Module: Torch
- Defined in:
- lib/torch/optim/sgd.rb,
lib/torch.rb,
lib/torch/nn/gru.rb,
lib/torch/nn/rnn.rb,
lib/torch/random.rb,
lib/torch/tensor.rb,
lib/torch/nn/fold.rb,
lib/torch/nn/init.rb,
lib/torch/nn/loss.rb,
lib/torch/nn/lstm.rb,
lib/torch/nn/relu.rb,
lib/torch/nn/tanh.rb,
lib/torch/version.rb,
lib/torch/nn/prelu.rb,
lib/torch/nn/utils.rb,
lib/torch/inspector.rb,
lib/torch/nn/conv1d.rb,
lib/torch/nn/conv2d.rb,
lib/torch/nn/conv3d.rb,
lib/torch/nn/convnd.rb,
lib/torch/nn/linear.rb,
lib/torch/nn/module.rb,
lib/torch/nn/unfold.rb,
lib/torch/nn/dropout.rb,
lib/torch/nn/l1_loss.rb,
lib/torch/nn/sigmoid.rb,
lib/torch/nn/softmax.rb,
lib/torch/nn/softmin.rb,
lib/torch/optim/adam.rb,
lib/torch/optim/asgd.rb,
lib/torch/nn/bce_loss.rb,
lib/torch/nn/bilinear.rb,
lib/torch/nn/ctc_loss.rb,
lib/torch/nn/identity.rb,
lib/torch/nn/mse_loss.rb,
lib/torch/nn/nll_loss.rb,
lib/torch/nn/rnn_base.rb,
lib/torch/nn/softplus.rb,
lib/torch/nn/softsign.rb,
lib/torch/optim/adamw.rb,
lib/torch/optim/rprop.rb,
lib/torch/nn/dropout2d.rb,
lib/torch/nn/dropout3d.rb,
lib/torch/nn/dropoutnd.rb,
lib/torch/nn/embedding.rb,
lib/torch/nn/lp_pool1d.rb,
lib/torch/nn/lp_pool2d.rb,
lib/torch/nn/lp_poolnd.rb,
lib/torch/nn/parameter.rb,
lib/torch/nn/softmax2d.rb,
lib/torch/optim/adamax.rb,
lib/torch/native/parser.rb,
lib/torch/nn/avg_pool1d.rb,
lib/torch/nn/avg_pool2d.rb,
lib/torch/nn/avg_pool3d.rb,
lib/torch/nn/avg_poolnd.rb,
lib/torch/nn/batch_norm.rb,
lib/torch/nn/functional.rb,
lib/torch/nn/group_norm.rb,
lib/torch/nn/hardshrink.rb,
lib/torch/nn/layer_norm.rb,
lib/torch/nn/leaky_relu.rb,
lib/torch/nn/max_pool1d.rb,
lib/torch/nn/max_pool2d.rb,
lib/torch/nn/max_pool3d.rb,
lib/torch/nn/max_poolnd.rb,
lib/torch/nn/sequential.rb,
lib/torch/nn/softshrink.rb,
lib/torch/nn/tanhshrink.rb,
lib/torch/nn/zero_pad2d.rb,
lib/torch/optim/adagrad.rb,
lib/torch/optim/rmsprop.rb,
lib/torch/nn/kl_div_loss.rb,
lib/torch/nn/log_sigmoid.rb,
lib/torch/nn/log_softmax.rb,
lib/torch/optim/adadelta.rb,
lib/torch/native/function.rb,
lib/torch/nn/batch_norm1d.rb,
lib/torch/nn/batch_norm2d.rb,
lib/torch/nn/batch_norm3d.rb,
lib/torch/nn/max_unpool1d.rb,
lib/torch/nn/max_unpool2d.rb,
lib/torch/nn/max_unpool3d.rb,
lib/torch/nn/max_unpoolnd.rb,
lib/torch/optim/optimizer.rb,
lib/torch/native/generator.rb,
lib/torch/nn/alpha_dropout.rb,
lib/torch/nn/embedding_bag.rb,
lib/torch/nn/instance_norm.rb,
lib/torch/nn/weighted_loss.rb,
lib/torch/native/dispatcher.rb,
lib/torch/nn/constant_pad1d.rb,
lib/torch/nn/constant_pad2d.rb,
lib/torch/nn/constant_pad3d.rb,
lib/torch/nn/constant_padnd.rb,
lib/torch/nn/smooth_l1_loss.rb,
lib/torch/nn/instance_norm1d.rb,
lib/torch/nn/instance_norm2d.rb,
lib/torch/nn/instance_norm3d.rb,
lib/torch/nn/poisson_nll_loss.rb,
lib/torch/nn/reflection_pad1d.rb,
lib/torch/nn/reflection_pad2d.rb,
lib/torch/nn/reflection_padnd.rb,
lib/torch/nn/soft_margin_loss.rb,
lib/torch/nn/cosine_similarity.rb,
lib/torch/nn/multi_margin_loss.rb,
lib/torch/nn/pairwise_distance.rb,
lib/torch/nn/replication_pad1d.rb,
lib/torch/nn/replication_pad2d.rb,
lib/torch/nn/replication_pad3d.rb,
lib/torch/nn/replication_padnd.rb,
lib/torch/nn/cross_entropy_loss.rb,
lib/torch/nn/local_response_norm.rb,
lib/torch/nn/margin_ranking_loss.rb,
lib/torch/nn/triplet_margin_loss.rb,
lib/torch/utils/data/data_loader.rb,
lib/torch/nn/bce_with_logits_loss.rb,
lib/torch/nn/hinge_embedding_loss.rb,
lib/torch/nn/cosine_embedding_loss.rb,
lib/torch/nn/feature_alpha_dropout.rb,
lib/torch/utils/data/tensor_dataset.rb,
lib/torch/nn/multi_label_margin_loss.rb,
lib/torch/optim/lr_scheduler/step_lr.rb,
lib/torch/nn/multi_label_soft_margin_loss.rb,
lib/torch/optim/lr_scheduler/lr_scheduler.rb
Overview
We use a generic interface for methods (*args, **options) and this class to determine the C++ method to call
This is needed since LibTorch uses function overloading, which isn’t available in Ruby or Python
PyTorch uses this approach, but the parser/dispatcher is written in C++
We could generate Ruby methods directly, but an advantage of this approach is arguments and keyword arguments can be used interchangably like in Python, making it easier to port code
Defined Under Namespace
Modules: Inspector, NN, Native, Optim, Random, Utils
Classes: Error, NotImplementedYet, Tensor
Constant Summary
collapse
- DTYPE_TO_ENUM =
{
uint8: 0,
int8: 1,
short: 2,
int16: 2,
int: 3,
int32: 3,
long: 4,
int64: 4,
half: 5,
float16: 5,
float: 6,
float32: 6,
double: 7,
float64: 7,
complex_half: 8,
complex_float: 9,
complex_double: 10,
bool: 11,
qint8: 12,
quint8: 13,
qint32: 14,
bfloat16: 15
}
- ENUM_TO_DTYPE =
DTYPE_TO_ENUM.map(&:reverse).to_h
- FloatTensor =
_make_tensor_class(:float32)
- DoubleTensor =
_make_tensor_class(:float64)
- HalfTensor =
_make_tensor_class(:float16)
- ByteTensor =
_make_tensor_class(:uint8)
- CharTensor =
_make_tensor_class(:int8)
- ShortTensor =
_make_tensor_class(:int16)
- IntTensor =
_make_tensor_class(:int32)
- LongTensor =
_make_tensor_class(:int64)
- BoolTensor =
_make_tensor_class(:bool)
- VERSION =
"0.1.6"
Class Method Summary
collapse
-
._dtype_to_numo ⇒ Object
private use method for cases when Numo not available or available after Torch loaded.
-
._make_tensor_class(dtype, cuda = false) ⇒ Object
-
.arange(start, finish = nil, step = 1, **options) ⇒ Object
-
.device(str) ⇒ Object
-
.empty(*size, **options) ⇒ Object
-
.empty_like(input, **options) ⇒ Object
-
.eye(n, m = nil, **options) ⇒ Object
-
.from_numo(ndarray) ⇒ Object
-
.full(size, fill_value, **options) ⇒ Object
-
.full_like(input, fill_value, **options) ⇒ Object
-
.linspace(start, finish, steps = 100, **options) ⇒ Object
-
.logspace(start, finish, steps = 100, base = 10.0, **options) ⇒ Object
-
.no_grad ⇒ Object
-
.ones(*size, **options) ⇒ Object
-
.ones_like(input, **options) ⇒ Object
-
.rand(*size, **options) ⇒ Object
-
.rand_like(input, **options) ⇒ Object
-
.randint(low = 0, high, size, **options) ⇒ Object
-
.randint_like(input, low, high = nil, **options) ⇒ Object
-
.randn(*size, **options) ⇒ Object
-
.randn_like(input, **options) ⇒ Object
-
.randperm(n, **options) ⇒ Object
-
.tensor(data, **options) ⇒ Object
-
.tensor?(obj) ⇒ Boolean
-
.zeros(*size, **options) ⇒ Object
-
.zeros_like(input, **options) ⇒ Object
Class Method Details
._dtype_to_numo ⇒ Object
private use method for cases when Numo not available or available after Torch loaded
275
276
277
278
279
280
281
282
283
284
285
286
287
|
# File 'lib/torch.rb', line 275
def _dtype_to_numo
raise Error, "Numo not found" unless defined?(Numo::NArray)
{
uint8: Numo::UInt8,
int8: Numo::Int8,
int16: Numo::Int16,
int32: Numo::Int32,
int64: Numo::Int64,
float32: Numo::SFloat,
float64: Numo::DFloat
}
end
|
._make_tensor_class(dtype, cuda = false) ⇒ Object
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
# File 'lib/torch.rb', line 205
def self._make_tensor_class(dtype, cuda = false)
cls = Class.new
device = cuda ? "cuda" : "cpu"
cls.define_singleton_method("new") do |*args|
if args.size == 1 && args.first.is_a?(Tensor)
args.first.send(dtype).to(device)
elsif args.size == 1 && args.first.is_a?(Array)
Torch.tensor(args.first, dtype: dtype, device: device)
else
Torch.empty(*args, dtype: dtype, device: device)
end
end
cls
end
|
.arange(start, finish = nil, step = 1, **options) ⇒ Object
305
306
307
308
309
310
311
312
|
# File 'lib/torch.rb', line 305
def arange(start, finish = nil, step = 1, **options)
if finish.nil?
finish = start
start = 0
end
_arange(start, finish, step, tensor_options(**options))
end
|
.device(str) ⇒ Object
299
300
301
|
# File 'lib/torch.rb', line 299
def device(str)
Device.new(str)
end
|
.empty(*size, **options) ⇒ Object
314
315
316
|
# File 'lib/torch.rb', line 314
def empty(*size, **options)
_empty(tensor_size(size), tensor_options(**options))
end
|
.empty_like(input, **options) ⇒ Object
389
390
391
|
# File 'lib/torch.rb', line 389
def empty_like(input, **options)
empty(input.size, like_options(input, options))
end
|
.eye(n, m = nil, **options) ⇒ Object
318
319
320
|
# File 'lib/torch.rb', line 318
def eye(n, m = nil, **options)
_eye(n, m || n, tensor_options(**options))
end
|
.from_numo(ndarray) ⇒ Object
258
259
260
261
262
263
264
265
266
267
268
269
270
|
# File 'lib/torch.rb', line 258
def from_numo(ndarray)
dtype = _dtype_to_numo.find { |k, v| ndarray.is_a?(v) }
raise Error, "Cannot convert #{ndarray.class.name} to tensor" unless dtype
options = tensor_options(device: "cpu", dtype: dtype[0])
str = ndarray.to_string
tensor = _from_blob(str, ndarray.shape, options)
tensor.instance_variable_set("@_numo_str", str)
tensor
end
|
.full(size, fill_value, **options) ⇒ Object
322
323
324
|
# File 'lib/torch.rb', line 322
def full(size, fill_value, **options)
_full(size, fill_value, tensor_options(**options))
end
|
.full_like(input, fill_value, **options) ⇒ Object
393
394
395
|
# File 'lib/torch.rb', line 393
def full_like(input, fill_value, **options)
full(input.size, fill_value, like_options(input, options))
end
|
.linspace(start, finish, steps = 100, **options) ⇒ Object
326
327
328
|
# File 'lib/torch.rb', line 326
def linspace(start, finish, steps = 100, **options)
_linspace(start, finish, steps, tensor_options(**options))
end
|
.logspace(start, finish, steps = 100, base = 10.0, **options) ⇒ Object
330
331
332
|
# File 'lib/torch.rb', line 330
def logspace(start, finish, steps = 100, base = 10.0, **options)
_logspace(start, finish, steps, base, tensor_options(**options))
end
|
.no_grad ⇒ Object
289
290
291
292
293
294
295
296
297
|
# File 'lib/torch.rb', line 289
def no_grad
previous_value = grad_enabled?
begin
_set_grad_enabled(false)
yield
ensure
_set_grad_enabled(previous_value)
end
end
|
.ones(*size, **options) ⇒ Object
334
335
336
|
# File 'lib/torch.rb', line 334
def ones(*size, **options)
_ones(tensor_size(size), tensor_options(**options))
end
|
.ones_like(input, **options) ⇒ Object
385
386
387
|
# File 'lib/torch.rb', line 385
def ones_like(input, **options)
ones(input.size, like_options(input, options))
end
|
.rand(*size, **options) ⇒ Object
338
339
340
|
# File 'lib/torch.rb', line 338
def rand(*size, **options)
_rand(tensor_size(size), tensor_options(**options))
end
|
.rand_like(input, **options) ⇒ Object
397
398
399
|
# File 'lib/torch.rb', line 397
def rand_like(input, **options)
rand(input.size, like_options(input, options))
end
|
.randint(low = 0, high, size, **options) ⇒ Object
342
343
344
|
# File 'lib/torch.rb', line 342
def randint(low = 0, high, size, **options)
_randint(low, high, size, tensor_options(**options))
end
|
.randint_like(input, low, high = nil, **options) ⇒ Object
401
402
403
404
405
406
407
408
|
# File 'lib/torch.rb', line 401
def randint_like(input, low, high = nil, **options)
if high.nil?
high = low
low = 0
end
randint(low, high, input.size, like_options(input, options))
end
|
.randn(*size, **options) ⇒ Object
346
347
348
|
# File 'lib/torch.rb', line 346
def randn(*size, **options)
_randn(tensor_size(size), tensor_options(**options))
end
|
.randn_like(input, **options) ⇒ Object
410
411
412
|
# File 'lib/torch.rb', line 410
def randn_like(input, **options)
randn(input.size, like_options(input, options))
end
|
.randperm(n, **options) ⇒ Object
350
351
352
|
# File 'lib/torch.rb', line 350
def randperm(n, **options)
_randperm(n, tensor_options(**options))
end
|
.tensor(data, **options) ⇒ Object
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
|
# File 'lib/torch.rb', line 358
def tensor(data, **options)
size = []
if data.respond_to?(:to_a)
data = data.to_a
d = data
while d.is_a?(Array)
size << d.size
d = d.first
end
data = data.flatten
else
data = [data].compact
end
if options[:dtype].nil?
if data.all? { |v| v.is_a?(Integer) }
options[:dtype] = :int64
elsif data.all? { |v| v == true || v == false }
options[:dtype] = :bool
end
end
_tensor(data, size, tensor_options(**options))
end
|
.tensor?(obj) ⇒ Boolean
254
255
256
|
# File 'lib/torch.rb', line 254
def tensor?(obj)
obj.is_a?(Tensor)
end
|
.zeros(*size, **options) ⇒ Object
354
355
356
|
# File 'lib/torch.rb', line 354
def zeros(*size, **options)
_zeros(tensor_size(size), tensor_options(**options))
end
|
.zeros_like(input, **options) ⇒ Object
414
415
416
|
# File 'lib/torch.rb', line 414
def zeros_like(input, **options)
zeros(input.size, like_options(input, options))
end
|