Class: Transrate::Assembly

Inherits:
Object
  • Object
show all
Extended by:
Forwardable
Includes:
Enumerable
Defined in:
lib/transrate/assembly.rb

Overview

Container for a transcriptome assembly and its associated metadata.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(file) ⇒ Assembly

Create a new Assembly.



41
42
43
44
45
46
47
48
49
50
51
52
53
54
# File 'lib/transrate/assembly.rb', line 41

def initialize file
  @file = File.expand_path file
  unless File.exist? @file
    raise IOError.new "Assembly file doesn't exist: #{@file}"
  end
  @assembly = {}
  @n_bases = 0
  Bio::FastaFormat.open(file).each do |entry|
    @n_bases += entry.length
    contig = Contig.new(entry)
    @assembly[contig.name] = contig
  end
  @contig_metrics = ContigMetrics.new self
end

Instance Attribute Details

#assemblyArray<Bio::FastaFormat> (readonly)



25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# File 'lib/transrate/assembly.rb', line 25

class Assembly

  include Enumerable
  extend Forwardable
  def_delegators :@assembly, :each, :each_value, :<<, :size, :length, :[]

  attr_accessor :file
  attr_reader :assembly
  attr_reader :has_run
  attr_accessor :n_bases
  attr_reader :n50
  attr_accessor :contig_metrics

  # Create a new Assembly.
  #
  # @param file [String] path to the assembly FASTA file
  def initialize file
    @file = File.expand_path file
    unless File.exist? @file
      raise IOError.new "Assembly file doesn't exist: #{@file}"
    end
    @assembly = {}
    @n_bases = 0
    Bio::FastaFormat.open(file).each do |entry|
      @n_bases += entry.length
      contig = Contig.new(entry)
      @assembly[contig.name] = contig
    end
    @contig_metrics = ContigMetrics.new self
  end

  # Generate and store the basic statistics for this assembly
  #
  # @param threads [Integer] number of threads to use
  def run threads=8
    stats = self.basic_stats threads
    stats.each_pair do |key, value|
      ivar = "@#{key.gsub(/\ /, '_')}".to_sym
      attr_ivar = "#{key.gsub(/\ /, '_')}".to_sym
      # creates accessors for the variables in stats
      singleton_class.class_eval { attr_accessor attr_ivar }
      self.instance_variable_set(ivar, value)
    end
    @contig_metrics.run
    @has_run = true
  end

  # Return a hash of statistics about this assembly. Stats are
  # calculated in parallel by splitting the assembly into
  # equal-sized bins and calling Assembly#basic_bin_stat on each
  # bin in a separate thread.
  #
  # @param threads [Integer] number of threads to use
  #
  # @return [Hash] basic statistics about the assembly
  def basic_stats threads=1
    return @basic_stats if @basic_stats
    bin = @assembly.values
    @basic_stats = basic_bin_stats bin
    @basic_stats
  end # basic_stats


  # Calculate basic statistics in an single thread for a bin
  # of contigs.
  #
  # Basic statistics are:
  #
  # - N10, N30, N50, N70, N90
  # - number of contigs >= 1,000 base pairs long
  # - number of contigs >= 10,000 base pairs long
  # - length of the shortest contig
  # - length of the longest contig
  # - number of contigs in the bin
  # - mean contig length
  # - total number of nucleotides in the bin
  # - mean % of contig length covered by the longest ORF
  #
  # @param [Array] bin An array of Bio::Sequence objects
  # representing contigs in the assembly

  def basic_bin_stats bin

    # cumulative length is a float so we can divide it
    # accurately later to get the mean length
    cumulative_length = 0.0

    # we'll calculate Nx for x in [10, 30, 50, 70, 90]
    # to do this we create a stack of the x values and
    # pop the first one to set the first cutoff. when
    # the cutoff is reached we store the nucleotide length and pop
    # the next value to set the next cutoff. we take a copy
    # of the Array so we can use the intact original to collect
    # the results later
    x = [90, 70, 50, 30, 10]
    x2 = x.clone
    cutoff = x2.pop / 100.0
    res = []
    n_under_200, n_over_1k, n_over_10k, n_with_orf, orf_length_sum = 0,0,0,0,0
    # sort the contigs in ascending length order
    # and iterate over them
    bin.sort_by! { |c| c.seq.length }
    bin.each do |contig|

      # increment our long contig counters if this
      # contig is above the thresholds
      if contig.length < 200
        # ignore contigs less than 200 bases,
        # but record how many there are
        n_under_200 += 1
        next
      end
      n_over_1k += 1 if contig.length > 1_000
      n_over_10k += 1 if contig.length > 10_000

      # add the length of the longest orf to the
      # running total
      orf_length = contig.orf_length
      orf_length_sum += orf_length
      # only consider orfs that are realistic length
      # (here we set minimum amino acid length as 50)
      n_with_orf += 1 if orf_length > 149

      # increment the cumulative length and check whether the Nx
      # cutoff has been reached. if it has, store the Nx value and
      # get the next cutoff
      cumulative_length += contig.length
      if cumulative_length >= @n_bases * cutoff
        res << contig.length
        if x2.empty?
          cutoff = 1
        else
          cutoff = x2.pop / 100.0
        end
      end

    end

    # if there aren't enough sequences we might have no value for some
    # of the Nx. Fill the empty ones in with the longest contig length.
    while res.length < x.length do
      res << bin.last.length
    end

    # calculate and return the statistics as a hash
    mean = cumulative_length / @assembly.size
    ns = Hash[x.map { |n| "n#{n}" }.zip(res)]
    {
      'n_seqs' => bin.size,
      'smallest' => bin.first.length,
      'largest' => bin.last.length,
      'n_bases' => n_bases,
      'mean_len' => mean,
      'n_under_200' => n_under_200,
      'n_over_1k' => n_over_1k,
      'n_over_10k' => n_over_10k,
      'n_with_orf' => n_with_orf,
      'mean_orf_percent' => 300 * orf_length_sum / (@assembly.size * mean)
    }.merge ns

  end # basic_bin_stats

  # Calls *block* with two arguments, the contig and an array
  # of integer per-base coverage counts.
  #
  # @param bam [Bio::Db::Sam] a bam alignment of reads against this assembly
  # @param block [Block] the block to call
  def each_with_coverage(bam, &block)
    logger.debug 'enumerating assembly with coverage'
    # generate coverage with samtools
    covfile = Samtools.coverage bam
    # get an assembly enumerator
    assembly_enum = @assembly.to_enum
    contig_name, contig = assembly_enum.next
    # precreate an array of the correct size to contain
    # coverage. this is necessary because samtools mpileup
    # doesn't print a result line for bases with 0 coverage
    contig.coverage = Array.new(contig.length, 0)
    # the columns we need
    name_i, pos_i, cov_i = 0, 1, 3
    # parse the coverage file
    File.open(covfile).each_line do |line|
      cols = line.chomp.split("\t")
      unless (cols && cols.length > 4)
        # last line
        break
      end
      # extract the columns
      name = Bio::FastaDefline.new(cols[name_i]).entry_id
      pos, cov =  cols[pos_i].to_i, cols[cov_i].to_i
      unless contig_name == name
        while contig_name != name
          begin
            block.call(contig, contig.coverage)
            contig_name, contig = assembly_enum.next
            contig.coverage = Array.new(contig.length, 0)
          rescue StopIteration => stop_error
            logger.error 'reached the end of assembly enumerator while ' +
                      'there were contigs left in the coverage results'
            logger.error "final assembly contig: #{@assembly.last.name}"
            logger.error "coverage contig: #{name}"
            raise stop_error
          end
        end
      end
      contig.coverage[pos - 1] = cov
    end
    # yield the final contig
    block.call(contig, contig.coverage)
  end

end

#contig_metricsObject

Returns the value of attribute contig_metrics.



36
37
38
# File 'lib/transrate/assembly.rb', line 36

def contig_metrics
  @contig_metrics
end

#fileString



25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# File 'lib/transrate/assembly.rb', line 25

class Assembly

  include Enumerable
  extend Forwardable
  def_delegators :@assembly, :each, :each_value, :<<, :size, :length, :[]

  attr_accessor :file
  attr_reader :assembly
  attr_reader :has_run
  attr_accessor :n_bases
  attr_reader :n50
  attr_accessor :contig_metrics

  # Create a new Assembly.
  #
  # @param file [String] path to the assembly FASTA file
  def initialize file
    @file = File.expand_path file
    unless File.exist? @file
      raise IOError.new "Assembly file doesn't exist: #{@file}"
    end
    @assembly = {}
    @n_bases = 0
    Bio::FastaFormat.open(file).each do |entry|
      @n_bases += entry.length
      contig = Contig.new(entry)
      @assembly[contig.name] = contig
    end
    @contig_metrics = ContigMetrics.new self
  end

  # Generate and store the basic statistics for this assembly
  #
  # @param threads [Integer] number of threads to use
  def run threads=8
    stats = self.basic_stats threads
    stats.each_pair do |key, value|
      ivar = "@#{key.gsub(/\ /, '_')}".to_sym
      attr_ivar = "#{key.gsub(/\ /, '_')}".to_sym
      # creates accessors for the variables in stats
      singleton_class.class_eval { attr_accessor attr_ivar }
      self.instance_variable_set(ivar, value)
    end
    @contig_metrics.run
    @has_run = true
  end

  # Return a hash of statistics about this assembly. Stats are
  # calculated in parallel by splitting the assembly into
  # equal-sized bins and calling Assembly#basic_bin_stat on each
  # bin in a separate thread.
  #
  # @param threads [Integer] number of threads to use
  #
  # @return [Hash] basic statistics about the assembly
  def basic_stats threads=1
    return @basic_stats if @basic_stats
    bin = @assembly.values
    @basic_stats = basic_bin_stats bin
    @basic_stats
  end # basic_stats


  # Calculate basic statistics in an single thread for a bin
  # of contigs.
  #
  # Basic statistics are:
  #
  # - N10, N30, N50, N70, N90
  # - number of contigs >= 1,000 base pairs long
  # - number of contigs >= 10,000 base pairs long
  # - length of the shortest contig
  # - length of the longest contig
  # - number of contigs in the bin
  # - mean contig length
  # - total number of nucleotides in the bin
  # - mean % of contig length covered by the longest ORF
  #
  # @param [Array] bin An array of Bio::Sequence objects
  # representing contigs in the assembly

  def basic_bin_stats bin

    # cumulative length is a float so we can divide it
    # accurately later to get the mean length
    cumulative_length = 0.0

    # we'll calculate Nx for x in [10, 30, 50, 70, 90]
    # to do this we create a stack of the x values and
    # pop the first one to set the first cutoff. when
    # the cutoff is reached we store the nucleotide length and pop
    # the next value to set the next cutoff. we take a copy
    # of the Array so we can use the intact original to collect
    # the results later
    x = [90, 70, 50, 30, 10]
    x2 = x.clone
    cutoff = x2.pop / 100.0
    res = []
    n_under_200, n_over_1k, n_over_10k, n_with_orf, orf_length_sum = 0,0,0,0,0
    # sort the contigs in ascending length order
    # and iterate over them
    bin.sort_by! { |c| c.seq.length }
    bin.each do |contig|

      # increment our long contig counters if this
      # contig is above the thresholds
      if contig.length < 200
        # ignore contigs less than 200 bases,
        # but record how many there are
        n_under_200 += 1
        next
      end
      n_over_1k += 1 if contig.length > 1_000
      n_over_10k += 1 if contig.length > 10_000

      # add the length of the longest orf to the
      # running total
      orf_length = contig.orf_length
      orf_length_sum += orf_length
      # only consider orfs that are realistic length
      # (here we set minimum amino acid length as 50)
      n_with_orf += 1 if orf_length > 149

      # increment the cumulative length and check whether the Nx
      # cutoff has been reached. if it has, store the Nx value and
      # get the next cutoff
      cumulative_length += contig.length
      if cumulative_length >= @n_bases * cutoff
        res << contig.length
        if x2.empty?
          cutoff = 1
        else
          cutoff = x2.pop / 100.0
        end
      end

    end

    # if there aren't enough sequences we might have no value for some
    # of the Nx. Fill the empty ones in with the longest contig length.
    while res.length < x.length do
      res << bin.last.length
    end

    # calculate and return the statistics as a hash
    mean = cumulative_length / @assembly.size
    ns = Hash[x.map { |n| "n#{n}" }.zip(res)]
    {
      'n_seqs' => bin.size,
      'smallest' => bin.first.length,
      'largest' => bin.last.length,
      'n_bases' => n_bases,
      'mean_len' => mean,
      'n_under_200' => n_under_200,
      'n_over_1k' => n_over_1k,
      'n_over_10k' => n_over_10k,
      'n_with_orf' => n_with_orf,
      'mean_orf_percent' => 300 * orf_length_sum / (@assembly.size * mean)
    }.merge ns

  end # basic_bin_stats

  # Calls *block* with two arguments, the contig and an array
  # of integer per-base coverage counts.
  #
  # @param bam [Bio::Db::Sam] a bam alignment of reads against this assembly
  # @param block [Block] the block to call
  def each_with_coverage(bam, &block)
    logger.debug 'enumerating assembly with coverage'
    # generate coverage with samtools
    covfile = Samtools.coverage bam
    # get an assembly enumerator
    assembly_enum = @assembly.to_enum
    contig_name, contig = assembly_enum.next
    # precreate an array of the correct size to contain
    # coverage. this is necessary because samtools mpileup
    # doesn't print a result line for bases with 0 coverage
    contig.coverage = Array.new(contig.length, 0)
    # the columns we need
    name_i, pos_i, cov_i = 0, 1, 3
    # parse the coverage file
    File.open(covfile).each_line do |line|
      cols = line.chomp.split("\t")
      unless (cols && cols.length > 4)
        # last line
        break
      end
      # extract the columns
      name = Bio::FastaDefline.new(cols[name_i]).entry_id
      pos, cov =  cols[pos_i].to_i, cols[cov_i].to_i
      unless contig_name == name
        while contig_name != name
          begin
            block.call(contig, contig.coverage)
            contig_name, contig = assembly_enum.next
            contig.coverage = Array.new(contig.length, 0)
          rescue StopIteration => stop_error
            logger.error 'reached the end of assembly enumerator while ' +
                      'there were contigs left in the coverage results'
            logger.error "final assembly contig: #{@assembly.last.name}"
            logger.error "coverage contig: #{name}"
            raise stop_error
          end
        end
      end
      contig.coverage[pos - 1] = cov
    end
    # yield the final contig
    block.call(contig, contig.coverage)
  end

end

#has_runBOOL (readonly)



25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# File 'lib/transrate/assembly.rb', line 25

class Assembly

  include Enumerable
  extend Forwardable
  def_delegators :@assembly, :each, :each_value, :<<, :size, :length, :[]

  attr_accessor :file
  attr_reader :assembly
  attr_reader :has_run
  attr_accessor :n_bases
  attr_reader :n50
  attr_accessor :contig_metrics

  # Create a new Assembly.
  #
  # @param file [String] path to the assembly FASTA file
  def initialize file
    @file = File.expand_path file
    unless File.exist? @file
      raise IOError.new "Assembly file doesn't exist: #{@file}"
    end
    @assembly = {}
    @n_bases = 0
    Bio::FastaFormat.open(file).each do |entry|
      @n_bases += entry.length
      contig = Contig.new(entry)
      @assembly[contig.name] = contig
    end
    @contig_metrics = ContigMetrics.new self
  end

  # Generate and store the basic statistics for this assembly
  #
  # @param threads [Integer] number of threads to use
  def run threads=8
    stats = self.basic_stats threads
    stats.each_pair do |key, value|
      ivar = "@#{key.gsub(/\ /, '_')}".to_sym
      attr_ivar = "#{key.gsub(/\ /, '_')}".to_sym
      # creates accessors for the variables in stats
      singleton_class.class_eval { attr_accessor attr_ivar }
      self.instance_variable_set(ivar, value)
    end
    @contig_metrics.run
    @has_run = true
  end

  # Return a hash of statistics about this assembly. Stats are
  # calculated in parallel by splitting the assembly into
  # equal-sized bins and calling Assembly#basic_bin_stat on each
  # bin in a separate thread.
  #
  # @param threads [Integer] number of threads to use
  #
  # @return [Hash] basic statistics about the assembly
  def basic_stats threads=1
    return @basic_stats if @basic_stats
    bin = @assembly.values
    @basic_stats = basic_bin_stats bin
    @basic_stats
  end # basic_stats


  # Calculate basic statistics in an single thread for a bin
  # of contigs.
  #
  # Basic statistics are:
  #
  # - N10, N30, N50, N70, N90
  # - number of contigs >= 1,000 base pairs long
  # - number of contigs >= 10,000 base pairs long
  # - length of the shortest contig
  # - length of the longest contig
  # - number of contigs in the bin
  # - mean contig length
  # - total number of nucleotides in the bin
  # - mean % of contig length covered by the longest ORF
  #
  # @param [Array] bin An array of Bio::Sequence objects
  # representing contigs in the assembly

  def basic_bin_stats bin

    # cumulative length is a float so we can divide it
    # accurately later to get the mean length
    cumulative_length = 0.0

    # we'll calculate Nx for x in [10, 30, 50, 70, 90]
    # to do this we create a stack of the x values and
    # pop the first one to set the first cutoff. when
    # the cutoff is reached we store the nucleotide length and pop
    # the next value to set the next cutoff. we take a copy
    # of the Array so we can use the intact original to collect
    # the results later
    x = [90, 70, 50, 30, 10]
    x2 = x.clone
    cutoff = x2.pop / 100.0
    res = []
    n_under_200, n_over_1k, n_over_10k, n_with_orf, orf_length_sum = 0,0,0,0,0
    # sort the contigs in ascending length order
    # and iterate over them
    bin.sort_by! { |c| c.seq.length }
    bin.each do |contig|

      # increment our long contig counters if this
      # contig is above the thresholds
      if contig.length < 200
        # ignore contigs less than 200 bases,
        # but record how many there are
        n_under_200 += 1
        next
      end
      n_over_1k += 1 if contig.length > 1_000
      n_over_10k += 1 if contig.length > 10_000

      # add the length of the longest orf to the
      # running total
      orf_length = contig.orf_length
      orf_length_sum += orf_length
      # only consider orfs that are realistic length
      # (here we set minimum amino acid length as 50)
      n_with_orf += 1 if orf_length > 149

      # increment the cumulative length and check whether the Nx
      # cutoff has been reached. if it has, store the Nx value and
      # get the next cutoff
      cumulative_length += contig.length
      if cumulative_length >= @n_bases * cutoff
        res << contig.length
        if x2.empty?
          cutoff = 1
        else
          cutoff = x2.pop / 100.0
        end
      end

    end

    # if there aren't enough sequences we might have no value for some
    # of the Nx. Fill the empty ones in with the longest contig length.
    while res.length < x.length do
      res << bin.last.length
    end

    # calculate and return the statistics as a hash
    mean = cumulative_length / @assembly.size
    ns = Hash[x.map { |n| "n#{n}" }.zip(res)]
    {
      'n_seqs' => bin.size,
      'smallest' => bin.first.length,
      'largest' => bin.last.length,
      'n_bases' => n_bases,
      'mean_len' => mean,
      'n_under_200' => n_under_200,
      'n_over_1k' => n_over_1k,
      'n_over_10k' => n_over_10k,
      'n_with_orf' => n_with_orf,
      'mean_orf_percent' => 300 * orf_length_sum / (@assembly.size * mean)
    }.merge ns

  end # basic_bin_stats

  # Calls *block* with two arguments, the contig and an array
  # of integer per-base coverage counts.
  #
  # @param bam [Bio::Db::Sam] a bam alignment of reads against this assembly
  # @param block [Block] the block to call
  def each_with_coverage(bam, &block)
    logger.debug 'enumerating assembly with coverage'
    # generate coverage with samtools
    covfile = Samtools.coverage bam
    # get an assembly enumerator
    assembly_enum = @assembly.to_enum
    contig_name, contig = assembly_enum.next
    # precreate an array of the correct size to contain
    # coverage. this is necessary because samtools mpileup
    # doesn't print a result line for bases with 0 coverage
    contig.coverage = Array.new(contig.length, 0)
    # the columns we need
    name_i, pos_i, cov_i = 0, 1, 3
    # parse the coverage file
    File.open(covfile).each_line do |line|
      cols = line.chomp.split("\t")
      unless (cols && cols.length > 4)
        # last line
        break
      end
      # extract the columns
      name = Bio::FastaDefline.new(cols[name_i]).entry_id
      pos, cov =  cols[pos_i].to_i, cols[cov_i].to_i
      unless contig_name == name
        while contig_name != name
          begin
            block.call(contig, contig.coverage)
            contig_name, contig = assembly_enum.next
            contig.coverage = Array.new(contig.length, 0)
          rescue StopIteration => stop_error
            logger.error 'reached the end of assembly enumerator while ' +
                      'there were contigs left in the coverage results'
            logger.error "final assembly contig: #{@assembly.last.name}"
            logger.error "coverage contig: #{name}"
            raise stop_error
          end
        end
      end
      contig.coverage[pos - 1] = cov
    end
    # yield the final contig
    block.call(contig, contig.coverage)
  end

end

#n50Integer (readonly)



25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# File 'lib/transrate/assembly.rb', line 25

class Assembly

  include Enumerable
  extend Forwardable
  def_delegators :@assembly, :each, :each_value, :<<, :size, :length, :[]

  attr_accessor :file
  attr_reader :assembly
  attr_reader :has_run
  attr_accessor :n_bases
  attr_reader :n50
  attr_accessor :contig_metrics

  # Create a new Assembly.
  #
  # @param file [String] path to the assembly FASTA file
  def initialize file
    @file = File.expand_path file
    unless File.exist? @file
      raise IOError.new "Assembly file doesn't exist: #{@file}"
    end
    @assembly = {}
    @n_bases = 0
    Bio::FastaFormat.open(file).each do |entry|
      @n_bases += entry.length
      contig = Contig.new(entry)
      @assembly[contig.name] = contig
    end
    @contig_metrics = ContigMetrics.new self
  end

  # Generate and store the basic statistics for this assembly
  #
  # @param threads [Integer] number of threads to use
  def run threads=8
    stats = self.basic_stats threads
    stats.each_pair do |key, value|
      ivar = "@#{key.gsub(/\ /, '_')}".to_sym
      attr_ivar = "#{key.gsub(/\ /, '_')}".to_sym
      # creates accessors for the variables in stats
      singleton_class.class_eval { attr_accessor attr_ivar }
      self.instance_variable_set(ivar, value)
    end
    @contig_metrics.run
    @has_run = true
  end

  # Return a hash of statistics about this assembly. Stats are
  # calculated in parallel by splitting the assembly into
  # equal-sized bins and calling Assembly#basic_bin_stat on each
  # bin in a separate thread.
  #
  # @param threads [Integer] number of threads to use
  #
  # @return [Hash] basic statistics about the assembly
  def basic_stats threads=1
    return @basic_stats if @basic_stats
    bin = @assembly.values
    @basic_stats = basic_bin_stats bin
    @basic_stats
  end # basic_stats


  # Calculate basic statistics in an single thread for a bin
  # of contigs.
  #
  # Basic statistics are:
  #
  # - N10, N30, N50, N70, N90
  # - number of contigs >= 1,000 base pairs long
  # - number of contigs >= 10,000 base pairs long
  # - length of the shortest contig
  # - length of the longest contig
  # - number of contigs in the bin
  # - mean contig length
  # - total number of nucleotides in the bin
  # - mean % of contig length covered by the longest ORF
  #
  # @param [Array] bin An array of Bio::Sequence objects
  # representing contigs in the assembly

  def basic_bin_stats bin

    # cumulative length is a float so we can divide it
    # accurately later to get the mean length
    cumulative_length = 0.0

    # we'll calculate Nx for x in [10, 30, 50, 70, 90]
    # to do this we create a stack of the x values and
    # pop the first one to set the first cutoff. when
    # the cutoff is reached we store the nucleotide length and pop
    # the next value to set the next cutoff. we take a copy
    # of the Array so we can use the intact original to collect
    # the results later
    x = [90, 70, 50, 30, 10]
    x2 = x.clone
    cutoff = x2.pop / 100.0
    res = []
    n_under_200, n_over_1k, n_over_10k, n_with_orf, orf_length_sum = 0,0,0,0,0
    # sort the contigs in ascending length order
    # and iterate over them
    bin.sort_by! { |c| c.seq.length }
    bin.each do |contig|

      # increment our long contig counters if this
      # contig is above the thresholds
      if contig.length < 200
        # ignore contigs less than 200 bases,
        # but record how many there are
        n_under_200 += 1
        next
      end
      n_over_1k += 1 if contig.length > 1_000
      n_over_10k += 1 if contig.length > 10_000

      # add the length of the longest orf to the
      # running total
      orf_length = contig.orf_length
      orf_length_sum += orf_length
      # only consider orfs that are realistic length
      # (here we set minimum amino acid length as 50)
      n_with_orf += 1 if orf_length > 149

      # increment the cumulative length and check whether the Nx
      # cutoff has been reached. if it has, store the Nx value and
      # get the next cutoff
      cumulative_length += contig.length
      if cumulative_length >= @n_bases * cutoff
        res << contig.length
        if x2.empty?
          cutoff = 1
        else
          cutoff = x2.pop / 100.0
        end
      end

    end

    # if there aren't enough sequences we might have no value for some
    # of the Nx. Fill the empty ones in with the longest contig length.
    while res.length < x.length do
      res << bin.last.length
    end

    # calculate and return the statistics as a hash
    mean = cumulative_length / @assembly.size
    ns = Hash[x.map { |n| "n#{n}" }.zip(res)]
    {
      'n_seqs' => bin.size,
      'smallest' => bin.first.length,
      'largest' => bin.last.length,
      'n_bases' => n_bases,
      'mean_len' => mean,
      'n_under_200' => n_under_200,
      'n_over_1k' => n_over_1k,
      'n_over_10k' => n_over_10k,
      'n_with_orf' => n_with_orf,
      'mean_orf_percent' => 300 * orf_length_sum / (@assembly.size * mean)
    }.merge ns

  end # basic_bin_stats

  # Calls *block* with two arguments, the contig and an array
  # of integer per-base coverage counts.
  #
  # @param bam [Bio::Db::Sam] a bam alignment of reads against this assembly
  # @param block [Block] the block to call
  def each_with_coverage(bam, &block)
    logger.debug 'enumerating assembly with coverage'
    # generate coverage with samtools
    covfile = Samtools.coverage bam
    # get an assembly enumerator
    assembly_enum = @assembly.to_enum
    contig_name, contig = assembly_enum.next
    # precreate an array of the correct size to contain
    # coverage. this is necessary because samtools mpileup
    # doesn't print a result line for bases with 0 coverage
    contig.coverage = Array.new(contig.length, 0)
    # the columns we need
    name_i, pos_i, cov_i = 0, 1, 3
    # parse the coverage file
    File.open(covfile).each_line do |line|
      cols = line.chomp.split("\t")
      unless (cols && cols.length > 4)
        # last line
        break
      end
      # extract the columns
      name = Bio::FastaDefline.new(cols[name_i]).entry_id
      pos, cov =  cols[pos_i].to_i, cols[cov_i].to_i
      unless contig_name == name
        while contig_name != name
          begin
            block.call(contig, contig.coverage)
            contig_name, contig = assembly_enum.next
            contig.coverage = Array.new(contig.length, 0)
          rescue StopIteration => stop_error
            logger.error 'reached the end of assembly enumerator while ' +
                      'there were contigs left in the coverage results'
            logger.error "final assembly contig: #{@assembly.last.name}"
            logger.error "coverage contig: #{name}"
            raise stop_error
          end
        end
      end
      contig.coverage[pos - 1] = cov
    end
    # yield the final contig
    block.call(contig, contig.coverage)
  end

end

#n_basesObject

Returns the value of attribute n_bases.



34
35
36
# File 'lib/transrate/assembly.rb', line 34

def n_bases
  @n_bases
end

#orss_ublast_dbString



25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# File 'lib/transrate/assembly.rb', line 25

class Assembly

  include Enumerable
  extend Forwardable
  def_delegators :@assembly, :each, :each_value, :<<, :size, :length, :[]

  attr_accessor :file
  attr_reader :assembly
  attr_reader :has_run
  attr_accessor :n_bases
  attr_reader :n50
  attr_accessor :contig_metrics

  # Create a new Assembly.
  #
  # @param file [String] path to the assembly FASTA file
  def initialize file
    @file = File.expand_path file
    unless File.exist? @file
      raise IOError.new "Assembly file doesn't exist: #{@file}"
    end
    @assembly = {}
    @n_bases = 0
    Bio::FastaFormat.open(file).each do |entry|
      @n_bases += entry.length
      contig = Contig.new(entry)
      @assembly[contig.name] = contig
    end
    @contig_metrics = ContigMetrics.new self
  end

  # Generate and store the basic statistics for this assembly
  #
  # @param threads [Integer] number of threads to use
  def run threads=8
    stats = self.basic_stats threads
    stats.each_pair do |key, value|
      ivar = "@#{key.gsub(/\ /, '_')}".to_sym
      attr_ivar = "#{key.gsub(/\ /, '_')}".to_sym
      # creates accessors for the variables in stats
      singleton_class.class_eval { attr_accessor attr_ivar }
      self.instance_variable_set(ivar, value)
    end
    @contig_metrics.run
    @has_run = true
  end

  # Return a hash of statistics about this assembly. Stats are
  # calculated in parallel by splitting the assembly into
  # equal-sized bins and calling Assembly#basic_bin_stat on each
  # bin in a separate thread.
  #
  # @param threads [Integer] number of threads to use
  #
  # @return [Hash] basic statistics about the assembly
  def basic_stats threads=1
    return @basic_stats if @basic_stats
    bin = @assembly.values
    @basic_stats = basic_bin_stats bin
    @basic_stats
  end # basic_stats


  # Calculate basic statistics in an single thread for a bin
  # of contigs.
  #
  # Basic statistics are:
  #
  # - N10, N30, N50, N70, N90
  # - number of contigs >= 1,000 base pairs long
  # - number of contigs >= 10,000 base pairs long
  # - length of the shortest contig
  # - length of the longest contig
  # - number of contigs in the bin
  # - mean contig length
  # - total number of nucleotides in the bin
  # - mean % of contig length covered by the longest ORF
  #
  # @param [Array] bin An array of Bio::Sequence objects
  # representing contigs in the assembly

  def basic_bin_stats bin

    # cumulative length is a float so we can divide it
    # accurately later to get the mean length
    cumulative_length = 0.0

    # we'll calculate Nx for x in [10, 30, 50, 70, 90]
    # to do this we create a stack of the x values and
    # pop the first one to set the first cutoff. when
    # the cutoff is reached we store the nucleotide length and pop
    # the next value to set the next cutoff. we take a copy
    # of the Array so we can use the intact original to collect
    # the results later
    x = [90, 70, 50, 30, 10]
    x2 = x.clone
    cutoff = x2.pop / 100.0
    res = []
    n_under_200, n_over_1k, n_over_10k, n_with_orf, orf_length_sum = 0,0,0,0,0
    # sort the contigs in ascending length order
    # and iterate over them
    bin.sort_by! { |c| c.seq.length }
    bin.each do |contig|

      # increment our long contig counters if this
      # contig is above the thresholds
      if contig.length < 200
        # ignore contigs less than 200 bases,
        # but record how many there are
        n_under_200 += 1
        next
      end
      n_over_1k += 1 if contig.length > 1_000
      n_over_10k += 1 if contig.length > 10_000

      # add the length of the longest orf to the
      # running total
      orf_length = contig.orf_length
      orf_length_sum += orf_length
      # only consider orfs that are realistic length
      # (here we set minimum amino acid length as 50)
      n_with_orf += 1 if orf_length > 149

      # increment the cumulative length and check whether the Nx
      # cutoff has been reached. if it has, store the Nx value and
      # get the next cutoff
      cumulative_length += contig.length
      if cumulative_length >= @n_bases * cutoff
        res << contig.length
        if x2.empty?
          cutoff = 1
        else
          cutoff = x2.pop / 100.0
        end
      end

    end

    # if there aren't enough sequences we might have no value for some
    # of the Nx. Fill the empty ones in with the longest contig length.
    while res.length < x.length do
      res << bin.last.length
    end

    # calculate and return the statistics as a hash
    mean = cumulative_length / @assembly.size
    ns = Hash[x.map { |n| "n#{n}" }.zip(res)]
    {
      'n_seqs' => bin.size,
      'smallest' => bin.first.length,
      'largest' => bin.last.length,
      'n_bases' => n_bases,
      'mean_len' => mean,
      'n_under_200' => n_under_200,
      'n_over_1k' => n_over_1k,
      'n_over_10k' => n_over_10k,
      'n_with_orf' => n_with_orf,
      'mean_orf_percent' => 300 * orf_length_sum / (@assembly.size * mean)
    }.merge ns

  end # basic_bin_stats

  # Calls *block* with two arguments, the contig and an array
  # of integer per-base coverage counts.
  #
  # @param bam [Bio::Db::Sam] a bam alignment of reads against this assembly
  # @param block [Block] the block to call
  def each_with_coverage(bam, &block)
    logger.debug 'enumerating assembly with coverage'
    # generate coverage with samtools
    covfile = Samtools.coverage bam
    # get an assembly enumerator
    assembly_enum = @assembly.to_enum
    contig_name, contig = assembly_enum.next
    # precreate an array of the correct size to contain
    # coverage. this is necessary because samtools mpileup
    # doesn't print a result line for bases with 0 coverage
    contig.coverage = Array.new(contig.length, 0)
    # the columns we need
    name_i, pos_i, cov_i = 0, 1, 3
    # parse the coverage file
    File.open(covfile).each_line do |line|
      cols = line.chomp.split("\t")
      unless (cols && cols.length > 4)
        # last line
        break
      end
      # extract the columns
      name = Bio::FastaDefline.new(cols[name_i]).entry_id
      pos, cov =  cols[pos_i].to_i, cols[cov_i].to_i
      unless contig_name == name
        while contig_name != name
          begin
            block.call(contig, contig.coverage)
            contig_name, contig = assembly_enum.next
            contig.coverage = Array.new(contig.length, 0)
          rescue StopIteration => stop_error
            logger.error 'reached the end of assembly enumerator while ' +
                      'there were contigs left in the coverage results'
            logger.error "final assembly contig: #{@assembly.last.name}"
            logger.error "coverage contig: #{name}"
            raise stop_error
          end
        end
      end
      contig.coverage[pos - 1] = cov
    end
    # yield the final contig
    block.call(contig, contig.coverage)
  end

end

#ublast_dbString



25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# File 'lib/transrate/assembly.rb', line 25

class Assembly

  include Enumerable
  extend Forwardable
  def_delegators :@assembly, :each, :each_value, :<<, :size, :length, :[]

  attr_accessor :file
  attr_reader :assembly
  attr_reader :has_run
  attr_accessor :n_bases
  attr_reader :n50
  attr_accessor :contig_metrics

  # Create a new Assembly.
  #
  # @param file [String] path to the assembly FASTA file
  def initialize file
    @file = File.expand_path file
    unless File.exist? @file
      raise IOError.new "Assembly file doesn't exist: #{@file}"
    end
    @assembly = {}
    @n_bases = 0
    Bio::FastaFormat.open(file).each do |entry|
      @n_bases += entry.length
      contig = Contig.new(entry)
      @assembly[contig.name] = contig
    end
    @contig_metrics = ContigMetrics.new self
  end

  # Generate and store the basic statistics for this assembly
  #
  # @param threads [Integer] number of threads to use
  def run threads=8
    stats = self.basic_stats threads
    stats.each_pair do |key, value|
      ivar = "@#{key.gsub(/\ /, '_')}".to_sym
      attr_ivar = "#{key.gsub(/\ /, '_')}".to_sym
      # creates accessors for the variables in stats
      singleton_class.class_eval { attr_accessor attr_ivar }
      self.instance_variable_set(ivar, value)
    end
    @contig_metrics.run
    @has_run = true
  end

  # Return a hash of statistics about this assembly. Stats are
  # calculated in parallel by splitting the assembly into
  # equal-sized bins and calling Assembly#basic_bin_stat on each
  # bin in a separate thread.
  #
  # @param threads [Integer] number of threads to use
  #
  # @return [Hash] basic statistics about the assembly
  def basic_stats threads=1
    return @basic_stats if @basic_stats
    bin = @assembly.values
    @basic_stats = basic_bin_stats bin
    @basic_stats
  end # basic_stats


  # Calculate basic statistics in an single thread for a bin
  # of contigs.
  #
  # Basic statistics are:
  #
  # - N10, N30, N50, N70, N90
  # - number of contigs >= 1,000 base pairs long
  # - number of contigs >= 10,000 base pairs long
  # - length of the shortest contig
  # - length of the longest contig
  # - number of contigs in the bin
  # - mean contig length
  # - total number of nucleotides in the bin
  # - mean % of contig length covered by the longest ORF
  #
  # @param [Array] bin An array of Bio::Sequence objects
  # representing contigs in the assembly

  def basic_bin_stats bin

    # cumulative length is a float so we can divide it
    # accurately later to get the mean length
    cumulative_length = 0.0

    # we'll calculate Nx for x in [10, 30, 50, 70, 90]
    # to do this we create a stack of the x values and
    # pop the first one to set the first cutoff. when
    # the cutoff is reached we store the nucleotide length and pop
    # the next value to set the next cutoff. we take a copy
    # of the Array so we can use the intact original to collect
    # the results later
    x = [90, 70, 50, 30, 10]
    x2 = x.clone
    cutoff = x2.pop / 100.0
    res = []
    n_under_200, n_over_1k, n_over_10k, n_with_orf, orf_length_sum = 0,0,0,0,0
    # sort the contigs in ascending length order
    # and iterate over them
    bin.sort_by! { |c| c.seq.length }
    bin.each do |contig|

      # increment our long contig counters if this
      # contig is above the thresholds
      if contig.length < 200
        # ignore contigs less than 200 bases,
        # but record how many there are
        n_under_200 += 1
        next
      end
      n_over_1k += 1 if contig.length > 1_000
      n_over_10k += 1 if contig.length > 10_000

      # add the length of the longest orf to the
      # running total
      orf_length = contig.orf_length
      orf_length_sum += orf_length
      # only consider orfs that are realistic length
      # (here we set minimum amino acid length as 50)
      n_with_orf += 1 if orf_length > 149

      # increment the cumulative length and check whether the Nx
      # cutoff has been reached. if it has, store the Nx value and
      # get the next cutoff
      cumulative_length += contig.length
      if cumulative_length >= @n_bases * cutoff
        res << contig.length
        if x2.empty?
          cutoff = 1
        else
          cutoff = x2.pop / 100.0
        end
      end

    end

    # if there aren't enough sequences we might have no value for some
    # of the Nx. Fill the empty ones in with the longest contig length.
    while res.length < x.length do
      res << bin.last.length
    end

    # calculate and return the statistics as a hash
    mean = cumulative_length / @assembly.size
    ns = Hash[x.map { |n| "n#{n}" }.zip(res)]
    {
      'n_seqs' => bin.size,
      'smallest' => bin.first.length,
      'largest' => bin.last.length,
      'n_bases' => n_bases,
      'mean_len' => mean,
      'n_under_200' => n_under_200,
      'n_over_1k' => n_over_1k,
      'n_over_10k' => n_over_10k,
      'n_with_orf' => n_with_orf,
      'mean_orf_percent' => 300 * orf_length_sum / (@assembly.size * mean)
    }.merge ns

  end # basic_bin_stats

  # Calls *block* with two arguments, the contig and an array
  # of integer per-base coverage counts.
  #
  # @param bam [Bio::Db::Sam] a bam alignment of reads against this assembly
  # @param block [Block] the block to call
  def each_with_coverage(bam, &block)
    logger.debug 'enumerating assembly with coverage'
    # generate coverage with samtools
    covfile = Samtools.coverage bam
    # get an assembly enumerator
    assembly_enum = @assembly.to_enum
    contig_name, contig = assembly_enum.next
    # precreate an array of the correct size to contain
    # coverage. this is necessary because samtools mpileup
    # doesn't print a result line for bases with 0 coverage
    contig.coverage = Array.new(contig.length, 0)
    # the columns we need
    name_i, pos_i, cov_i = 0, 1, 3
    # parse the coverage file
    File.open(covfile).each_line do |line|
      cols = line.chomp.split("\t")
      unless (cols && cols.length > 4)
        # last line
        break
      end
      # extract the columns
      name = Bio::FastaDefline.new(cols[name_i]).entry_id
      pos, cov =  cols[pos_i].to_i, cols[cov_i].to_i
      unless contig_name == name
        while contig_name != name
          begin
            block.call(contig, contig.coverage)
            contig_name, contig = assembly_enum.next
            contig.coverage = Array.new(contig.length, 0)
          rescue StopIteration => stop_error
            logger.error 'reached the end of assembly enumerator while ' +
                      'there were contigs left in the coverage results'
            logger.error "final assembly contig: #{@assembly.last.name}"
            logger.error "coverage contig: #{name}"
            raise stop_error
          end
        end
      end
      contig.coverage[pos - 1] = cov
    end
    # yield the final contig
    block.call(contig, contig.coverage)
  end

end

Instance Method Details

#basic_bin_stats(bin) ⇒ Object

Calculate basic statistics in an single thread for a bin of contigs.

Basic statistics are:

  • N10, N30, N50, N70, N90

  • number of contigs >= 1,000 base pairs long

  • number of contigs >= 10,000 base pairs long

  • length of the shortest contig

  • length of the longest contig

  • number of contigs in the bin

  • mean contig length

  • total number of nucleotides in the bin

  • mean % of contig length covered by the longest ORF

representing contigs in the assembly



106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# File 'lib/transrate/assembly.rb', line 106

def basic_bin_stats bin

  # cumulative length is a float so we can divide it
  # accurately later to get the mean length
  cumulative_length = 0.0

  # we'll calculate Nx for x in [10, 30, 50, 70, 90]
  # to do this we create a stack of the x values and
  # pop the first one to set the first cutoff. when
  # the cutoff is reached we store the nucleotide length and pop
  # the next value to set the next cutoff. we take a copy
  # of the Array so we can use the intact original to collect
  # the results later
  x = [90, 70, 50, 30, 10]
  x2 = x.clone
  cutoff = x2.pop / 100.0
  res = []
  n_under_200, n_over_1k, n_over_10k, n_with_orf, orf_length_sum = 0,0,0,0,0
  # sort the contigs in ascending length order
  # and iterate over them
  bin.sort_by! { |c| c.seq.length }
  bin.each do |contig|

    # increment our long contig counters if this
    # contig is above the thresholds
    if contig.length < 200
      # ignore contigs less than 200 bases,
      # but record how many there are
      n_under_200 += 1
      next
    end
    n_over_1k += 1 if contig.length > 1_000
    n_over_10k += 1 if contig.length > 10_000

    # add the length of the longest orf to the
    # running total
    orf_length = contig.orf_length
    orf_length_sum += orf_length
    # only consider orfs that are realistic length
    # (here we set minimum amino acid length as 50)
    n_with_orf += 1 if orf_length > 149

    # increment the cumulative length and check whether the Nx
    # cutoff has been reached. if it has, store the Nx value and
    # get the next cutoff
    cumulative_length += contig.length
    if cumulative_length >= @n_bases * cutoff
      res << contig.length
      if x2.empty?
        cutoff = 1
      else
        cutoff = x2.pop / 100.0
      end
    end

  end

  # if there aren't enough sequences we might have no value for some
  # of the Nx. Fill the empty ones in with the longest contig length.
  while res.length < x.length do
    res << bin.last.length
  end

  # calculate and return the statistics as a hash
  mean = cumulative_length / @assembly.size
  ns = Hash[x.map { |n| "n#{n}" }.zip(res)]
  {
    'n_seqs' => bin.size,
    'smallest' => bin.first.length,
    'largest' => bin.last.length,
    'n_bases' => n_bases,
    'mean_len' => mean,
    'n_under_200' => n_under_200,
    'n_over_1k' => n_over_1k,
    'n_over_10k' => n_over_10k,
    'n_with_orf' => n_with_orf,
    'mean_orf_percent' => 300 * orf_length_sum / (@assembly.size * mean)
  }.merge ns

end

#basic_stats(threads = 1) ⇒ Hash

Return a hash of statistics about this assembly. Stats are calculated in parallel by splitting the assembly into equal-sized bins and calling Assembly#basic_bin_stat on each bin in a separate thread.



80
81
82
83
84
85
# File 'lib/transrate/assembly.rb', line 80

def basic_stats threads=1
  return @basic_stats if @basic_stats
  bin = @assembly.values
  @basic_stats = basic_bin_stats bin
  @basic_stats
end

#each_with_coverage(bam, &block) ⇒ Object

Calls block with two arguments, the contig and an array of integer per-base coverage counts.



192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# File 'lib/transrate/assembly.rb', line 192

def each_with_coverage(bam, &block)
  logger.debug 'enumerating assembly with coverage'
  # generate coverage with samtools
  covfile = Samtools.coverage bam
  # get an assembly enumerator
  assembly_enum = @assembly.to_enum
  contig_name, contig = assembly_enum.next
  # precreate an array of the correct size to contain
  # coverage. this is necessary because samtools mpileup
  # doesn't print a result line for bases with 0 coverage
  contig.coverage = Array.new(contig.length, 0)
  # the columns we need
  name_i, pos_i, cov_i = 0, 1, 3
  # parse the coverage file
  File.open(covfile).each_line do |line|
    cols = line.chomp.split("\t")
    unless (cols && cols.length > 4)
      # last line
      break
    end
    # extract the columns
    name = Bio::FastaDefline.new(cols[name_i]).entry_id
    pos, cov =  cols[pos_i].to_i, cols[cov_i].to_i
    unless contig_name == name
      while contig_name != name
        begin
          block.call(contig, contig.coverage)
          contig_name, contig = assembly_enum.next
          contig.coverage = Array.new(contig.length, 0)
        rescue StopIteration => stop_error
          logger.error 'reached the end of assembly enumerator while ' +
                    'there were contigs left in the coverage results'
          logger.error "final assembly contig: #{@assembly.last.name}"
          logger.error "coverage contig: #{name}"
          raise stop_error
        end
      end
    end
    contig.coverage[pos - 1] = cov
  end
  # yield the final contig
  block.call(contig, contig.coverage)
end

#run(threads = 8) ⇒ Object

Generate and store the basic statistics for this assembly



59
60
61
62
63
64
65
66
67
68
69
70
# File 'lib/transrate/assembly.rb', line 59

def run threads=8
  stats = self.basic_stats threads
  stats.each_pair do |key, value|
    ivar = "@#{key.gsub(/\ /, '_')}".to_sym
    attr_ivar = "#{key.gsub(/\ /, '_')}".to_sym
    # creates accessors for the variables in stats
    singleton_class.class_eval { attr_accessor attr_ivar }
    self.instance_variable_set(ivar, value)
  end
  @contig_metrics.run
  @has_run = true
end