Class: TensorStream::Operation
- Defined in:
- lib/tensor_stream/operation.rb
Overview
TensorStream class that defines an operation
Direct Known Subclasses
Instance Attribute Summary collapse
-
#inputs ⇒ Object
Returns the value of attribute inputs.
-
#name ⇒ Object
Returns the value of attribute name.
-
#operation ⇒ Object
Returns the value of attribute operation.
-
#options ⇒ Object
Returns the value of attribute options.
-
#outputs ⇒ Object
readonly
Returns the value of attribute outputs.
-
#rank ⇒ Object
Returns the value of attribute rank.
Attributes inherited from Tensor
#breakpoint, #consumers, #data_type, #device, #given_name, #graph, #internal, #is_const, #native_buffer, #shape, #source, #value
Class Method Summary collapse
Instance Method Summary collapse
- #infer_const ⇒ Object
-
#initialize(operation, *args) ⇒ Operation
constructor
A new instance of Operation.
- #op ⇒ Object
- #run ⇒ Object
- #set_data_type(passed_data_type) ⇒ Object
- #to_h ⇒ Object
- #to_math(name_only = false, max_depth = 99, _cur_depth = 0) ⇒ Object
- #to_s ⇒ Object
Methods inherited from Tensor
#!=, #*, #**, #+, #-, #-@, #/, #<, #<=, #==, #>, #>=, #[], #and, #auto_math, #breakpoint!, cast_dtype, #collect, detect_type, #dot, #dtype, #eval, #first, #internal?, #matmul, #print!, reset_counters, #to_a, #to_f, #to_i
Methods included from OpHelper
#_op, #cons, #dtype_eval, #format_source, #fp_type?, #i_cons, #i_op, #shape_eval, #val_to_dtype
Constructor Details
#initialize(operation, *args) ⇒ Operation
Returns a new instance of Operation.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
# File 'lib/tensor_stream/operation.rb', line 7 def initialize(operation, *args) = if args.last.is_a?(Hash) args.pop else {} end inputs = args setup_initial_state() @operation = operation @rank = [:rank] || 0 @name = [@graph.get_name_scope, [:name] || set_name].compact.reject(&:empty?).join('/') @internal = [:internal] @given_name = @name @options = @inputs = inputs.map { |i| [:preserve_params_type] ? i : TensorStream.convert_to_tensor(i) } @data_type = set_data_type([:data_type]) @is_const = infer_const @shape = TensorShape.new(infer_shape) @graph.add_node(self) end |
Instance Attribute Details
#inputs ⇒ Object
Returns the value of attribute inputs.
4 5 6 |
# File 'lib/tensor_stream/operation.rb', line 4 def inputs @inputs end |
#name ⇒ Object
Returns the value of attribute name.
4 5 6 |
# File 'lib/tensor_stream/operation.rb', line 4 def name @name end |
#operation ⇒ Object
Returns the value of attribute operation.
4 5 6 |
# File 'lib/tensor_stream/operation.rb', line 4 def operation @operation end |
#options ⇒ Object
Returns the value of attribute options.
4 5 6 |
# File 'lib/tensor_stream/operation.rb', line 4 def @options end |
#outputs ⇒ Object (readonly)
Returns the value of attribute outputs.
5 6 7 |
# File 'lib/tensor_stream/operation.rb', line 5 def outputs @outputs end |
#rank ⇒ Object
Returns the value of attribute rank.
4 5 6 |
# File 'lib/tensor_stream/operation.rb', line 4 def rank @rank end |
Class Method Details
.empty_matrix?(input) ⇒ Boolean
45 46 47 48 49 50 51 52 53 54 55 56 57 |
# File 'lib/tensor_stream/operation.rb', line 45 def self.empty_matrix?(input) if input.is_a?(Array) input.each do |input| if input.is_a?(Array) return false unless empty_matrix?(input) elsif input != 0 || input != 0.0 return false end end end true end |
Instance Method Details
#infer_const ⇒ Object
59 60 61 62 63 64 65 66 67 68 |
# File 'lib/tensor_stream/operation.rb', line 59 def infer_const return false if breakpoint case operation when :random_normal, :random_uniform, :glorot_uniform, :print false else non_const = @inputs.compact.find { |input| !input.is_const } non_const ? false : true end end |
#op ⇒ Object
226 227 228 |
# File 'lib/tensor_stream/operation.rb', line 226 def op self end |
#run ⇒ Object
222 223 224 |
# File 'lib/tensor_stream/operation.rb', line 222 def run eval end |
#set_data_type(passed_data_type) ⇒ Object
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
# File 'lib/tensor_stream/operation.rb', line 70 def set_data_type(passed_data_type) case operation when :greater, :less, :equal, :not_equal, :greater_equal, :less_equal, :logical_and :boolean when :shape, :rank :int32 when :random_normal, :random_uniform, :glorot_uniform passed_data_type || :float32 when :index if @inputs[0].is_a?(ControlFlow) if @inputs[1].is_const @inputs[0].inputs[@inputs[1].value].data_type else :unknown end else @inputs[0].data_type end else return passed_data_type if passed_data_type if @inputs[0] @inputs[0].data_type elsif @inputs[1] @inputs[1].data_type else :unknown end end end |
#to_h ⇒ Object
37 38 39 40 41 42 43 |
# File 'lib/tensor_stream/operation.rb', line 37 def to_h { op: operation, name: name, operands: hashify_tensor(inputs) } end |
#to_math(name_only = false, max_depth = 99, _cur_depth = 0) ⇒ Object
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# File 'lib/tensor_stream/operation.rb', line 102 def to_math(name_only = false, max_depth = 99, _cur_depth = 0) return @name if max_depth.zero? sub_input = auto_math(inputs[0], name_only, max_depth - 1, _cur_depth + 1) sub_input2 = auto_math(inputs[1], name_only, max_depth - 1, _cur_depth + 1) if inputs[1] out = case operation when :argmax "argmax(#{sub_input},#{[:axis]})" when :negate "-#{sub_input}" when :index "#{sub_input}[#{sub_input2}]" when :slice "#{sub_input}[#{sub_input2}]" when :assign_sub "(#{inputs[0] ? inputs[0].name : 'self'} -= #{auto_math(inputs[1], name_only, 1)})" when :assign_add "(#{inputs[0] ? inputs[0].name : 'self'} += #{auto_math(inputs[1], name_only, 1)})" when :assign "(#{inputs[0] ? inputs[0].name : 'self'} = #{auto_math(inputs[1], name_only, 1)})" when :sin, :cos, :tanh "#{operation}(#{sub_input})" when :add "(#{sub_input} + #{sub_input2})" when :sub "(#{sub_input} - #{sub_input2})" when :pow "(#{sub_input}^#{sub_input2})" when :div "(#{sub_input} / #{sub_input2})" when :mul if auto_math(inputs[0]) == 1 sub_input2 elsif auto_math(inputs[1]) == 1 sub_input else "(#{sub_input} * #{sub_input2})" end when :sum "sum(|#{sub_input}|, axis=#{sub_input2})" when :mean "mean(|#{sub_input}|, axis=#{sub_input2})" when :prod "prod(|#{sub_input}|, axis=#{sub_input2})" when :gradients "gradient(#{sub_input})" when :stop_gradient sub_input when :matmul "#{sub_input}.matmul(#{sub_input2})" when :eye "eye(#{sub_input})" when :transpose "transpose(#{sub_input})" when :shape "#{sub_input}.shape" when :exp "e^#{sub_input})" when :ones "ones(#{sub_input})" when :ones_like "ones_like(#{sub_input})" when :flow_group "flow_group(#{inputs.collect { |i| auto_math(i, name_only, max_depth - 1, _cur_depth) }.join(',')})" when :zeros "zeros(#{sub_input})" when :reshape "reshape(#{sub_input},#{sub_input2})" when :rank "#{sub_input}.rank" when :cond "(#{auto_math([:pred], name_only, max_depth - 1, _cur_depth)} ? #{sub_input} : #{sub_input2})" when :less "#{sub_input} < #{sub_input2}" when :less_equal "#{sub_input} <= #{sub_input2}" when :greater "#{sub_input} > #{sub_input2}" when :greater_equal "#{sub_input} >= #{sub_input2}" when :square "#{sub_input}\u00B2" when :log "log(#{sub_input})" when :identity "identity(#{sub_input})" when :print "print(#{sub_input})" when :pad "pad(#{sub_input},#{auto_math([:paddings])})" when :equal "#{sub_input} == #{sub_input2}" when :not_equal "#{sub_input} != #{sub_input2}" when :logical_and "#{sub_input} && #{sub_input2}" when :sqrt "sqrt(#{sub_input})" when :log1p "log1p(#{sub_input})" when :zeros_like "zeros_like(#{sub_input})" when :where "where(#{auto_math([:pred], name_only, max_depth - 1, _cur_depth)}, #{sub_input}, #{sub_input2})" when :max "max(#{sub_input},#{sub_input2})" when :cast "cast(#{sub_input}, #{data_type})" when :broadcast_transform "broadcast_transform(#{sub_input},#{sub_input2})" when :broadcast_gradient_args "broadcast_transform(#{sub_input},#{sub_input2})" else "#{operation}(#{sub_input})" if sub_input "#{operation}(#{sub_input}, #{sub_input2})" if sub_input && sub_input2 end ["\n",(_cur_depth + 1).times.collect { ' ' }, out].flatten.join end |
#to_s ⇒ Object
33 34 35 |
# File 'lib/tensor_stream/operation.rb', line 33 def to_s @name end |