Class: Float

Inherits:
Numeric show all
Defined in:
numeric.c,
numeric.c

Overview

******************************************************************

Float objects represent inexact real numbers using the native
architecture's double-precision floating point representation.

Floating point has a different arithmetic and is an inexact number.
So you should know its esoteric system. see following:

- http://docs.sun.com/source/806-3568/ncg_goldberg.html
- http://wiki.github.com/rdp/ruby_tutorials_core/ruby-talk-faq#wiki-floats_imprecise

Constant Summary

ROUNDS =

-1:: Indeterminable 0:: Rounding towards zero 1:: Rounding to the nearest number 2:: Rounding towards positive infinity 3:: Rounding towards negative infinity

Represents the rounding mode for floating point addition.

Usually defaults to 1, rounding to the nearest number.

Other modes include
RADIX =

The base of the floating point, or number of unique digits used to represent the number.

Usually defaults to 2 on most systems, which would represent a base-10 decimal.
INT2FIX(FLT_RADIX)
MANT_DIG =

The number of base digits for the double data type.

Usually defaults to 53.

INT2FIX(DBL_MANT_DIG)
DIG =

The minimum number of significant decimal digits in a double-precision floating point.

Usually defaults to 15.

INT2FIX(DBL_DIG)
MIN_EXP =

The smallest posable exponent value in a double-precision floating point.

Usually defaults to -1021.

INT2FIX(DBL_MIN_EXP)
MAX_EXP =

The largest possible exponent value in a double-precision floating point.

Usually defaults to 1024.

INT2FIX(DBL_MAX_EXP)
MIN_10_EXP =

The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.

Usually defaults to -307.

INT2FIX(DBL_MIN_10_EXP)
MAX_10_EXP =

The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.

Usually defaults to 308.

INT2FIX(DBL_MAX_10_EXP)
MIN =

The smallest positive integer in a double-precision floating point.

Usually defaults to 2.2250738585072014e-308.

DBL2NUM(DBL_MIN)
MAX =

The largest possible integer in a double-precision floating point number.

Usually defaults to 1.7976931348623157e+308.

DBL2NUM(DBL_MAX)
EPSILON =

The difference between 1 and the smallest double-precision floating point number.

Usually defaults to 2.2204460492503131e-16.

DBL2NUM(DBL_EPSILON)
INFINITY =

An expression representing positive infinity.

DBL2NUM(INFINITY)
NAN =

An expression representing a value which is “not a number”.

DBL2NUM(NAN)

Instance Method Summary collapse

Methods inherited from Numeric

#+@, #abs2, #conj, #conjugate, #div, #i, #imag, #imaginary, #initialize_copy, #integer?, #nonzero?, #polar, #real, #real?, #rect, #rectangular, #remainder, #singleton_method_added, #step, #to_c

Methods included from Comparable

#between?

Instance Method Details

#%(other) ⇒ Float #modulo(other) ⇒ Float

Return the modulo after division of float by other.

6543.21.modulo(137)      #=> 104.21
6543.21.modulo(137.24)   #=> 92.9299999999996

Overloads:



951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
# File 'numeric.c', line 951

static VALUE
flo_mod(VALUE x, VALUE y)
{
    double fy;

    if (RB_TYPE_P(y, T_FIXNUM)) {
	fy = (double)FIX2LONG(y);
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	fy = rb_big2dbl(y);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	fy = RFLOAT_VALUE(y);
    }
    else {
	return rb_num_coerce_bin(x, y, '%');
    }
    return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}

#*(other) ⇒ Float

Returns a new float which is the product of float and other.

Returns:



830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
# File 'numeric.c', line 830

static VALUE
flo_mul(VALUE x, VALUE y)
{
    if (RB_TYPE_P(y, T_FIXNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '*');
    }
}

#**(other) ⇒ Float

Raises float to the power of other.

2.0**3      #=> 8.0

Returns:



1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
# File 'numeric.c', line 1025

static VALUE
flo_pow(VALUE x, VALUE y)
{
    if (RB_TYPE_P(y, T_FIXNUM)) {
	return DBL2NUM(pow(RFLOAT_VALUE(x), (double)FIX2LONG(y)));
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	return DBL2NUM(pow(RFLOAT_VALUE(x), rb_big2dbl(y)));
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	{
	    double dx = RFLOAT_VALUE(x);
	    double dy = RFLOAT_VALUE(y);
	    if (dx < 0 && dy != round(dy))
		return rb_funcall(rb_complex_raw1(x), rb_intern("**"), 1, y);
	    return DBL2NUM(pow(dx, dy));
	}
    }
    else {
	return rb_num_coerce_bin(x, y, rb_intern("**"));
    }
}

#+(other) ⇒ Float

Returns a new float which is the sum of float and other.

Returns:



782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
# File 'numeric.c', line 782

static VALUE
flo_plus(VALUE x, VALUE y)
{
    if (RB_TYPE_P(y, T_FIXNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '+');
    }
}

#-(other) ⇒ Float

Returns a new float which is the difference of float and other.

Returns:



806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
# File 'numeric.c', line 806

static VALUE
flo_minus(VALUE x, VALUE y)
{
    if (RB_TYPE_P(y, T_FIXNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '-');
    }
}

#-Float

Returns float, negated.

Returns:



769
770
771
772
773
# File 'numeric.c', line 769

static VALUE
flo_uminus(VALUE flt)
{
    return DBL2NUM(-RFLOAT_VALUE(flt));
}

#/(other) ⇒ Float

Returns a new float which is the result of dividing float by other.

Returns:



854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
# File 'numeric.c', line 854

static VALUE
flo_div(VALUE x, VALUE y)
{
    long f_y;
    double d;

    if (RB_TYPE_P(y, T_FIXNUM)) {
	f_y = FIX2LONG(y);
	return DBL2NUM(RFLOAT_VALUE(x) / (double)f_y);
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	d = rb_big2dbl(y);
	return DBL2NUM(RFLOAT_VALUE(x) / d);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y));
    }
    else {
	return rb_num_coerce_bin(x, y, '/');
    }
}

#<(real) ⇒ Boolean

Returns true if float is less than real.

The result of NaN < NaN is undefined, so the implementation-dependent value is returned.

Returns:

  • (Boolean)


1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
# File 'numeric.c', line 1289

static VALUE
flo_lt(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return -FIX2INT(rel) < 0 ? Qtrue : Qfalse;
        return Qfalse;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(b)) return Qfalse;
#endif
    }
    else {
	return rb_num_coerce_relop(x, y, '<');
    }
#if defined(_MSC_VER) && _MSC_VER < 1300
    if (isnan(a)) return Qfalse;
#endif
    return (a < b)?Qtrue:Qfalse;
}

#<=(real) ⇒ Boolean

Returns true if float is less than or equal to real.

The result of NaN <= NaN is undefined, so the implementation-dependent value is returned.

Returns:

  • (Boolean)


1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
# File 'numeric.c', line 1326

static VALUE
flo_le(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return -FIX2INT(rel) <= 0 ? Qtrue : Qfalse;
        return Qfalse;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(b)) return Qfalse;
#endif
    }
    else {
	return rb_num_coerce_relop(x, y, rb_intern("<="));
    }
#if defined(_MSC_VER) && _MSC_VER < 1300
    if (isnan(a)) return Qfalse;
#endif
    return (a <= b)?Qtrue:Qfalse;
}

#<=>(real) ⇒ -1, ...

Returns -1, 0, +1 or nil depending on whether float is less than, equal to, or greater than real. This is the basis for the tests in Comparable.

The result of NaN <=> NaN is undefined, so the implementation-dependent value is returned.

nil is returned if the two values are incomparable.

Returns:

  • (-1, 0, +1, nil)


1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
# File 'numeric.c', line 1173

static VALUE
flo_cmp(VALUE x, VALUE y)
{
    double a, b;
    VALUE i;

    a = RFLOAT_VALUE(x);
    if (isnan(a)) return Qnil;
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return INT2FIX(-FIX2INT(rel));
        return rel;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
    }
    else {
	if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
	    if (RTEST(i)) {
		int j = rb_cmpint(i, x, y);
		j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
		return INT2FIX(j);
	    }
	    if (a > 0.0) return INT2FIX(1);
	    return INT2FIX(-1);
	}
	return rb_num_coerce_cmp(x, y, id_cmp);
    }
    return rb_dbl_cmp(a, b);
}

#==(obj) ⇒ Boolean

Returns true only if obj has the same value as float. Contrast this with Float#eql?, which requires obj to be a Float.

The result of NaN == NaN is undefined, so the implementation-dependent value is returned.

1.0 == 1   #=> true

Returns:

  • (Boolean)


1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
# File 'numeric.c', line 1104

static VALUE
flo_eq(VALUE x, VALUE y)
{
    volatile double a, b;

    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        return rb_integer_float_eq(y, x);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(b)) return Qfalse;
#endif
    }
    else {
	return num_equal(x, y);
    }
    a = RFLOAT_VALUE(x);
#if defined(_MSC_VER) && _MSC_VER < 1300
    if (isnan(a)) return Qfalse;
#endif
    return (a == b)?Qtrue:Qfalse;
}

#==(obj) ⇒ Boolean

Returns true only if obj has the same value as float. Contrast this with Float#eql?, which requires obj to be a Float.

The result of NaN == NaN is undefined, so the implementation-dependent value is returned.

1.0 == 1   #=> true

Returns:

  • (Boolean)


1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
# File 'numeric.c', line 1104

static VALUE
flo_eq(VALUE x, VALUE y)
{
    volatile double a, b;

    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        return rb_integer_float_eq(y, x);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(b)) return Qfalse;
#endif
    }
    else {
	return num_equal(x, y);
    }
    a = RFLOAT_VALUE(x);
#if defined(_MSC_VER) && _MSC_VER < 1300
    if (isnan(a)) return Qfalse;
#endif
    return (a == b)?Qtrue:Qfalse;
}

#>(real) ⇒ Boolean

Returns true if float is greater than real.

The result of NaN > NaN is undefined, so the implementation-dependent value is returned.

Returns:

  • (Boolean)


1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
# File 'numeric.c', line 1215

static VALUE
flo_gt(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return -FIX2INT(rel) > 0 ? Qtrue : Qfalse;
        return Qfalse;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(b)) return Qfalse;
#endif
    }
    else {
	return rb_num_coerce_relop(x, y, '>');
    }
#if defined(_MSC_VER) && _MSC_VER < 1300
    if (isnan(a)) return Qfalse;
#endif
    return (a > b)?Qtrue:Qfalse;
}

#>=(real) ⇒ Boolean

Returns true if float is greater than or equal to real.

The result of NaN >= NaN is undefined, so the implementation-dependent value is returned.

Returns:

  • (Boolean)


1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
# File 'numeric.c', line 1252

static VALUE
flo_ge(VALUE x, VALUE y)
{
    double a, b;

    a = RFLOAT_VALUE(x);
    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
        VALUE rel = rb_integer_float_cmp(y, x);
        if (FIXNUM_P(rel))
            return -FIX2INT(rel) >= 0 ? Qtrue : Qfalse;
        return Qfalse;
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(b)) return Qfalse;
#endif
    }
    else {
	return rb_num_coerce_relop(x, y, rb_intern(">="));
    }
#if defined(_MSC_VER) && _MSC_VER < 1300
    if (isnan(a)) return Qfalse;
#endif
    return (a >= b)?Qtrue:Qfalse;
}

#absFloat #magnitudeFloat

Returns the absolute value of float.

(-34.56).abs   #=> 34.56
-34.56.abs     #=> 34.56

Overloads:



1406
1407
1408
1409
1410
1411
# File 'numeric.c', line 1406

static VALUE
flo_abs(VALUE flt)
{
    double val = fabs(RFLOAT_VALUE(flt));
    return DBL2NUM(val);
}

#arg0, Float #angle0, Float #phase0, Float

Returns 0 if the value is positive, pi otherwise.

Overloads:



2011
2012
2013
2014
2015
2016
2017
2018
2019
# File 'complex.c', line 2011

static VALUE
float_arg(VALUE self)
{
    if (isnan(RFLOAT_VALUE(self)))
	return self;
    if (f_tpositive_p(self))
	return INT2FIX(0);
    return rb_const_get(rb_mMath, id_PI);
}

#arg0, Float #angle0, Float #phase0, Float

Returns 0 if the value is positive, pi otherwise.

Overloads:



2011
2012
2013
2014
2015
2016
2017
2018
2019
# File 'complex.c', line 2011

static VALUE
float_arg(VALUE self)
{
    if (isnan(RFLOAT_VALUE(self)))
	return self;
    if (f_tpositive_p(self))
	return INT2FIX(0);
    return rb_const_get(rb_mMath, id_PI);
}

#ceilInteger

Returns the smallest Integer greater than or equal to float.

1.2.ceil      #=> 2
2.0.ceil      #=> 2
(-1.2).ceil   #=> -1
(-2.0).ceil   #=> -2

Returns:



1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
# File 'numeric.c', line 1654

static VALUE
flo_ceil(VALUE num)
{
    double f = ceil(RFLOAT_VALUE(num));
    long val;

    if (!FIXABLE(f)) {
	return rb_dbl2big(f);
    }
    val = (long)f;
    return LONG2FIX(val);
}

#coerce(numeric) ⇒ Array

Returns an array with both a numeric and a float represented as Float objects.

This is achieved by converting a numeric to a Float.

1.2.coerce(3)       #=> [3.0, 1.2]
2.5.coerce(1.1)     #=> [1.1, 2.5]

Returns:



756
757
758
759
760
# File 'numeric.c', line 756

static VALUE
flo_coerce(VALUE x, VALUE y)
{
    return rb_assoc_new(rb_Float(y), x);
}

#denominatorInteger

Returns the denominator (always positive). The result is machine dependent.

See numerator.

Returns:



1906
1907
1908
1909
1910
1911
1912
1913
# File 'rational.c', line 1906

static VALUE
float_denominator(VALUE self)
{
    double d = RFLOAT_VALUE(self);
    if (isinf(d) || isnan(d))
	return INT2FIX(1);
    return rb_call_super(0, 0);
}

#divmod(numeric) ⇒ Array

See Numeric#divmod.

42.0.divmod 6 #=> [7, 0.0]
42.0.divmod 5 #=> [8, 2.0]

Returns:



991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
# File 'numeric.c', line 991

static VALUE
flo_divmod(VALUE x, VALUE y)
{
    double fy, div, mod;
    volatile VALUE a, b;

    if (RB_TYPE_P(y, T_FIXNUM)) {
	fy = (double)FIX2LONG(y);
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	fy = rb_big2dbl(y);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	fy = RFLOAT_VALUE(y);
    }
    else {
	return rb_num_coerce_bin(x, y, rb_intern("divmod"));
    }
    flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
    a = dbl2ival(div);
    b = DBL2NUM(mod);
    return rb_assoc_new(a, b);
}

#eql?(obj) ⇒ Boolean

Returns true only if obj is a Float with the same value as float. Contrast this with Float#==, which performs type conversions.

The result of NaN.eql?(NaN) is undefined, so the implementation-dependent value is returned.

1.0.eql?(1)   #=> false

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
# File 'numeric.c', line 1366

static VALUE
flo_eql(VALUE x, VALUE y)
{
    if (RB_TYPE_P(y, T_FLOAT)) {
	double a = RFLOAT_VALUE(x);
	double b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
	if (isnan(a) || isnan(b)) return Qfalse;
#endif
	if (a == b)
	    return Qtrue;
    }
    return Qfalse;
}

#fdiv(numeric) ⇒ Float #quo(numeric) ⇒ Float

Returns float / numeric, same as Float#/.

Overloads:



884
885
886
887
888
# File 'numeric.c', line 884

static VALUE
flo_quo(VALUE x, VALUE y)
{
    return rb_funcall(x, '/', 1, y);
}

#finite?Boolean

Returns true if float is a valid IEEE floating point number (it is not infinite, and Float#nan? is false).

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
# File 'numeric.c', line 1488

static VALUE
flo_is_finite_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

#ifdef HAVE_ISFINITE
    if (!isfinite(value))
	return Qfalse;
#else
    if (isinf(value) || isnan(value))
	return Qfalse;
#endif

    return Qtrue;
}

#floorInteger

Returns the largest integer less than or equal to float.

1.2.floor      #=> 1
2.0.floor      #=> 2
(-1.2).floor   #=> -2
(-2.0).floor   #=> -2

Returns:



1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
# File 'numeric.c', line 1629

static VALUE
flo_floor(VALUE num)
{
    double f = floor(RFLOAT_VALUE(num));
    long val;

    if (!FIXABLE(f)) {
	return rb_dbl2big(f);
    }
    val = (long)f;
    return LONG2FIX(val);
}

#hashInteger

Returns a hash code for this float.

See also Object#hash.

Returns:



1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
# File 'numeric.c', line 1137

static VALUE
flo_hash(VALUE num)
{
    double d;
    st_index_t hash;

    d = RFLOAT_VALUE(num);
    /* normalize -0.0 to 0.0 */
    if (d == 0.0) d = 0.0;
    hash = rb_memhash(&d, sizeof(d));
    return LONG2FIX(hash);
}

#infinite?nil, ...

Return values corresponding to the value of float:

finite:: nil

-Infinity

-1

+Infinity

1

For example:

(0.0).infinite?        #=> nil
(-1.0/0.0).infinite?   #=> -1
(+1.0/0.0).infinite?   #=> 1

Returns:

  • (nil, -1, +1)

Returns:

  • (Boolean)


1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
# File 'numeric.c', line 1467

static VALUE
flo_is_infinite_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

    if (isinf(value)) {
	return INT2FIX( value < 0 ? -1 : 1 );
    }

    return Qnil;
}

#absFloat #magnitudeFloat

Returns the absolute value of float.

(-34.56).abs   #=> 34.56
-34.56.abs     #=> 34.56

Overloads:



1406
1407
1408
1409
1410
1411
# File 'numeric.c', line 1406

static VALUE
flo_abs(VALUE flt)
{
    double val = fabs(RFLOAT_VALUE(flt));
    return DBL2NUM(val);
}

#%(other) ⇒ Float #modulo(other) ⇒ Float

Return the modulo after division of float by other.

6543.21.modulo(137)      #=> 104.21
6543.21.modulo(137.24)   #=> 92.9299999999996

Overloads:



951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
# File 'numeric.c', line 951

static VALUE
flo_mod(VALUE x, VALUE y)
{
    double fy;

    if (RB_TYPE_P(y, T_FIXNUM)) {
	fy = (double)FIX2LONG(y);
    }
    else if (RB_TYPE_P(y, T_BIGNUM)) {
	fy = rb_big2dbl(y);
    }
    else if (RB_TYPE_P(y, T_FLOAT)) {
	fy = RFLOAT_VALUE(y);
    }
    else {
	return rb_num_coerce_bin(x, y, '%');
    }
    return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}

#nan?Boolean

Returns true if float is an invalid IEEE floating point number.

a = -1.0      #=> -1.0
a.nan?        #=> false
a = 0.0/0.0   #=> NaN
a.nan?        #=> true

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1442
1443
1444
1445
1446
1447
1448
# File 'numeric.c', line 1442

static VALUE
flo_is_nan_p(VALUE num)
{
    double value = RFLOAT_VALUE(num);

    return isnan(value) ? Qtrue : Qfalse;
}

#next_floatFloat

Returns the next representable floating-point number.

Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY.

Float::NAN.next_float is Float::NAN.

For example:

p 0.01.next_float  #=> 0.010000000000000002
p 1.0.next_float   #=> 1.0000000000000002
p 100.0.next_float #=> 100.00000000000001

p 0.01.next_float - 0.01   #=> 1.734723475976807e-18
p 1.0.next_float - 1.0     #=> 2.220446049250313e-16
p 100.0.next_float - 100.0 #=> 1.4210854715202004e-14

f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float }
#=> 0x1.47ae147ae147bp-7 0.01
#   0x1.47ae147ae147cp-7 0.010000000000000002
#   0x1.47ae147ae147dp-7 0.010000000000000004
#   0x1.47ae147ae147ep-7 0.010000000000000005
#   0x1.47ae147ae147fp-7 0.010000000000000007
#   0x1.47ae147ae148p-7  0.010000000000000009
#   0x1.47ae147ae1481p-7 0.01000000000000001
#   0x1.47ae147ae1482p-7 0.010000000000000012
#   0x1.47ae147ae1483p-7 0.010000000000000014
#   0x1.47ae147ae1484p-7 0.010000000000000016
#   0x1.47ae147ae1485p-7 0.010000000000000018
#   0x1.47ae147ae1486p-7 0.01000000000000002
#   0x1.47ae147ae1487p-7 0.010000000000000021
#   0x1.47ae147ae1488p-7 0.010000000000000023
#   0x1.47ae147ae1489p-7 0.010000000000000024
#   0x1.47ae147ae148ap-7 0.010000000000000026
#   0x1.47ae147ae148bp-7 0.010000000000000028
#   0x1.47ae147ae148cp-7 0.01000000000000003
#   0x1.47ae147ae148dp-7 0.010000000000000031
#   0x1.47ae147ae148ep-7 0.010000000000000033

f = 0.0
100.times { f += 0.1 }
p f                            #=> 9.99999999999998       # should be 10.0 in the ideal world.
p 10-f                         #=> 1.9539925233402755e-14 # the floating-point error.
p(10.0.next_float-10)          #=> 1.7763568394002505e-15 # 1 ulp (units in the last place).
p((10-f)/(10.0.next_float-10)) #=> 11.0                   # the error is 11 ulp.
p((10-f)/(10*Float::EPSILON))  #=> 8.8                    # approximation of the above.
p "%a" % f                     #=> "0x1.3fffffffffff5p+3" # the last hex digit is 5.  16 - 5 = 11 ulp.

Returns:



1556
1557
1558
1559
1560
1561
1562
1563
# File 'numeric.c', line 1556

static VALUE
flo_next_float(VALUE vx)
{
    double x, y;
    x = NUM2DBL(vx);
    y = nextafter(x, INFINITY);
    return DBL2NUM(y);
}

#numeratorInteger

Returns the numerator. The result is machine dependent.

n = 0.3.numerator    #=> 5404319552844595
d = 0.3.denominator  #=> 18014398509481984
n.fdiv(d)            #=> 0.3

Returns:



1888
1889
1890
1891
1892
1893
1894
1895
# File 'rational.c', line 1888

static VALUE
float_numerator(VALUE self)
{
    double d = RFLOAT_VALUE(self);
    if (isinf(d) || isnan(d))
	return self;
    return rb_call_super(0, 0);
}

#arg0, Float #angle0, Float #phase0, Float

Returns 0 if the value is positive, pi otherwise.

Overloads:



2011
2012
2013
2014
2015
2016
2017
2018
2019
# File 'complex.c', line 2011

static VALUE
float_arg(VALUE self)
{
    if (isnan(RFLOAT_VALUE(self)))
	return self;
    if (f_tpositive_p(self))
	return INT2FIX(0);
    return rb_const_get(rb_mMath, id_PI);
}

#prev_floatFloat

Returns the previous representable floatint-point number.

(-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.

Float::NAN.prev_float is Float::NAN.

For example:

p 0.01.prev_float  #=> 0.009999999999999998
p 1.0.prev_float   #=> 0.9999999999999999
p 100.0.prev_float #=> 99.99999999999999

p 0.01 - 0.01.prev_float   #=> 1.734723475976807e-18
p 1.0 - 1.0.prev_float     #=> 1.1102230246251565e-16
p 100.0 - 100.0.prev_float #=> 1.4210854715202004e-14

f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float }
#=> 0x1.47ae147ae147bp-7 0.01
#   0x1.47ae147ae147ap-7 0.009999999999999998
#   0x1.47ae147ae1479p-7 0.009999999999999997
#   0x1.47ae147ae1478p-7 0.009999999999999995
#   0x1.47ae147ae1477p-7 0.009999999999999993
#   0x1.47ae147ae1476p-7 0.009999999999999992
#   0x1.47ae147ae1475p-7 0.00999999999999999
#   0x1.47ae147ae1474p-7 0.009999999999999988
#   0x1.47ae147ae1473p-7 0.009999999999999986
#   0x1.47ae147ae1472p-7 0.009999999999999985
#   0x1.47ae147ae1471p-7 0.009999999999999983
#   0x1.47ae147ae147p-7  0.009999999999999981
#   0x1.47ae147ae146fp-7 0.00999999999999998
#   0x1.47ae147ae146ep-7 0.009999999999999978
#   0x1.47ae147ae146dp-7 0.009999999999999976
#   0x1.47ae147ae146cp-7 0.009999999999999974
#   0x1.47ae147ae146bp-7 0.009999999999999972
#   0x1.47ae147ae146ap-7 0.00999999999999997
#   0x1.47ae147ae1469p-7 0.009999999999999969
#   0x1.47ae147ae1468p-7 0.009999999999999967

Returns:



1608
1609
1610
1611
1612
1613
1614
1615
# File 'numeric.c', line 1608

static VALUE
flo_prev_float(VALUE vx)
{
    double x, y;
    x = NUM2DBL(vx);
    y = nextafter(x, -INFINITY);
    return DBL2NUM(y);
}

#fdiv(numeric) ⇒ Float #quo(numeric) ⇒ Float

Returns float / numeric, same as Float#/.

Overloads:



884
885
886
887
888
# File 'numeric.c', line 884

static VALUE
flo_quo(VALUE x, VALUE y)
{
    return rb_funcall(x, '/', 1, y);
}

#rationalize([eps]) ⇒ Object

Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). if the optional eps is not given, it will be chosen automatically.

0.3.rationalize          #=> (3/10)
1.333.rationalize        #=> (1333/1000)
1.333.rationalize(0.01)  #=> (4/3)

See to_r.



2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
# File 'rational.c', line 2103

static VALUE
float_rationalize(int argc, VALUE *argv, VALUE self)
{
    VALUE e;

    if (f_negative_p(self))
        return f_negate(float_rationalize(argc, argv, f_abs(self)));

    rb_scan_args(argc, argv, "01", &e);

    if (argc != 0) {
        return rb_flt_rationalize_with_prec(self, e);
    }
    else {
        return rb_flt_rationalize(self);
    }
}

#round([ndigits]) ⇒ Integer, Float

Rounds float to a given precision in decimal digits (default 0 digits).

Precision may be negative. Returns a floating point number when ndigits is more than zero.

1.4.round      #=> 1
1.5.round      #=> 2
1.6.round      #=> 2
(-1.5).round   #=> -2

1.234567.round(2)  #=> 1.23
1.234567.round(3)  #=> 1.235
1.234567.round(4)  #=> 1.2346
1.234567.round(5)  #=> 1.23457

34567.89.round(-5) #=> 0
34567.89.round(-4) #=> 30000
34567.89.round(-3) #=> 35000
34567.89.round(-2) #=> 34600
34567.89.round(-1) #=> 34570
34567.89.round(0)  #=> 34568
34567.89.round(1)  #=> 34567.9
34567.89.round(2)  #=> 34567.89
34567.89.round(3)  #=> 34567.89

Returns:



1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
# File 'numeric.c', line 1740

static VALUE
flo_round(int argc, VALUE *argv, VALUE num)
{
    VALUE nd;
    double number, f;
    int ndigits = 0;
    int binexp;
    enum {float_dig = DBL_DIG+2};

    if (argc > 0 && rb_scan_args(argc, argv, "01", &nd) == 1) {
	ndigits = NUM2INT(nd);
    }
    if (ndigits < 0) {
	return int_round_0(flo_truncate(num), ndigits);
    }
    number  = RFLOAT_VALUE(num);
    if (ndigits == 0) {
	return dbl2ival(number);
    }
    frexp(number, &binexp);

/* Let `exp` be such that `number` is written as:"0.#{digits}e#{exp}",
   i.e. such that  10 ** (exp - 1) <= |number| < 10 ** exp
   Recall that up to float_dig digits can be needed to represent a double,
   so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits)
   will be an integer and thus the result is the original number.
   If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so
   if ndigits + exp < 0, the result is 0.
   We have:
	2 ** (binexp-1) <= |number| < 2 ** binexp
	10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10))
	If binexp >= 0, and since log_2(10) = 3.322259:
	   10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3)
	   floor(binexp/4) <= exp <= ceil(binexp/3)
	If binexp <= 0, swap the /4 and the /3
	So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number
	If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0
*/
    if (isinf(number) || isnan(number) ||
	(ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1))) {
	return num;
    }
    if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) {
	return DBL2NUM(0);
    }
    f = pow(10, ndigits);
    return DBL2NUM(round(number * f) / f);
}

#to_fself

Since float is already a float, returns self.

Returns:

  • (self)


1388
1389
1390
1391
1392
# File 'numeric.c', line 1388

static VALUE
flo_to_f(VALUE num)
{
    return num;
}

#to_iInteger #to_intInteger #truncateInteger

Returns the float truncated to an Integer.

Synonyms are #to_i, #to_int, and #truncate.

Overloads:



1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
# File 'numeric.c', line 1800

static VALUE
flo_truncate(VALUE num)
{
    double f = RFLOAT_VALUE(num);
    long val;

    if (f > 0.0) f = floor(f);
    if (f < 0.0) f = ceil(f);

    if (!FIXABLE(f)) {
	return rb_dbl2big(f);
    }
    val = (long)f;
    return LONG2FIX(val);
}

#to_iInteger #to_intInteger #truncateInteger

Returns the float truncated to an Integer.

Synonyms are #to_i, #to_int, and #truncate.

Overloads:



1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
# File 'numeric.c', line 1800

static VALUE
flo_truncate(VALUE num)
{
    double f = RFLOAT_VALUE(num);
    long val;

    if (f > 0.0) f = floor(f);
    if (f < 0.0) f = ceil(f);

    if (!FIXABLE(f)) {
	return rb_dbl2big(f);
    }
    val = (long)f;
    return LONG2FIX(val);
}

#to_rObject

Returns the value as a rational.

NOTE: 0.3.to_r isn't the same as '0.3'.to_r. The latter is equivalent to '3/10'.to_r, but the former isn't so.

2.0.to_r    #=> (2/1)
2.5.to_r    #=> (5/2)
-0.75.to_r  #=> (-3/4)
0.0.to_r    #=> (0/1)

See rationalize.



2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
# File 'rational.c', line 2013

static VALUE
float_to_r(VALUE self)
{
    VALUE f, n;

    float_decode_internal(self, &f, &n);
#if FLT_RADIX == 2
    {
	long ln = FIX2LONG(n);

	if (ln == 0)
	    return f_to_r(f);
	if (ln > 0)
	    return f_to_r(f_lshift(f, n));
	ln = -ln;
	return rb_rational_new2(f, f_lshift(ONE, INT2FIX(ln)));
    }
#else
    return f_to_r(f_mul(f, f_expt(INT2FIX(FLT_RADIX), n)));
#endif
}

#to_sString Also known as: inspect

Returns a string containing a representation of self. As well as a fixed or exponential form of the float, the call may return NaN, Infinity, and -Infinity.

Returns:



675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
# File 'numeric.c', line 675

static VALUE
flo_to_s(VALUE flt)
{
    enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
    enum {float_dig = DBL_DIG+1};
    char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
    double value = RFLOAT_VALUE(flt);
    VALUE s;
    char *p, *e;
    int sign, decpt, digs;

    if (isinf(value))
	return rb_usascii_str_new2(value < 0 ? "-Infinity" : "Infinity");
    else if (isnan(value))
	return rb_usascii_str_new2("NaN");

    p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
    s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
    if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
    memcpy(buf, p, digs);
    xfree(p);
    if (decpt > 0) {
	if (decpt < digs) {
	    memmove(buf + decpt + 1, buf + decpt, digs - decpt);
	    buf[decpt] = '.';
	    rb_str_cat(s, buf, digs + 1);
	}
	else if (decpt <= DBL_DIG) {
	    long len;
	    char *ptr;
	    rb_str_cat(s, buf, digs);
	    rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
	    ptr = RSTRING_PTR(s) + len;
	    if (decpt > digs) {
		memset(ptr, '0', decpt - digs);
		ptr += decpt - digs;
	    }
	    memcpy(ptr, ".0", 2);
	}
	else {
	    goto exp;
	}
    }
    else if (decpt > -4) {
	long len;
	char *ptr;
	rb_str_cat(s, "0.", 2);
	rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
	ptr = RSTRING_PTR(s);
	memset(ptr += len, '0', -decpt);
	memcpy(ptr -= decpt, buf, digs);
    }
    else {
      exp:
	if (digs > 1) {
	    memmove(buf + 2, buf + 1, digs - 1);
	}
	else {
	    buf[2] = '0';
	    digs++;
	}
	buf[1] = '.';
	rb_str_cat(s, buf, digs + 1);
	rb_str_catf(s, "e%+03d", decpt - 1);
    }
    return s;
}

#to_iInteger #to_intInteger #truncateInteger

Returns the float truncated to an Integer.

Synonyms are #to_i, #to_int, and #truncate.

Overloads:



1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
# File 'numeric.c', line 1800

static VALUE
flo_truncate(VALUE num)
{
    double f = RFLOAT_VALUE(num);
    long val;

    if (f > 0.0) f = floor(f);
    if (f < 0.0) f = ceil(f);

    if (!FIXABLE(f)) {
	return rb_dbl2big(f);
    }
    val = (long)f;
    return LONG2FIX(val);
}

#zero?Boolean

Returns true if float is 0.0.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1421
1422
1423
1424
1425
1426
1427
1428
# File 'numeric.c', line 1421

static VALUE
flo_zero_p(VALUE num)
{
    if (RFLOAT_VALUE(num) == 0.0) {
	return Qtrue;
    }
    return Qfalse;
}