> false
[].none?                                           #=> true
[nil].none?                                        #=> true
[nil, false].none?                                 #=> true
[nil, false, true].none?                           #=> false

Yields:

  • (obj)

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1407
1408
1409
1410
1411
1412
1413
# File 'enum.c', line 1407

static VALUE
enum_none(VALUE obj)
{
    struct MEMO *memo = MEMO_NEW(Qtrue, 0, 0);
    rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)memo);
    return memo->v1;
}

#one? {|obj| ... } ⇒ Boolean

Passes each element of the collection to the given block. The method returns true if the block returns true exactly once. If the block is not given, one? will return true only if exactly one of the collection members is true.

%w{ant bear cat}.one? { |word| word.length == 4 }  #=> true
%w{ant bear cat}.one? { |word| word.length > 4 }   #=> false
%w{ant bear cat}.one? { |word| word.length < 4 }   #=> false
[ nil, true, 99 ].one?                             #=> false
[ nil, true, false ].one?                          #=> true

Yields:

  • (obj)

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
# File 'enum.c', line 1370

static VALUE
enum_one(VALUE obj)
{
    struct MEMO *memo = MEMO_NEW(Qundef, 0, 0);
    VALUE result;

    rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)memo);
    result = memo->v1;
    if (result == Qundef) return Qfalse;
    return result;
}

#partition {|obj| ... } ⇒ Array #partitionObject

Returns two arrays, the first containing the elements of enum for which the block evaluates to true, the second containing the rest.

If no block is given, an enumerator is returned instead.

(1..6).partition { |v| v.even? }  #=> [[2, 4, 6], [1, 3, 5]]

Overloads:

  • #partition {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



742
743
744
745
746
747
748
749
750
751
752
753
# File 'enum.c', line 742

static VALUE
enum_partition(VALUE obj)
{
    struct MEMO *memo;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    memo = MEMO_NEW(rb_ary_new(), rb_ary_new(), 0);
    rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo);

    return rb_assoc_new(memo->v1, memo->v2);
}

#inject(initial, sym) ⇒ Object #inject(sym) ⇒ Object #inject(initial) {|memo, obj| ... } ⇒ Object #inject {|memo, obj| ... } ⇒ Object #reduce(initial, sym) ⇒ Object #reduce(sym) ⇒ Object #reduce(initial) {|memo, obj| ... } ⇒ Object #reduce {|memo, obj| ... } ⇒ Object

Combines all elements of enum by applying a binary operation, specified by a block or a symbol that names a method or operator.

If you specify a block, then for each element in enum the block is passed an accumulator value (memo) and the element. If you specify a symbol instead, then each element in the collection will be passed to the named method of memo. In either case, the result becomes the new value for memo. At the end of the iteration, the final value of memo is the return value for the method.

If you do not explicitly specify an initial value for memo, then the first element of collection is used as the initial value of memo.

# Sum some numbers
(5..10).reduce(:+)                             #=> 45
# Same using a block and inject
(5..10).inject { |sum, n| sum + n }            #=> 45
# Multiply some numbers
(5..10).reduce(1, :*)                          #=> 151200
# Same using a block
(5..10).inject(1) { |product, n| product * n } #=> 151200
# find the longest word
longest = %w{ cat sheep bear }.inject do |memo, word|
   memo.length > word.length ? memo : word
end
longest                                        #=> "sheep"

Overloads:

  • #inject(initial, sym) ⇒ Object

    Returns:

  • #inject(sym) ⇒ Object

    Returns:

  • #inject(initial) {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #inject {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #reduce(initial, sym) ⇒ Object

    Returns:

  • #reduce(sym) ⇒ Object

    Returns:

  • #reduce(initial) {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #reduce {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:



674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
# File 'enum.c', line 674

static VALUE
enum_inject(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;
    VALUE init, op;
    rb_block_call_func *iter = inject_i;
    ID id;

    switch (rb_scan_args(argc, argv, "02", &init, &op)) {
      case 0:
	init = Qundef;
	break;
      case 1:
	if (rb_block_given_p()) {
	    break;
	}
	id = rb_check_id(&init);
	op = id ? ID2SYM(id) : init;
	init = Qundef;
	iter = inject_op_i;
	break;
      case 2:
	if (rb_block_given_p()) {
	    rb_warning("given block not used");
	}
	id = rb_check_id(&op);
	if (id) op = ID2SYM(id);
	iter = inject_op_i;
	break;
    }
    memo = MEMO_NEW(init, Qnil, op);
    rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
    if (memo->v1 == Qundef) return Qnil;
    return memo->v1;
}

#reject {|obj| ... } ⇒ Array #rejectObject

Returns an array for all elements of enum for which the given block returns false.

If no block is given, an Enumerator is returned instead.

(1..10).reject { |i|  i % 3 == 0 }   #=> [1, 2, 4, 5, 7, 8, 10]

[1, 2, 3, 4, 5].reject { |num| num.even? } #=> [1, 3, 5]

See also Enumerable#find_all.

Overloads:

  • #reject {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



421
422
423
424
425
426
427
428
429
430
431
432
# File 'enum.c', line 421

static VALUE
enum_reject(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, reject_i, ary);

    return ary;
}

#reverse_each(*args) {|item| ... } ⇒ Enumerator #reverse_each(*args) ⇒ Object

Builds a temporary array and traverses that array in reverse order.

If no block is given, an enumerator is returned instead.

  (1..3).reverse_each { |v| p v }

produces:

  3
  2
  1

Overloads:



2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
# File 'enum.c', line 2104

static VALUE
enum_reverse_each(int argc, VALUE *argv, VALUE obj)
{
    VALUE ary;
    long i;

    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);

    ary = enum_to_a(argc, argv, obj);

    for (i = RARRAY_LEN(ary); --i >= 0; ) {
	rb_yield(RARRAY_AREF(ary, i));
    }

    return obj;
}

#find_all {|obj| ... } ⇒ Array #select {|obj| ... } ⇒ Array #find_allObject #selectObject

Returns an array containing all elements of enum for which the given block returns a true value.

If no block is given, an Enumerator is returned instead.

(1..10).find_all { |i|  i % 3 == 0 }   #=> [3, 6, 9]

[1,2,3,4,5].select { |num|  num.even?  }   #=> [2, 4]

See also Enumerable#reject.

Overloads:

  • #find_all {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #select {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



380
381
382
383
384
385
386
387
388
389
390
391
# File 'enum.c', line 380

static VALUE
enum_find_all(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, find_all_i, ary);

    return ary;
}

#slice_after(pattern) ⇒ Object #slice_after {|elt| ... } ⇒ Object

Creates an enumerator for each chunked elements. The ends of chunks are defined by pattern and the block.

If pattern === elt returns true or the block returns true for the element, the element is end of a chunk.

The === and block is called from the first element to the last element of enum.

The result enumerator yields the chunked elements as an array. So each method can be called as follows:

enum.slice_after(pattern).each { |ary| ... }
enum.slice_after { |elt| bool }.each { |ary| ... }

Other methods of the Enumerator class and Enumerable module, such as map, etc., are also usable.

For example, continuation lines (lines end with backslash) can be concatenated as follows:

lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"]
e = lines.slice_after(/(?<!\\)\n\z/)
p e.to_a
#=> [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]]
p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last }
#=>["foo\n", "barbaz\n", "\n", "qux\n"]

Overloads:

  • #slice_after {|elt| ... } ⇒ Object

    Yields:

    • (elt)


3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
# File 'enum.c', line 3239

static VALUE
enum_slice_after(int argc, VALUE *argv, VALUE enumerable)
{
    VALUE enumerator;
    VALUE pat = Qnil, pred = Qnil;

    if (rb_block_given_p()) {
        if (0 < argc)
            rb_raise(rb_eArgError, "both pattern and block are given");
        pred = rb_block_proc();
    }
    else {
        rb_scan_args(argc, argv, "1", &pat);
    }

    enumerator = rb_obj_alloc(rb_cEnumerator);
    rb_ivar_set(enumerator, rb_intern("sliceafter_enum"), enumerable);
    rb_ivar_set(enumerator, rb_intern("sliceafter_pat"), pat);
    rb_ivar_set(enumerator, rb_intern("sliceafter_pred"), pred);

    rb_block_call(enumerator, idInitialize, 0, 0, sliceafter_i, enumerator);
    return enumerator;
}

#slice_before(pattern) ⇒ Object #slice_before {|elt| ... } ⇒ Object

Creates an enumerator for each chunked elements. The beginnings of chunks are defined by pattern and the block.

If pattern === elt returns true or the block returns true for the element, the element is beginning of a chunk.

The === and block is called from the first element to the last element of enum. The result for the first element is ignored.

The result enumerator yields the chunked elements as an array. So each method can be called as follows:

enum.slice_before(pattern).each { |ary| ... }
enum.slice_before { |elt| bool }.each { |ary| ... }

Other methods of the Enumerator class and Enumerable module, such as map, etc., are also usable.

For example, iteration over ChangeLog entries can be implemented as follows:

# iterate over ChangeLog entries.
open("ChangeLog") { |f|
  f.slice_before(/\A\S/).each { |e| pp e }
}

# same as above.  block is used instead of pattern argument.
open("ChangeLog") { |f|
  f.slice_before { |line| /\A\S/ === line }.each { |e| pp e }
}

“svn proplist -R” produces multiline output for each file. They can be chunked as follows:

IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f|
  f.lines.slice_before(/\AProp/).each { |lines| p lines }
}
#=> ["Properties on '.':\n", "  svn:ignore\n", "  svk:merge\n"]
#   ["Properties on 'goruby.c':\n", "  svn:eol-style\n"]
#   ["Properties on 'complex.c':\n", "  svn:mime-type\n", "  svn:eol-style\n"]
#   ["Properties on 'regparse.c':\n", "  svn:eol-style\n"]
#   ...

If the block needs to maintain state over multiple elements, local variables can be used. For example, three or more consecutive increasing numbers can be squashed as follows:

a = [0, 2, 3, 4, 6, 7, 9]
prev = a[0]
p a.slice_before { |e|
  prev, prev2 = e, prev
  prev2 + 1 != e
}.map { |es|
  es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}"
}.join(",")
#=> "0,2-4,6,7,9"

However local variables should be used carefully if the result enumerator is enumerated twice or more. The local variables should be initialized for each enumeration. Enumerator.new can be used to do it.

# Word wrapping.  This assumes all characters have same width.
def wordwrap(words, maxwidth)
  Enumerator.new {|y|
    # cols is initialized in Enumerator.new.
    cols = 0
    words.slice_before { |w|
      cols += 1 if cols != 0
      cols += w.length
      if maxwidth < cols
        cols = w.length
        true
      else
        false
      end
    }.each {|ws| y.yield ws }
  }
end
text = (1..20).to_a.join(" ")
enum = wordwrap(text.split(/\s+/), 10)
puts "-"*10
enum.each { |ws| puts ws.join(" ") } # first enumeration.
puts "-"*10
enum.each { |ws| puts ws.join(" ") } # second enumeration generates same result as the first.
puts "-"*10
#=> ----------
#   1 2 3 4 5
#   6 7 8 9 10
#   11 12 13
#   14 15 16
#   17 18 19
#   20
#   ----------
#   1 2 3 4 5
#   6 7 8 9 10
#   11 12 13
#   14 15 16
#   17 18 19
#   20
#   ----------

mbox contains series of mails which start with Unix From line. So each mail can be extracted by slice before Unix From line.

# parse mbox
open("mbox") { |f|
  f.slice_before { |line|
    line.start_with? "From "
  }.each { |mail|
    unix_from = mail.shift
    i = mail.index("\n")
    header = mail[0...i]
    body = mail[(i+1)..-1]
    body.pop if body.last == "\n"
    fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a
    p unix_from
    pp fields
    pp body
  }
}

# split mails in mbox (slice before Unix From line after an empty line)
open("mbox") { |f|
  f.slice_before(emp: true) { |line, h|
    prevemp = h[:emp]
    h[:emp] = line == "\n"
    prevemp && line.start_with?("From ")
  }.each { |mail|
    mail.pop if mail.last == "\n"
    pp mail
  }
}

Overloads:

  • #slice_before {|elt| ... } ⇒ Object

    Yields:

    • (elt)


3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
# File 'enum.c', line 3117

static VALUE
enum_slice_before(int argc, VALUE *argv, VALUE enumerable)
{
    VALUE enumerator;

    if (rb_block_given_p()) {
        if (argc != 0)
            rb_error_arity(argc, 0, 0);
        enumerator = rb_obj_alloc(rb_cEnumerator);
        rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pred"), rb_block_proc());
    }
    else {
        VALUE sep_pat;
        rb_scan_args(argc, argv, "1", &sep_pat);
        enumerator = rb_obj_alloc(rb_cEnumerator);
        rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pat"), sep_pat);
    }
    rb_ivar_set(enumerator, rb_intern("slicebefore_enumerable"), enumerable);
    rb_block_call(enumerator, idInitialize, 0, 0, slicebefore_i, enumerator);
    return enumerator;
}

#slice_when {|elt_before, elt_after| ... } ⇒ Object

Creates an enumerator for each chunked elements. The beginnings of chunks are defined by the block.

This method split each chunk using adjacent elements, elt_before and elt_after, in the receiver enumerator. This method split chunks between elt_before and elt_after where the block returns true.

The block is called the length of the receiver enumerator minus one.

The result enumerator yields the chunked elements as an array. So each method can be called as follows:

enum.slice_when { |elt_before, elt_after| bool }.each { |ary| ... }

Other methods of the Enumerator class and Enumerable module, such as to_a, map, etc., are also usable.

For example, one-by-one increasing subsequence can be chunked as follows:

a = [1,2,4,9,10,11,12,15,16,19,20,21]
b = a.slice_when {|i, j| i+1 != j }
p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
d = c.join(",")
p d #=> "1,2,4,9-12,15,16,19-21"

Near elements (threshold: 6) in sorted array can be chunked as follows:

a = [3, 11, 14, 25, 28, 29, 29, 41, 55, 57]
p a.slice_when {|i, j| 6 < j - i }.to_a
#=> [[3], [11, 14], [25, 28, 29, 29], [41], [55, 57]]

Increasing (non-decreasing) subsequence can be chunked as follows:

a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
p a.slice_when {|i, j| i > j }.to_a
#=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]

Adjacent evens and odds can be chunked as follows: (Enumerable#chunk is another way to do it.)

a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
p a.slice_when {|i, j| i.even? != j.even? }.to_a
#=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]

Paragraphs (non-empty lines with trailing empty lines) can be chunked as follows: (See Enumerable#chunk to ignore empty lines.)

lines = ["foo\n", "bar\n", "\n", "baz\n", "qux\n"]
p lines.slice_when {|l1, l2| /\A\s*\z/ =~ l1 && /\S/ =~ l2 }.to_a
#=> [["foo\n", "bar\n", "\n"], ["baz\n", "qux\n"]]

Yields:

  • (elt_before, elt_after)


3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
# File 'enum.c', line 3390

static VALUE
enum_slice_when(VALUE enumerable)
{
    VALUE enumerator;
    VALUE pred;

    pred = rb_block_proc();

    enumerator = rb_obj_alloc(rb_cEnumerator);
    rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable);
    rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred);
    rb_ivar_set(enumerator, rb_intern("slicewhen_inverted"), Qfalse);

    rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
    return enumerator;
}

#sortArray #sort {|a, b| ... } ⇒ Array

Returns an array containing the items in enum sorted, either according to their own <=> method, or by using the results of the supplied block. The block should return -1, 0, or +1 depending on the comparison between a and b. As of Ruby 1.8, the method Enumerable#sort_by implements a built-in Schwartzian Transform, useful when key computation or comparison is expensive.

%w(rhea kea flea).sort          #=> ["flea", "kea", "rhea"]
(1..10).sort { |a, b| b <=> a }  #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Overloads:



868
869
870
871
872
# File 'enum.c', line 868

static VALUE
enum_sort(VALUE obj)
{
    return rb_ary_sort(enum_to_a(0, 0, obj));
}

#sort_by {|obj| ... } ⇒ Array #sort_byObject

Sorts enum using a set of keys generated by mapping the values in enum through the given block.

If no block is given, an enumerator is returned instead.

%w{apple pear fig}.sort_by { |word| word.length}
              #=> ["fig", "pear", "apple"]

The current implementation of sort_by generates an array of tuples containing the original collection element and the mapped value. This makes sort_by fairly expensive when the keysets are simple.

require 'benchmark'

a = (1..100000).map { rand(100000) }

Benchmark.bm(10) do |b|
  b.report("Sort")    { a.sort }
  b.report("Sort by") { a.sort_by { |a| a } }
end

produces:

user     system      total        real
Sort        0.180000   0.000000   0.180000 (  0.175469)
Sort by     1.980000   0.040000   2.020000 (  2.013586)

However, consider the case where comparing the keys is a non-trivial operation. The following code sorts some files on modification time using the basic sort method.

files = Dir["*"]
sorted = files.sort { |a, b| File.new(a).mtime <=> File.new(b).mtime }
sorted   #=> ["mon", "tues", "wed", "thurs"]

This sort is inefficient: it generates two new File objects during every comparison. A slightly better technique is to use the Kernel#test method to generate the modification times directly.

files = Dir["*"]
sorted = files.sort { |a, b|
  test(?M, a) <=> test(?M, b)
}
sorted   #=> ["mon", "tues", "wed", "thurs"]

This still generates many unnecessary Time objects. A more efficient technique is to cache the sort keys (modification times in this case) before the sort. Perl users often call this approach a Schwartzian Transform, after Randal Schwartz. We construct a temporary array, where each element is an array containing our sort key along with the filename. We sort this array, and then extract the filename from the result.

sorted = Dir["*"].collect { |f|
   [test(?M, f), f]
}.sort.collect { |f| f[1] }
sorted   #=> ["mon", "tues", "wed", "thurs"]

This is exactly what sort_by does internally.

sorted = Dir["*"].sort_by { |f| test(?M, f) }
sorted   #=> ["mon", "tues", "wed", "thurs"]

Overloads:

  • #sort_by {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
# File 'enum.c', line 997

static VALUE
enum_sort_by(VALUE obj)
{
    VALUE ary, buf;
    struct MEMO *memo;
    long i;
    struct sort_by_data *data;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    if (RB_TYPE_P(obj, T_ARRAY) && RARRAY_LEN(obj) <= LONG_MAX/2) {
	ary = rb_ary_new2(RARRAY_LEN(obj)*2);
    }
    else {
	ary = rb_ary_new();
    }
    RBASIC_CLEAR_CLASS(ary);
    buf = rb_ary_tmp_new(SORT_BY_BUFSIZE*2);
    rb_ary_store(buf, SORT_BY_BUFSIZE*2-1, Qnil);
    memo = MEMO_NEW(0, 0, 0);
    OBJ_INFECT(memo, obj);
    data = (struct sort_by_data *)&memo->v1;
    RB_OBJ_WRITE(memo, &data->ary, ary);
    RB_OBJ_WRITE(memo, &data->buf, buf);
    data->n = 0;
    rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo);
    ary = data->ary;
    buf = data->buf;
    if (data->n) {
	rb_ary_resize(buf, data->n*2);
	rb_ary_concat(ary, buf);
    }
    if (RARRAY_LEN(ary) > 2) {
	RARRAY_PTR_USE(ary, ptr,
		      ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE),
				 sort_by_cmp, (void *)ary));
    }
    if (RBASIC(ary)->klass) {
	rb_raise(rb_eRuntimeError, "sort_by reentered");
    }
    for (i=1; i<RARRAY_LEN(ary); i+=2) {
	RARRAY_ASET(ary, i/2, RARRAY_AREF(ary, i));
    }
    rb_ary_resize(ary, RARRAY_LEN(ary)/2);
    RBASIC_SET_CLASS_RAW(ary, rb_cArray);
    OBJ_INFECT(ary, memo);

    return ary;
}

#take(n) ⇒ Array

Returns first n elements from enum.

a = [1, 2, 3, 4, 5, 0]
a.take(3)             #=> [1, 2, 3]
a.take(30)            #=> [1, 2, 3, 4, 5, 0]

Returns:



2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
# File 'enum.c', line 2524

static VALUE
enum_take(VALUE obj, VALUE n)
{
    struct MEMO *memo;
    VALUE result;
    long len = NUM2LONG(n);

    if (len < 0) {
	rb_raise(rb_eArgError, "attempt to take negative size");
    }

    if (len == 0) return rb_ary_new2(0);
    result = rb_ary_new2(len);
    memo = MEMO_NEW(result, 0, len);
    rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo);
    return result;
}

#take_while {|arr| ... } ⇒ Array #take_whileObject

Passes elements to the block until the block returns nil or false, then stops iterating and returns an array of all prior elements.

If no block is given, an enumerator is returned instead.

a = [1, 2, 3, 4, 5, 0]
a.take_while { |i| i < 3 }   #=> [1, 2]

Overloads:

  • #take_while {|arr| ... } ⇒ Array

    Yields:

    • (arr)

    Returns:



2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
# File 'enum.c', line 2566

static VALUE
enum_take_while(VALUE obj)
{
    VALUE ary;

    RETURN_ENUMERATOR(obj, 0, 0);
    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, take_while_i, ary);
    return ary;
}

#to_a(*args) ⇒ Array #entries(*args) ⇒ Array

Returns an array containing the items in enum.

(1..7).to_a                       #=> [1, 2, 3, 4, 5, 6, 7]
{ 'a'=>1, 'b'=>2, 'c'=>3 }.to_a   #=> [["a", 1], ["b", 2], ["c", 3]]

require 'prime'
Prime.entries 10                  #=> [2, 3, 5, 7]

Overloads:



541
542
543
544
545
546
547
548
549
550
# File 'enum.c', line 541

static VALUE
enum_to_a(int argc, VALUE *argv, VALUE obj)
{
    VALUE ary = rb_ary_new();

    rb_block_call(obj, id_each, argc, argv, collect_all, ary);
    OBJ_INFECT(ary, obj);

    return ary;
}

#to_h(*args) ⇒ Hash

Returns the result of interpreting enum as a list of [key, value] pairs.

%i[hello world].each_with_index.to_h
  # => {:hello => 0, :world => 1}

Returns:



582
583
584
585
586
587
588
589
# File 'enum.c', line 582

static VALUE
enum_to_h(int argc, VALUE *argv, VALUE obj)
{
    VALUE hash = rb_hash_new();
    rb_block_call(obj, id_each, argc, argv, enum_to_h_i, hash);
    OBJ_INFECT(hash, obj);
    return hash;
}

#zip(arg, ...) ⇒ Object #zip(arg, ...) {|arr| ... } ⇒ nil

Takes one element from enum and merges corresponding elements from each args. This generates a sequence of n-element arrays, where n is one more than the count of arguments. The length of the resulting sequence will be enum#size. If the size of any argument is less than enum#size, nil values are supplied. If a block is given, it is invoked for each output array, otherwise an array of arrays is returned.

a = [ 4, 5, 6 ]
b = [ 7, 8, 9 ]

a.zip(b)                 #=> [[4, 7], [5, 8], [6, 9]]
[1, 2, 3].zip(a, b)      #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
[1, 2].zip(a, b)         #=> [[1, 4, 7], [2, 5, 8]]
a.zip([1, 2], [8])       #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]]

c = []
a.zip(b) { |x, y| c << x + y }  #=> nil
c                               #=> [11, 13, 15]

Overloads:

  • #zip(arg, ...) {|arr| ... } ⇒ nil

    Yields:

    • (arr)

    Returns:

    • (nil)


2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
# File 'enum.c', line 2463

static VALUE
enum_zip(int argc, VALUE *argv, VALUE obj)
{
    int i;
    ID conv;
    struct MEMO *memo;
    VALUE result = Qnil;
    VALUE args = rb_ary_new4(argc, argv);
    int allary = TRUE;

    argv = RARRAY_PTR(args);
    for (i=0; i<argc; i++) {
	VALUE ary = rb_check_array_type(argv[i]);
	if (NIL_P(ary)) {
	    allary = FALSE;
	    break;
	}
	argv[i] = ary;
    }
    if (!allary) {
	CONST_ID(conv, "to_enum");
	for (i=0; i<argc; i++) {
	    if (!rb_respond_to(argv[i], id_each)) {
		rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)",
			 rb_obj_class(argv[i]));
            }
	    argv[i] = rb_funcall(argv[i], conv, 1, ID2SYM(id_each));
	}
    }
    if (!rb_block_given_p()) {
	result = rb_ary_new();
    }

    /* TODO: use NODE_DOT2 as memo(v, v, -) */
    memo = MEMO_NEW(result, args, 0);
    rb_block_call(obj, id_each, 0, 0, allary ? zip_ary : zip_i, (VALUE)memo);

    return result;
}