Class: Tensorflow::Train::Optimizer
- Inherits:
-
Object
- Object
- Tensorflow::Train::Optimizer
- Defined in:
- lib/tensorflow/train/optimizer.rb
Direct Known Subclasses
Instance Attribute Summary collapse
-
#name ⇒ Object
readonly
Returns the value of attribute name.
Instance Method Summary collapse
- #apply_gradients(grads_and_vars, global_step: nil, name: nil) ⇒ Object
- #compute_gradients(loss, var_list: nil, grad_loss: nil) ⇒ Object
- #get_slot(var, name) ⇒ Object
- #get_slot_names ⇒ Object
- #graph ⇒ Object
-
#initialize(name: nil, use_locking: false) ⇒ Optimizer
constructor
A new instance of Optimizer.
- #minimize(loss, var_list: nil, grad_loss: nil, global_step: nil, name: nil) ⇒ Object
Constructor Details
#initialize(name: nil, use_locking: false) ⇒ Optimizer
Returns a new instance of Optimizer.
7 8 9 10 11 12 13 14 |
# File 'lib/tensorflow/train/optimizer.rb', line 7 def initialize(name: nil, use_locking: false) @name = name @use_locking = use_locking raise(Error::InvalidArgumentError, "Must specify the optimizer name") unless name @slots = {} @non_slots = {} end |
Instance Attribute Details
#name ⇒ Object (readonly)
Returns the value of attribute name.
5 6 7 |
# File 'lib/tensorflow/train/optimizer.rb', line 5 def name @name end |
Instance Method Details
#apply_gradients(grads_and_vars, global_step: nil, name: nil) ⇒ Object
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
# File 'lib/tensorflow/train/optimizer.rb', line 28 def apply_gradients(grads_and_vars, global_step: nil, name: nil) varlist = grads_and_vars.map { |_grad, var| var } #create_slots(varlist) #TensorStream.name_scope(name, default: @name) do prepare apply_ops = grads_and_vars.map do |grad, var| #TensorStream.name_scope("update_" + var.op.name) do apply_dense(grad, var) #end end if global_step.nil? finish(apply_ops, name) else global_step.handle.graph.control_dependencies([finish(apply_ops, "update")]) do global_step.assign_add(Tensorflow.constant(1, dtype:global_step.dtype)) end end #end end |
#compute_gradients(loss, var_list: nil, grad_loss: nil) ⇒ Object
49 50 51 52 53 54 55 56 57 58 59 |
# File 'lib/tensorflow/train/optimizer.rb', line 49 def compute_gradients(loss, var_list: nil, grad_loss: nil) trainable_vars = var_list || self.graph.get_collection_ref(Tensorflow::Graph::GraphKeys::TRAINABLE_VARIABLES) if trainable_vars.nil? || trainable_vars.empty? raise(Error::InvalidArgumentError, 'There are no variables to train for the loss function') end gradients = Graph::Gradients.new(graph) grads = gradients.gradients(loss, trainable_vars, grad_ys: grad_loss) grads.zip(trainable_vars) end |
#get_slot(var, name) ⇒ Object
61 62 63 64 65 66 |
# File 'lib/tensorflow/train/optimizer.rb', line 61 def get_slot(var, name) named_slots = @slots.fetch(name, nil) return nil if named_slots.nil? named_slots.fetch(var_key(var), nil) end |
#get_slot_names ⇒ Object
68 69 70 |
# File 'lib/tensorflow/train/optimizer.rb', line 68 def get_slot_names @slots.keys.sort end |
#graph ⇒ Object
16 17 18 |
# File 'lib/tensorflow/train/optimizer.rb', line 16 def graph ExecutionContext.current end |
#minimize(loss, var_list: nil, grad_loss: nil, global_step: nil, name: nil) ⇒ Object
20 21 22 23 24 25 26 |
# File 'lib/tensorflow/train/optimizer.rb', line 20 def minimize(loss, var_list: nil, grad_loss: nil, global_step: nil, name: nil) grads_and_vars = compute_gradients(loss, var_list: var_list, grad_loss: grad_loss) if grads_and_vars.empty? raise(Error::InvalidArgumentError, "No gradients provided for any variable, check your graph for ops that do not support gradients") end apply_gradients(grads_and_vars, global_step: global_step, name: name) end |