Module: TensorStream::OpHelper
- Included in:
- TensorStream, Debugging, Evaluator::OpenclEvaluator, Evaluator::RubyEvaluator, MathGradients, NN, Pbtext, Tensor
- Defined in:
- lib/tensor_stream/helpers/op_helper.rb
Overview
module that contains helper functions useful for ops
Instance Method Summary collapse
- #_op(code, t_a, t_b = nil, options = {}) ⇒ Object
- #cons(value, options = {}) ⇒ Object
- #dtype_eval(rank, value, data_type = nil) ⇒ Object
- #format_source(trace) ⇒ Object
- #fp_type?(type) ⇒ Boolean
- #i_cons(value, options = {}) ⇒ Object
-
#i_op(code, t_a, t_b = nil, options = {}) ⇒ Object
same as op but with a marker that it was internal generated.
- #shape_eval(input, output_type = :int32) ⇒ Object
- #val_to_dtype(value) ⇒ Object
Instance Method Details
#_op(code, t_a, t_b = nil, options = {}) ⇒ Object
4 5 6 7 8 9 10 11 |
# File 'lib/tensor_stream/helpers/op_helper.rb', line 4 def _op(code, t_a, t_b = nil, = {}) op = Operation.new(code.to_sym, t_a, t_b, ) if !TensorStream.get_default_graph.get_dependency_scope.nil? i_op(:identity, op, TensorStream.get_default_graph.get_dependency_scope, name: [op.name, 'tuple', 'control_dependency'].join('/')) else op end end |
#cons(value, options = {}) ⇒ Object
18 19 20 |
# File 'lib/tensor_stream/helpers/op_helper.rb', line 18 def cons(value, = {}) TensorStream.constant(value, ) end |
#dtype_eval(rank, value, data_type = nil) ⇒ Object
41 42 43 44 45 46 47 48 49 50 51 |
# File 'lib/tensor_stream/helpers/op_helper.rb', line 41 def dtype_eval(rank, value, data_type = nil) dtype = if data_type.nil? Tensor.detect_type(value[0]) else data_type end rank += 1 if dtype == :array [dtype, rank, value[0], value.size] end |
#format_source(trace) ⇒ Object
71 72 73 74 75 |
# File 'lib/tensor_stream/helpers/op_helper.rb', line 71 def format_source(trace) grad_source = trace.select { |c| c.to_s.include?(File.join('lib', 'tensor_stream', 'math_gradients')) }.first source = trace.reject { |c| c.to_s.include?(File.join('lib', 'tensor_stream')) }.first [grad_source, source].compact.join("\n") end |
#fp_type?(type) ⇒ Boolean
67 68 69 |
# File 'lib/tensor_stream/helpers/op_helper.rb', line 67 def fp_type?(type) TensorStream::Ops::FLOATING_POINT_TYPES.include?(type) end |
#i_cons(value, options = {}) ⇒ Object
22 23 24 |
# File 'lib/tensor_stream/helpers/op_helper.rb', line 22 def i_cons(value, = {}) TensorStream.constant(value, .merge(internal: true)) end |
#i_op(code, t_a, t_b = nil, options = {}) ⇒ Object
same as op but with a marker that it was internal generated
14 15 16 |
# File 'lib/tensor_stream/helpers/op_helper.rb', line 14 def i_op(code, t_a, t_b = nil, = {}) Operation.new(code.to_sym, t_a, t_b, .merge(internal: true)) end |
#shape_eval(input, output_type = :int32) ⇒ Object
26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
# File 'lib/tensor_stream/helpers/op_helper.rb', line 26 def shape_eval(input, output_type = :int32) return [] unless input.is_a?(Array) arr = [] arr_ptr = input Kernel.loop do arr << (TensorStream::Ops::FLOATING_POINT_TYPES.include?(output_type) ? arr_ptr.size.to_f : arr_ptr.size) arr_ptr = arr_ptr[0] break unless arr_ptr.is_a?(Array) end arr end |
#val_to_dtype(value) ⇒ Object
53 54 55 56 57 58 59 60 61 62 63 64 65 |
# File 'lib/tensor_stream/helpers/op_helper.rb', line 53 def val_to_dtype(value) if value.is_a?(String) :string elsif value.is_a?(Float) :float32 elsif value.is_a?(Integer) :int32 elsif value.is_a?(Array) :array else :float32 end end |