Class: Tensorflow::Graph::Gradients
- Inherits:
-
Object
- Object
- Tensorflow::Graph::Gradients
- Defined in:
- lib/tensorflow/graph/gradients.rb
Instance Attribute Summary collapse
-
#graph ⇒ Object
readonly
Returns the value of attribute graph.
Class Method Summary collapse
Instance Method Summary collapse
- #add_api_gradients(gradient, outputs, inputs) ⇒ Object
- #default_gradient(operation) ⇒ Object
- #derivative(gradient, operation, stop_operations, operations_path) ⇒ Object
- #gradients(output, inputs, grad_ys: nil, name: "gradients", stop_operations: Set.new) ⇒ Object
-
#initialize(graph) ⇒ Gradients
constructor
A new instance of Gradients.
- #path(output, input) ⇒ Object
Constructor Details
#initialize(graph) ⇒ Gradients
Returns a new instance of Gradients.
19 20 21 |
# File 'lib/tensorflow/graph/gradients.rb', line 19 def initialize(graph) @graph = graph end |
Instance Attribute Details
#graph ⇒ Object (readonly)
Returns the value of attribute graph.
6 7 8 |
# File 'lib/tensorflow/graph/gradients.rb', line 6 def graph @graph end |
Class Method Details
.gradients ⇒ Object
8 9 10 11 12 13 |
# File 'lib/tensorflow/graph/gradients.rb', line 8 def self.gradients @gradients ||= begin default = self.instance_method(:add_api_gradients) Hash.new(default) end end |
.register(op_type, &block) ⇒ Object
15 16 17 |
# File 'lib/tensorflow/graph/gradients.rb', line 15 def self.register(op_type, &block) self.gradients[op_type] = block end |
Instance Method Details
#add_api_gradients(gradient, outputs, inputs) ⇒ Object
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
# File 'lib/tensorflow/graph/gradients.rb', line 90 def add_api_gradients(gradient, outputs, inputs) # These are the outputs from the operation y = FFI::Output.array_to_ptr(outputs.map(&:output)) # These are the inputs to the output operation x = FFI::Output.array_to_ptr(inputs.map(&:output)) # This is the gradient we are backpropagating dx = if gradient FFI::Output.array_to_ptr(gradient.outputs.map(&:output)) end # This is the gradient we want to calculate dy = ::FFI::MemoryPointer.new(FFI::Output, inputs.length, true) prefix = self.graph.scoped_name(inputs.first.operation.name) Status.check do |status| FFI.TF_AddGradientsWithPrefix(self.graph, prefix, y, outputs.length, x, inputs.length, dx, status, dy) end inputs.length.times.map do |i| OperationOutput.from_graph(graph, dy[i]) end end |
#default_gradient(operation) ⇒ Object
29 30 31 32 33 34 35 |
# File 'lib/tensorflow/graph/gradients.rb', line 29 def default_gradient(operation) operation.outputs.map.with_index do |output, i| shape_op = Tensorflow.shape(output, :int32) constant = Tensorflow.constant(1, name: "grad_ys_#{i}", dtype: operation.output_types[i]) Tensorflow.fill(shape_op, constant) end end |
#derivative(gradient, operation, stop_operations, operations_path) ⇒ Object
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
# File 'lib/tensorflow/graph/gradients.rb', line 50 def derivative(gradient, operation, stop_operations, operations_path) # This method follows the C api naming conventions for parameters. Visually it looks # like this: # # x ------> y (forward) # dy <----- dx (backward) return gradient if !operations_path.include?(operation) || stop_operations.include?(operation) inputs = operation.inputs.select do |input| operations_path.include?(input.operation) && !stop_operations.include?(input.operation) end return gradient if inputs.empty? outputs = operation.outputs.select do |output| consumers = operation.output_consumers(output) # The last operation we are evaluating will not be hooked up to any consumers, so # we want to analyze all its outputs. For operations earlier in the graph, skip any # unused outputs since they are not connected to anything operation == operations_path.first || consumers.count > 0 end gradient_func = self.class.gradients[operation.op_type] dy = if gradient_func.is_a?(UnboundMethod) gradient_func.bind(self).call(gradient, outputs, inputs) else gradient_func.call(gradient, outputs, inputs) end # We are done with this operation, so backpropagate to the input operations inputs.map.with_index do |input, i| dy_output = dy[i] unless dy_output.output[:oper].null? self.derivative(dy_output.operation, input.operation, stop_operations, operations_path) end end end |
#gradients(output, inputs, grad_ys: nil, name: "gradients", stop_operations: Set.new) ⇒ Object
37 38 39 40 41 42 43 44 45 46 47 48 |
# File 'lib/tensorflow/graph/gradients.rb', line 37 def gradients(output, inputs, grad_ys: nil, name: "gradients", stop_operations: Set.new) grad_ys ||= default_gradient(output).first self.graph.name_scope(name) do inputs.map.with_index do |input, i| operations_path = self.path(output, input) next if operations_path.empty? self.derivative(grad_ys, output, stop_operations, operations_path) end.flatten.compact end end |
#path(output, input) ⇒ Object
23 24 25 26 27 |
# File 'lib/tensorflow/graph/gradients.rb', line 23 def path(output, input) forwards = self.graph.forward(input) backwards = self.graph.backward(output) forwards.intersection(backwards) end |