Class: Torch::NN::Functional
- Inherits:
-
Object
- Object
- Torch::NN::Functional
- Extended by:
- Utils
- Defined in:
- lib/torch/nn/functional.rb
Class Method Summary collapse
- .alpha_dropout(input, p: 0.5, training: true, inplace: false) ⇒ Object
- .avg_pool1d(*args, **options) ⇒ Object
- .avg_pool2d(*args, **options) ⇒ Object
- .avg_pool3d(*args, **options) ⇒ Object
-
.batch_norm(input, running_mean, running_var, weight: nil, bias: nil, training: false, momentum: 0.1, eps: 1e-5) ⇒ Object
normalization layers.
- .bilinear(input1, input2, weight, bias) ⇒ Object
-
.binary_cross_entropy(input, target, weight: nil, reduction: "mean") ⇒ Object
loss functions.
- .binary_cross_entropy_with_logits(input, target, weight: nil, reduction: "mean", pos_weight: nil) ⇒ Object
-
.conv1d(*args, **options) ⇒ Object
convolution layers.
- .conv2d(*args, **options) ⇒ Object
- .conv3d(*args, **options) ⇒ Object
- .cosine_embedding_loss(input1, input2, target, margin: 0, reduction: "mean") ⇒ Object
-
.cosine_similarity(x1, x2, dim: 1, eps: 1e-8) ⇒ Object
distance functions.
- .cross_entropy(input, target, weight: nil, ignore_index: -100,, reduction: "mean") ⇒ Object
- .ctc_loss(log_probs, targets, input_lengths, target_lengths, blank: 0, reduction: "mean", zero_infinity: false) ⇒ Object
-
.dropout(input, p: 0.5, training: true, inplace: false) ⇒ Object
dropout layers.
- .dropout2d(input, p: 0.5, training: true, inplace: false) ⇒ Object
- .dropout3d(input, p: 0.5, training: true, inplace: false) ⇒ Object
-
.embedding(input, weight, padding_idx: nil, max_norm: nil, norm_type: 2.0, scale_grad_by_freq: false, sparse: false) ⇒ Object
sparse layers.
- .embedding_bag(input, weight, offsets: nil, max_norm: nil, norm_type: 2, scale_grad_by_freq: false, mode: "mean", sparse: false, per_sample_weights: nil) ⇒ Object
- .feature_alpha_dropout(input, p: 0.5, training: true, inplace: false) ⇒ Object
- .fold(input, output_size, kernel_size, dilation: 1, padding: 0, stride: 1) ⇒ Object
- .group_norm(input, num_groups, weight: nil, bias: nil, eps: 1e-5) ⇒ Object
-
.hardshrink(input, lambd = 0.5) ⇒ Object
activation layers.
- .hinge_embedding_loss(input, target, margin: 1.0, reduction: "mean") ⇒ Object
- .instance_norm(input, running_mean: nil, running_var: nil, weight: nil, bias: nil, use_input_stats: true, momentum: 0.1, eps: 1e-5) ⇒ Object
- .kl_div(input, target, reduction: "mean") ⇒ Object
- .l1_loss(input, target, reduction: "mean") ⇒ Object
- .layer_norm(input, normalized_shape, weight: nil, bias: nil, eps: 1e-5) ⇒ Object
- .leaky_relu(input, negative_slope = 0.01) ⇒ Object
-
.linear(input, weight, bias) ⇒ Object
linear layers.
- .local_response_norm(input, size, alpha: 1e-4, beta: 0.75, k: 1.0) ⇒ Object
- .log_sigmoid(input) ⇒ Object
-
.log_softmax(input, dim = nil) ⇒ Object
TODO make dim keyword argument and update examples.
- .margin_ranking_loss(input1, input2, target, margin: 0, reduction: "mean") ⇒ Object
-
.max_pool1d(*args, **options) ⇒ Object
pooling layers.
- .max_pool2d(*args, **options) ⇒ Object
- .max_pool3d(*args, **options) ⇒ Object
- .max_unpool1d(input, indices, kernel_size, stride: nil, padding: 0, output_size: nil) ⇒ Object
- .max_unpool2d(*args, **options) ⇒ Object
- .max_unpool3d(*args, **options) ⇒ Object
- .mse_loss(input, target, reduction: "mean") ⇒ Object
- .multi_margin_loss(input, target, p: 1, margin: 1.0, weight: nil, reduction: "mean") ⇒ Object
- .multilabel_margin_loss(input, target, reduction: "mean") ⇒ Object
- .multilabel_soft_margin_loss(input, target, weight: nil) ⇒ Object
- .nll_loss(input, target, weight: nil, ignore_index: -100,, reduction: "mean") ⇒ Object
-
.pad(input, pad, mode: "constant", value: 0) ⇒ Object
padding layers.
- .pairwise_distance(x1, x2, p: 2.0, eps: 1e-6, keepdim: false) ⇒ Object
- .poisson_nll_loss(input, target, log_input: true, full: false, eps: 1e-8, reduction: "mean") ⇒ Object
- .prelu(input, weight) ⇒ Object
- .relu(input, inplace: false) ⇒ Object
- .smooth_l1_loss(input, target, reduction: "mean") ⇒ Object
- .soft_margin_loss(input, target, reduction: "mean") ⇒ Object
- .softmax(input, dim: nil) ⇒ Object
-
.softmin(input, dim: nil) ⇒ Object
other activation layers.
- .softplus(input, beta: 1, threshold: 20) ⇒ Object
- .softshrink(*args, **options) ⇒ Object
- .softsign(input) ⇒ Object
- .tanhshrink(input) ⇒ Object
- .triplet_margin_loss(anchor, positive, negative, margin: 1.0, p: 2, eps: 1e-06, swap: false, reduction: "mean") ⇒ Object
- .unfold(input, kernel_size, dilation: 1, padding: 0, stride: 1) ⇒ Object
Methods included from Utils
_ntuple, _pair, _quadrupal, _single, _triple
Class Method Details
.alpha_dropout(input, p: 0.5, training: true, inplace: false) ⇒ Object
304 305 306 307 308 309 310 |
# File 'lib/torch/nn/functional.rb', line 304 def alpha_dropout(input, p: 0.5, training: true, inplace: false) if inplace Torch.alpha_dropout!(input, p, training) else Torch.alpha_dropout(input, p, training) end end |
.avg_pool1d(*args, **options) ⇒ Object
90 91 92 |
# File 'lib/torch/nn/functional.rb', line 90 def avg_pool1d(*args, **) Torch.avg_pool1d(*args, **) end |
.avg_pool2d(*args, **options) ⇒ Object
94 95 96 |
# File 'lib/torch/nn/functional.rb', line 94 def avg_pool2d(*args, **) NN.avg_pool2d(*args, **) end |
.avg_pool3d(*args, **options) ⇒ Object
98 99 100 |
# File 'lib/torch/nn/functional.rb', line 98 def avg_pool3d(*args, **) NN.avg_pool3d(*args, **) end |
.batch_norm(input, running_mean, running_var, weight: nil, bias: nil, training: false, momentum: 0.1, eps: 1e-5) ⇒ Object
normalization layers
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# File 'lib/torch/nn/functional.rb', line 209 def batch_norm(input, running_mean, running_var, weight: nil, bias: nil, training: false, momentum: 0.1, eps: 1e-5) if training size = input.size size_prods = size[0] (size.length - 2).times do |i| size_prods *= size[i + 2] end if size_prods == 1 raise ArgumentError, "Expected more than 1 value per channel when training, got input size #{size.inspect}" end end Torch.batch_norm( input, weight, bias, running_mean, running_var, training, momentum, eps, false ) end |
.bilinear(input1, input2, weight, bias) ⇒ Object
272 273 274 |
# File 'lib/torch/nn/functional.rb', line 272 def bilinear(input1, input2, weight, bias) Torch.bilinear(input1, input2, weight, bias) end |
.binary_cross_entropy(input, target, weight: nil, reduction: "mean") ⇒ Object
loss functions
363 364 365 |
# File 'lib/torch/nn/functional.rb', line 363 def binary_cross_entropy(input, target, weight: nil, reduction: "mean") NN.binary_cross_entropy(input, target, weight, reduction) end |
.binary_cross_entropy_with_logits(input, target, weight: nil, reduction: "mean", pos_weight: nil) ⇒ Object
367 368 369 |
# File 'lib/torch/nn/functional.rb', line 367 def binary_cross_entropy_with_logits(input, target, weight: nil, reduction: "mean", pos_weight: nil) Torch.binary_cross_entropy_with_logits(input, target, weight, pos_weight, reduction) end |
.conv1d(*args, **options) ⇒ Object
convolution layers
9 10 11 |
# File 'lib/torch/nn/functional.rb', line 9 def conv1d(*args, **) Torch.conv1d(*args, **) end |
.conv2d(*args, **options) ⇒ Object
13 14 15 |
# File 'lib/torch/nn/functional.rb', line 13 def conv2d(*args, **) Torch.conv2d(*args, **) end |
.conv3d(*args, **options) ⇒ Object
17 18 19 |
# File 'lib/torch/nn/functional.rb', line 17 def conv3d(*args, **) Torch.conv3d(*args, **) end |
.cosine_embedding_loss(input1, input2, target, margin: 0, reduction: "mean") ⇒ Object
371 372 373 |
# File 'lib/torch/nn/functional.rb', line 371 def (input1, input2, target, margin: 0, reduction: "mean") raise NotImplementedYet end |
.cosine_similarity(x1, x2, dim: 1, eps: 1e-8) ⇒ Object
distance functions
353 354 355 |
# File 'lib/torch/nn/functional.rb', line 353 def cosine_similarity(x1, x2, dim: 1, eps: 1e-8) Torch.cosine_similarity(x1, x2, dim, eps) end |
.cross_entropy(input, target, weight: nil, ignore_index: -100,, reduction: "mean") ⇒ Object
375 376 377 |
# File 'lib/torch/nn/functional.rb', line 375 def cross_entropy(input, target, weight: nil, ignore_index: -100, reduction: "mean") nll_loss(log_softmax(input, 1), target, weight: weight, ignore_index: ignore_index, reduction: reduction) end |
.ctc_loss(log_probs, targets, input_lengths, target_lengths, blank: 0, reduction: "mean", zero_infinity: false) ⇒ Object
379 380 381 382 |
# File 'lib/torch/nn/functional.rb', line 379 def ctc_loss(log_probs, targets, input_lengths, target_lengths, blank: 0, reduction: "mean", zero_infinity: false) # call to_a on input_lengths and target_lengths for C++ Torch.ctc_loss(log_probs, targets, input_lengths.to_a, target_lengths.to_a, blank, reduction, zero_infinity) end |
.dropout(input, p: 0.5, training: true, inplace: false) ⇒ Object
dropout layers
278 279 280 281 282 283 284 |
# File 'lib/torch/nn/functional.rb', line 278 def dropout(input, p: 0.5, training: true, inplace: false) if inplace Torch.dropout!(input, p, training) else Torch.dropout(input, p, training) end end |
.dropout2d(input, p: 0.5, training: true, inplace: false) ⇒ Object
286 287 288 289 290 291 292 293 294 |
# File 'lib/torch/nn/functional.rb', line 286 def dropout2d(input, p: 0.5, training: true, inplace: false) raise ArgumentError, "dropout probability has to be between 0 and 1, but got #{p}" if p < 0 || p > 1 if inplace Torch.feature_dropout!(input, p, training) else Torch.feature_dropout(input, p, training) end end |
.dropout3d(input, p: 0.5, training: true, inplace: false) ⇒ Object
296 297 298 299 300 301 302 |
# File 'lib/torch/nn/functional.rb', line 296 def dropout3d(input, p: 0.5, training: true, inplace: false) if inplace Torch.feature_dropout!(input, p, training) else Torch.feature_dropout(input, p, training) end end |
.embedding(input, weight, padding_idx: nil, max_norm: nil, norm_type: 2.0, scale_grad_by_freq: false, sparse: false) ⇒ Object
sparse layers
322 323 324 325 326 327 328 329 |
# File 'lib/torch/nn/functional.rb', line 322 def (input, weight, padding_idx: nil, max_norm: nil, norm_type: 2.0, scale_grad_by_freq: false, sparse: false) # TODO handle max_norm and norm_type raise NotImplementedYet unless max_norm.nil? && norm_type == 2.0 padding_idx ||= -1 # weight and indices are swapped from Python interface Torch.(weight, input, padding_idx, scale_grad_by_freq, sparse) end |
.embedding_bag(input, weight, offsets: nil, max_norm: nil, norm_type: 2, scale_grad_by_freq: false, mode: "mean", sparse: false, per_sample_weights: nil) ⇒ Object
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
# File 'lib/torch/nn/functional.rb', line 331 def (input, weight, offsets: nil, max_norm: nil, norm_type: 2, scale_grad_by_freq: false, mode: "mean", sparse: false, per_sample_weights: nil) # TODO handle max_norm and norm_type raise NotImplementedYet unless max_norm.nil? && norm_type == 2.0 mode_enum = case mode when "sum" 0 when "mean" 1 when "max" 2 else raise ArgumentError, "Unknown mode: #{mode}" end # weight and input swapped Torch.(weight, input, offsets, scale_grad_by_freq, mode_enum, sparse, per_sample_weights) end |
.feature_alpha_dropout(input, p: 0.5, training: true, inplace: false) ⇒ Object
312 313 314 315 316 317 318 |
# File 'lib/torch/nn/functional.rb', line 312 def feature_alpha_dropout(input, p: 0.5, training: true, inplace: false) if inplace Torch.feature_alpha_dropout!(input, p, training) else Torch.feature_alpha_dropout(input, p, training) end end |
.fold(input, output_size, kernel_size, dilation: 1, padding: 0, stride: 1) ⇒ Object
29 30 31 32 33 34 35 |
# File 'lib/torch/nn/functional.rb', line 29 def fold(input, output_size, kernel_size, dilation: 1, padding: 0, stride: 1) if input.dim == 3 NN.col2im(input, _pair(output_size), _pair(kernel_size), _pair(dilation), _pair(padding), _pair(stride)) else raise Error, "Input Error: Only 3D input Tensors are supported (got #{input.dim}D)" end end |
.group_norm(input, num_groups, weight: nil, bias: nil, eps: 1e-5) ⇒ Object
229 230 231 |
# File 'lib/torch/nn/functional.rb', line 229 def group_norm(input, num_groups, weight: nil, bias: nil, eps: 1e-5) Torch.group_norm(input, num_groups, weight, bias, eps, false) end |
.hardshrink(input, lambd = 0.5) ⇒ Object
activation layers
149 150 151 |
# File 'lib/torch/nn/functional.rb', line 149 def hardshrink(input, lambd = 0.5) Torch.hardshrink(input, lambd) end |
.hinge_embedding_loss(input, target, margin: 1.0, reduction: "mean") ⇒ Object
384 385 386 |
# File 'lib/torch/nn/functional.rb', line 384 def (input, target, margin: 1.0, reduction: "mean") Torch.(input, target, margin, reduction) end |
.instance_norm(input, running_mean: nil, running_var: nil, weight: nil, bias: nil, use_input_stats: true, momentum: 0.1, eps: 1e-5) ⇒ Object
233 234 235 236 237 238 239 240 |
# File 'lib/torch/nn/functional.rb', line 233 def instance_norm(input, running_mean: nil, running_var: nil, weight: nil, bias: nil, use_input_stats: true, momentum: 0.1, eps: 1e-5) Torch.instance_norm( input, weight, bias, running_mean, running_var, use_input_stats, momentum, eps, false ) end |
.kl_div(input, target, reduction: "mean") ⇒ Object
388 389 390 |
# File 'lib/torch/nn/functional.rb', line 388 def kl_div(input, target, reduction: "mean") Torch.kl_div(input, target, reduction) end |
.l1_loss(input, target, reduction: "mean") ⇒ Object
392 393 394 |
# File 'lib/torch/nn/functional.rb', line 392 def l1_loss(input, target, reduction: "mean") NN.l1_loss(input, target, reduction) end |
.layer_norm(input, normalized_shape, weight: nil, bias: nil, eps: 1e-5) ⇒ Object
242 243 244 |
# File 'lib/torch/nn/functional.rb', line 242 def layer_norm(input, normalized_shape, weight: nil, bias: nil, eps: 1e-5) Torch.layer_norm(input, normalized_shape, weight, bias, eps, false) end |
.leaky_relu(input, negative_slope = 0.01) ⇒ Object
153 154 155 |
# File 'lib/torch/nn/functional.rb', line 153 def leaky_relu(input, negative_slope = 0.01) NN.leaky_relu(input, negative_slope) end |
.linear(input, weight, bias) ⇒ Object
linear layers
268 269 270 |
# File 'lib/torch/nn/functional.rb', line 268 def linear(input, weight, bias) NN.linear(input, weight, bias) end |
.local_response_norm(input, size, alpha: 1e-4, beta: 0.75, k: 1.0) ⇒ Object
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
# File 'lib/torch/nn/functional.rb', line 246 def local_response_norm(input, size, alpha: 1e-4, beta: 0.75, k: 1.0) dim = input.dim if dim < 3 raise ArgumentError, "Expected 3D or higher dimensionality input (got #{dim} dimensions)" end div = input.mul(input).unsqueeze(1) if dim == 3 div = pad(div, [0, 0, size / 2, (size - 1) / 2]) div = avg_pool2d(div, [size, 1], stride: 1).squeeze(1) else sizes = input.size div = div.view(sizes[0], 1, sizes[1], sizes[2], -1) div = pad(div, [0, 0, 0, 0, size / 2, (size - 1) / 2]) div = avg_pool3d(div, [size, 1, 1], stride: 1).squeeze(1) div = div.view(sizes) end div = div.mul(alpha).add(k).pow(beta) input / div end |
.log_sigmoid(input) ⇒ Object
157 158 159 |
# File 'lib/torch/nn/functional.rb', line 157 def log_sigmoid(input) NN.log_sigmoid(input) end |
.log_softmax(input, dim = nil) ⇒ Object
TODO make dim keyword argument and update examples
202 203 204 205 |
# File 'lib/torch/nn/functional.rb', line 202 def log_softmax(input, dim = nil) dim ||= softmax_dim(input.dim) input.log_softmax(dim) end |
.margin_ranking_loss(input1, input2, target, margin: 0, reduction: "mean") ⇒ Object
396 397 398 |
# File 'lib/torch/nn/functional.rb', line 396 def margin_ranking_loss(input1, input2, target, margin: 0, reduction: "mean") raise NotImplementedYet end |
.max_pool1d(*args, **options) ⇒ Object
pooling layers
39 40 41 42 43 44 45 46 |
# File 'lib/torch/nn/functional.rb', line 39 def max_pool1d(*args, **) return_indices = args.pop if args.size == 7 if return_indices Torch.max_pool1d_with_indices(*args, **) else Torch.max_pool1d(*args, **) end end |
.max_pool2d(*args, **options) ⇒ Object
48 49 50 51 52 53 54 55 |
# File 'lib/torch/nn/functional.rb', line 48 def max_pool2d(*args, **) return_indices = args.pop if args.size == 7 if return_indices NN.max_pool2d_with_indices(*args, **) else Torch.max_pool2d(*args, **) end end |
.max_pool3d(*args, **options) ⇒ Object
57 58 59 60 61 62 63 64 |
# File 'lib/torch/nn/functional.rb', line 57 def max_pool3d(*args, **) return_indices = args.pop if args.size == 7 if return_indices NN.max_pool3d_with_indices(*args, **) else Torch.max_pool3d(*args, **) end end |
.max_unpool1d(input, indices, kernel_size, stride: nil, padding: 0, output_size: nil) ⇒ Object
66 67 68 69 70 71 72 73 74 75 76 77 78 |
# File 'lib/torch/nn/functional.rb', line 66 def max_unpool1d(input, indices, kernel_size, stride: nil, padding: 0, output_size: nil) raise NotImplementedYet kernel_size = _single(kernel_size) if !stride.nil? _stride = _single(stride) else _stride = kernel_size end padding = _single(padding) output_size = _unpool_output_size(input, kernel_size, _stride, padding, output_size) output_size = output_size + [1] NN.max_unpool2d(input.unsqueeze(3), indices.unsqueeze(3), output_size).squeeze(3) end |
.max_unpool2d(*args, **options) ⇒ Object
80 81 82 83 |
# File 'lib/torch/nn/functional.rb', line 80 def max_unpool2d(*args, **) raise NotImplementedYet NN.max_unpool2d(*args, **) end |
.max_unpool3d(*args, **options) ⇒ Object
85 86 87 88 |
# File 'lib/torch/nn/functional.rb', line 85 def max_unpool3d(*args, **) raise NotImplementedYet NN.max_unpool3d(*args, **) end |
.mse_loss(input, target, reduction: "mean") ⇒ Object
400 401 402 |
# File 'lib/torch/nn/functional.rb', line 400 def mse_loss(input, target, reduction: "mean") NN.mse_loss(input, target, reduction) end |
.multi_margin_loss(input, target, p: 1, margin: 1.0, weight: nil, reduction: "mean") ⇒ Object
412 413 414 |
# File 'lib/torch/nn/functional.rb', line 412 def multi_margin_loss(input, target, p: 1, margin: 1.0, weight: nil, reduction: "mean") NN.multi_margin_loss(input, target, p, margin, weight, reduction) end |
.multilabel_margin_loss(input, target, reduction: "mean") ⇒ Object
404 405 406 |
# File 'lib/torch/nn/functional.rb', line 404 def multilabel_margin_loss(input, target, reduction: "mean") NN.multilabel_margin_loss(input, target, reduction) end |
.multilabel_soft_margin_loss(input, target, weight: nil) ⇒ Object
408 409 410 |
# File 'lib/torch/nn/functional.rb', line 408 def multilabel_soft_margin_loss(input, target, weight: nil) raise NotImplementedYet end |
.nll_loss(input, target, weight: nil, ignore_index: -100,, reduction: "mean") ⇒ Object
416 417 418 |
# File 'lib/torch/nn/functional.rb', line 416 def nll_loss(input, target, weight: nil, ignore_index: -100, reduction: "mean") NN.nll_loss(input, target, weight, reduction, ignore_index) end |
.pad(input, pad, mode: "constant", value: 0) ⇒ Object
padding layers
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# File 'lib/torch/nn/functional.rb', line 104 def pad(input, pad, mode: "constant", value: 0) raise ArgumentError, "Padding length must be divisible by 2" unless pad.size % 2 == 0 raise ArgumentError, "Padding length too large" unless pad.size / 2 <= input.dim if mode == "constant" return Torch.constant_pad_nd(input, pad, value) else raise ArgumentError, "Padding mode doesn't take in value argument" unless value == 0 if input.dim == 3 raise ArgumentError, "3D tensors expect 2 values for padding" unless pad.size == 2 case mode when "reflect" NN.reflection_pad1d(input, pad) when "replicate" NN.replication_pad1d(input, pad) else raise NotImplementedYet end elsif input.dim == 4 raise ArgumentError, "4D tensors expect 4 values for padding" unless pad.size == 4 case mode when "reflect" NN.reflection_pad2d(input, pad) when "replicate" NN.replication_pad2d(input, pad) else raise NotImplementedYet end elsif input.dim == 5 raise ArgumentError, "5D tensors expect 6 values for padding" unless pad.size == 6 case mode when "replicate" NN.replication_pad3d(input, pad) else raise NotImplementedYet end else raise ArgumentError, "Only 3D, 4D, 5D padding with non-constant padding are supported for now" end end end |
.pairwise_distance(x1, x2, p: 2.0, eps: 1e-6, keepdim: false) ⇒ Object
357 358 359 |
# File 'lib/torch/nn/functional.rb', line 357 def pairwise_distance(x1, x2, p: 2.0, eps: 1e-6, keepdim: false) Torch.pairwise_distance(x1, x2, p, eps, keepdim) end |
.poisson_nll_loss(input, target, log_input: true, full: false, eps: 1e-8, reduction: "mean") ⇒ Object
420 421 422 |
# File 'lib/torch/nn/functional.rb', line 420 def poisson_nll_loss(input, target, log_input: true, full: false, eps: 1e-8, reduction: "mean") Torch.poisson_nll_loss(input, target, log_input, full, eps, reduction) end |
.prelu(input, weight) ⇒ Object
161 162 163 |
# File 'lib/torch/nn/functional.rb', line 161 def prelu(input, weight) Torch.prelu(input, weight) end |
.relu(input, inplace: false) ⇒ Object
165 166 167 168 169 170 171 |
# File 'lib/torch/nn/functional.rb', line 165 def relu(input, inplace: false) if inplace input.relu! else input.relu end end |
.smooth_l1_loss(input, target, reduction: "mean") ⇒ Object
428 429 430 |
# File 'lib/torch/nn/functional.rb', line 428 def smooth_l1_loss(input, target, reduction: "mean") NN.smooth_l1_loss(input, target, reduction) end |
.soft_margin_loss(input, target, reduction: "mean") ⇒ Object
424 425 426 |
# File 'lib/torch/nn/functional.rb', line 424 def soft_margin_loss(input, target, reduction: "mean") NN.soft_margin_loss(input, target, reduction) end |
.softmax(input, dim: nil) ⇒ Object
196 197 198 199 |
# File 'lib/torch/nn/functional.rb', line 196 def softmax(input, dim: nil) dim ||= softmax_dim(input.dim) input.softmax(dim) end |
.softmin(input, dim: nil) ⇒ Object
other activation layers
191 192 193 194 |
# File 'lib/torch/nn/functional.rb', line 191 def softmin(input, dim: nil) dim ||= softmax_dim(input.dim) (-input).softmax(dim) end |
.softplus(input, beta: 1, threshold: 20) ⇒ Object
173 174 175 |
# File 'lib/torch/nn/functional.rb', line 173 def softplus(input, beta: 1, threshold: 20) NN.softplus(input, beta, threshold) end |
.softshrink(*args, **options) ⇒ Object
177 178 179 |
# File 'lib/torch/nn/functional.rb', line 177 def softshrink(*args, **) NN.softshrink(*args, **) end |
.softsign(input) ⇒ Object
181 182 183 |
# File 'lib/torch/nn/functional.rb', line 181 def softsign(input) input / (input.abs + 1) end |
.tanhshrink(input) ⇒ Object
185 186 187 |
# File 'lib/torch/nn/functional.rb', line 185 def tanhshrink(input) input - input.tanh end |
.triplet_margin_loss(anchor, positive, negative, margin: 1.0, p: 2, eps: 1e-06, swap: false, reduction: "mean") ⇒ Object
432 433 434 |
# File 'lib/torch/nn/functional.rb', line 432 def triplet_margin_loss(anchor, positive, negative, margin: 1.0, p: 2, eps: 1e-06, swap: false, reduction: "mean") Torch.triplet_margin_loss(anchor, positive, negative, margin, p, eps, swap, reduction) end |
.unfold(input, kernel_size, dilation: 1, padding: 0, stride: 1) ⇒ Object
21 22 23 24 25 26 27 |
# File 'lib/torch/nn/functional.rb', line 21 def unfold(input, kernel_size, dilation: 1, padding: 0, stride: 1) if input.dim == 4 NN.im2col(input, _pair(kernel_size), _pair(dilation), _pair(padding), _pair(stride)) else raise Error, "Input Error: Only 4D input Tensors are supported (got #{input.dim}D)" end end |