Class: Snow::Quat
- Inherits:
-
Data
- Object
- Data
- Snow::Quat
- Defined in:
- lib/snow-math/quat.rb,
lib/snow-math/ptr.rb,
lib/snow-math/to_a.rb,
lib/snow-math/inspect.rb,
lib/snow-math/marshal.rb,
lib/snow-math/swizzle.rb,
ext/snow-math/snow-math.c
Overview
A simple quaternion class for representation rotations.
Constant Summary collapse
- POS_X =
self.new(1, 0, 0, 1).freeze
- POS_Y =
self.new(0, 1, 0, 1).freeze
- POS_Z =
self.new(0, 0, 1, 1).freeze
- NEG_X =
self.new(-1, 0, 0, 1).freeze
- NEG_Y =
self.new(0, -1, 0, 1).freeze
- NEG_Z =
self.new(0, 0, -1, 1).freeze
- ONE =
self.new(1, 1, 1, 1).freeze
- ZERO =
self.new(0, 0, 0, 0).freeze
- IDENTITY =
self.new(0, 0, 0, 1).freeze
- @@SWIZZLE_CHARS =
/^[xyzw]{2,4}$/
- @@SWIZZLE_MAPPING =
{ 2 => ::Snow::Vec2, 3 => ::Snow::Vec3, 4 => self, 'x' => 0, 'y' => 1, 'z' => 2, 'w' => 3 }
Class Method Summary collapse
-
.angle_axis(*args) ⇒ Object
Returns a quaternion describing a rotation around a given axis.
-
.new(*args) ⇒ Object
(also: [])
Allocates a new Quat.
Instance Method Summary collapse
-
#==(sm_other) ⇒ Object
Tests this Vec4 or Quat and another Vec4 or Quat for equivalency.
-
#add(*args) ⇒ Object
(also: #+)
Adds this and another vector or quaternion’s components together and returns the result.
-
#add!(rhs) ⇒ Object
Calls #add(rhs, self).
-
#address ⇒ Object
Returns the memory address of the object.
-
#copy(*args) ⇒ Object
(also: #dup, #clone)
Returns a copy of self.
-
#divide(*args) ⇒ Object
(also: #/)
Divides this vector or quaternion’s components by a scalar value and returns the result.
-
#divide!(rhs) ⇒ Object
Calls #divide(rhs, self).
-
#dot_product(sm_other) ⇒ Object
(also: #**)
Returns the dot product of self and another Vec4 or Quat.
-
#fetch ⇒ Object
(also: #[])
Gets the component of the Quat at the given index.
-
#initialize(*args) ⇒ Object
constructor
Sets the Quat’s components.
-
#inverse(*args) ⇒ Object
(also: #~)
Returns the inverse of this Quat.
-
#inverse! ⇒ Object
Calls #inverse(self).
-
#length ⇒ Object
Returns the length of the Quat in components.
-
#load_identity ⇒ Object
Sets self to the identity quaternion.
-
#magnitude ⇒ Object
Returns the magnitude of self.
-
#magnitude_squared ⇒ Object
Returns the squared magnitude of self.
-
#multiply(rhs, output = nil) ⇒ Object
(also: #*)
Wrapper around #multiply_quat, #multiply_vec3, and #scale respectively.
-
#multiply!(rhs) ⇒ Object
Calls #multiply(rhs, self) for scaling and Quat multiplication, otherwise calls #multiply(rhs, rhs) for Vec3 multiplication.
-
#multiply_quat(*args) ⇒ Object
Concatenates this quaternion and another and returns the result.
-
#multiply_quat!(rhs) ⇒ Object
Calls #multiply_quat(rhs, self).
-
#multiply_vec3(*args) ⇒ Object
Multiplies a quaternion and vec3, returning the rotated vec3.
-
#multiply_vec3!(rhs) ⇒ Object
Calls #multiply_vec3(rhs, rhs).
-
#negate(*args) ⇒ Object
(also: #-@)
Negates this vector or quaternions’s components and returns the result.
-
#negate! ⇒ Object
Calls #negate(self).
-
#normalize(*args) ⇒ Object
Returns a normalized Vec4 or Quat, depending on the type of the receiver and output.
-
#normalize! ⇒ Object
Calls #normalize(self).
-
#scale(*args) ⇒ Object
Scales this vector or quaternion’s components by a scalar value and returns the result.
-
#scale!(rhs) ⇒ Object
Calls #scale(rhs, self).
-
#set(*args) ⇒ Object
Sets the Quat’s components.
-
#size ⇒ Object
Returns the length in bytes of the Quat.
-
#slerp(*args) ⇒ Object
Returns a quaternion interpolated between self and destination using spherical linear interpolation.
-
#slerp!(destination, alpha) ⇒ Object
Calls #slerp(destination, alpha, self).
-
#store ⇒ Object
(also: #[]=)
Sets the Quat’s component at the index to the value.
-
#subtract(*args) ⇒ Object
(also: #-)
Subtracts another vector or quaternion’s components from this vector’s and returns the result.
-
#subtract!(rhs) ⇒ Object
Calls #subtract(rhs, self).
- #to_mat3 ⇒ Object
- #to_mat4 ⇒ Object
- #to_quat ⇒ Object
-
#to_s ⇒ Object
Returns a string representation of self.
- #to_vec2 ⇒ Object
- #to_vec3 ⇒ Object
- #to_vec4 ⇒ Object
-
#w ⇒ Object
Returns the W component of the quaternion.
-
#w=(value) ⇒ Object
Sets the W component of the quaternion.
-
#x ⇒ Object
Returns the X component of the quaternion.
-
#x=(value) ⇒ Object
Sets the X component of the quaternion.
-
#y ⇒ Object
Returns the Y component of the quaternion.
-
#y=(value) ⇒ Object
Sets the Y component of the quaternion.
-
#z ⇒ Object
Returns the Z component of the quaternion.
-
#z=(value) ⇒ Object
Sets the Z component of the quaternion.
Methods included from SwizzleSupport
#__under_method_missing__, #method_missing
Methods included from BaseMarshalSupport
Methods included from InspectSupport
Methods included from ArraySupport
Methods included from FiddlePointerSupport
Constructor Details
#initialize(*args) ⇒ Object
Sets the Quat’s components.
call-seq:
set(x, y, z, w = 1) -> new quaternion with components [x, y, z, w]
set([x, y, z, w]) -> new quaternion with components [x, y, z, w]
set(quat) -> copy of quat
set(vec2) -> new quaternion with the components [vec2.xy, 0, 1]
set(vec3) -> new quaternion with the components [vec3.xyz, 1]
set(vec4) -> new quaternion with the components of vec4
set(mat3) -> new quaternion from mat3
set(mat4) -> new quaternion from mat4
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 |
# File 'ext/snow-math/snow-math.c', line 4138
static VALUE sm_quat_init(int argc, VALUE *argv, VALUE sm_self)
{
quat_t *self = sm_unwrap_quat(sm_self, NULL);
size_t arr_index = 0;
rb_check_frozen(sm_self);
switch(argc) {
/* Default value */
case 0: { break; }
/* Copy or by-array */
case 1: {
if (SM_IS_A(argv[0], quat) ||
SM_IS_A(argv[0], vec4)) {
sm_unwrap_quat(argv[0], *self);
break;
}
if (SM_IS_A(argv[0], vec2)) {
sm_unwrap_vec2(argv[0], *self);
self[0][2] = s_float_lit(0.0);
self[0][3] = s_float_lit(1.0);
break;
}
if (SM_IS_A(argv[0], vec3)) {
sm_unwrap_vec3(argv[0], *self);
self[0][3] = s_float_lit(1.0);
break;
}
if (SM_IS_A(argv[0], mat4)) {
const mat4_t *mat = sm_unwrap_mat4(argv[0], NULL);
quat_from_mat4(*mat, *self);
break;
}
if (SM_IS_A(argv[0], mat3)) {
const mat3_t *mat = sm_unwrap_mat3(argv[0], NULL);
quat_from_mat3(*mat, *self);
break;
}
/* Optional offset into array provided */
if (0) {
case 2:
arr_index = NUM2SIZET(argv[1]);
}
/* Array of values */
if (SM_RB_IS_A(argv[0], rb_cArray)) {
VALUE arrdata = argv[0];
const size_t arr_end = arr_index + 3;
s_float_t *vec_elem = *self;
for (; arr_index < arr_end; ++arr_index, ++vec_elem) {
*vec_elem = (s_float_t)rb_num2dbl(rb_ary_entry(arrdata, (long)arr_index));
}
break;
}
rb_raise(rb_eArgError, "Expected either an array of Numerics or a Quat");
break;
}
/* W */
case 4: {
self[0][3] = (s_float_t)rb_num2dbl(argv[3]);
case 3: /* X, Y, Z */
self[0][0] = (s_float_t)rb_num2dbl(argv[0]);
self[0][1] = (s_float_t)rb_num2dbl(argv[1]);
self[0][2] = (s_float_t)rb_num2dbl(argv[2]);
break;
}
default: {
rb_raise(rb_eArgError, "Invalid arguments to initialize/set");
break;
}
} /* switch (argc) */
return sm_self;
}
|
Dynamic Method Handling
This class handles dynamic methods through the method_missing method in the class Snow::SwizzleSupport
Class Method Details
.angle_axis(*args) ⇒ Object
Returns a quaternion describing a rotation around a given axis.
call-seq:
angle_axis(angle_degrees, axis_vec3, output = nil) -> output or new quat
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 |
# File 'ext/snow-math/snow-math.c', line 4252
static VALUE sm_quat_angle_axis(int argc, VALUE *argv, VALUE self)
{
VALUE sm_angle;
VALUE sm_axis;
VALUE sm_out;
s_float_t angle;
const vec3_t *axis;
rb_scan_args(argc, argv, "21", &sm_angle, &sm_axis, &sm_out);
if (!SM_IS_A(sm_axis, vec3) && !SM_IS_A(sm_axis, vec4) && !SM_IS_A(sm_axis, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_THREE_OR_FOUR_FORMAT_LIT,
rb_obj_classname(sm_axis));
return Qnil;
}
angle = (s_float_t)rb_num2dbl(sm_angle);
axis = sm_unwrap_vec3(sm_axis, NULL);
if (SM_IS_A(sm_out, quat) || SM_IS_A(sm_out, vec4)) {
rb_check_frozen(sm_out);
quat_t *out = sm_unwrap_quat(sm_out, NULL);
quat_from_angle_axis(angle, (*axis)[0], (*axis)[1], (*axis)[2], *out);
} else {
quat_t out;
quat_from_angle_axis(angle, (*axis)[0], (*axis)[1], (*axis)[2], out);
sm_out = sm_wrap_quat(out, self);
rb_obj_call_init(sm_out, 0, 0);
}
return sm_out;
}
|
.new(*args) ⇒ Object Also known as: []
Allocates a new Quat.
call-seq:
new() -> new identity quaternion
new(x, y, z, w = 1) -> new quaternion with components [x, y, z, w]
new([x, y, z, w]) -> new quaternion with components [x, y, z, w]
new(quat) -> copy of quat
new(vec3) -> new quaternion with the components [vec3.xyz, 1]
new(vec4) -> new quaternion with the components of vec4
new(mat3) -> new quaternion from mat3
new(mat4) -> new quaternion from mat4
4116 4117 4118 4119 4120 4121 |
# File 'ext/snow-math/snow-math.c', line 4116
static VALUE sm_quat_new(int argc, VALUE *argv, VALUE self)
{
VALUE sm_quat = sm_wrap_quat(g_quat_identity, self);
rb_obj_call_init(sm_quat, argc, argv);
return sm_quat;
}
|
Instance Method Details
#==(sm_other) ⇒ Object
Tests this Vec4 or Quat and another Vec4 or Quat for equivalency.
call-seq:
quat == other_quat -> bool
vec4 == other_vec4 -> bool
quat == vec4 -> bool
vec4 == quat -> bool
3855 3856 3857 3858 3859 3860 3861 3862 |
# File 'ext/snow-math/snow-math.c', line 3855
static VALUE sm_vec4_equals(VALUE sm_self, VALUE sm_other)
{
if (!RTEST(sm_other) || (!SM_IS_A(sm_other, vec4) && !SM_IS_A(sm_other, quat))) {
return Qfalse;
}
return vec4_equals(*sm_unwrap_vec4(sm_self, NULL), *sm_unwrap_vec4(sm_other, NULL)) ? Qtrue : Qfalse;
}
|
#add(*args) ⇒ Object Also known as: +
Adds this and another vector or quaternion’s components together and returns the result. The result type is that of the receiver.
call-seq:
add(vec4, output = nil) -> output or new vec4 or quat
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 |
# File 'ext/snow-math/snow-math.c', line 3511
static VALUE sm_vec4_add(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_rhs;
VALUE sm_out;
vec4_t *self;
vec4_t *rhs;
rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out);
self = sm_unwrap_vec4(sm_self, NULL);
if (!SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_rhs));
return Qnil;
}
rhs = sm_unwrap_vec4(sm_rhs, NULL);
if (argc == 2) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
vec4_t *output;
if (!SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_rhs));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_vec4(sm_out, NULL);
vec4_add(*self, *rhs, *output);
}} else if (argc == 1) {
SM_LABEL(skip_output): {
vec4_t output;
vec4_add(*self, *rhs, output);
sm_out = sm_wrap_vec4(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to add");
}
return sm_out;
}
|
#add!(rhs) ⇒ Object
Calls #add(rhs, self)
call-seq: add!(rhs) -> self
193 194 195 |
# File 'lib/snow-math/quat.rb', line 193 def add!(rhs) add rhs, self end |
#address ⇒ Object
Returns the memory address of the object.
call-seq: address -> fixnum
6894 6895 6896 6897 6898 6899 |
# File 'ext/snow-math/snow-math.c', line 6894
static VALUE sm_get_address(VALUE sm_self)
{
void *data_ptr = NULL;
Data_Get_Struct(sm_self, void, data_ptr);
return ULL2NUM((unsigned long long)data_ptr);
}
|
#copy(*args) ⇒ Object Also known as: dup, clone
Returns a copy of self.
call-seq:
copy(output = nil) -> output or new vec4 / quat
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 |
# File 'ext/snow-math/snow-math.c', line 3201
static VALUE sm_vec4_copy(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
vec4_t *self;
rb_scan_args(argc, argv, "01", &sm_out);
self = sm_unwrap_vec4(sm_self, NULL);
if (argc == 1) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
vec4_t *output;
if (!SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_vec4(sm_out, NULL);
vec4_copy (*self, *output);
}} else if (argc == 0) {
SM_LABEL(skip_output): {
vec4_t output;
vec4_copy (*self, output);
sm_out = sm_wrap_vec4(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to copy");
}
return sm_out;
}
|
#divide(*args) ⇒ Object Also known as: /
Divides this vector or quaternion’s components by a scalar value and returns the result. The return type is that of the receiver.
call-seq:
divide(scalar, output = nil) -> output or new vec4
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 |
# File 'ext/snow-math/snow-math.c', line 3821
static VALUE sm_vec4_divide(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
VALUE sm_scalar;
s_float_t scalar;
vec4_t *self = sm_unwrap_vec4(sm_self, NULL);
rb_scan_args(argc, argv, "11", &sm_scalar, &sm_out);
scalar = rb_num2dbl(sm_scalar);
if ((SM_IS_A(sm_out, vec4) || SM_IS_A(sm_out, quat))) {
rb_check_frozen(sm_out);
vec4_divide(*self, scalar, *sm_unwrap_vec4(sm_out, NULL));
} else {
vec4_t out;
vec4_divide(*self, scalar, out);
sm_out = sm_wrap_vec4(out, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}
return sm_out;
}
|
#divide!(rhs) ⇒ Object
Calls #divide(rhs, self)
call-seq: divide!(rhs) -> self
214 215 216 |
# File 'lib/snow-math/quat.rb', line 214 def divide!(rhs) divide rhs, self end |
#dot_product(sm_other) ⇒ Object Also known as: **
Returns the dot product of self and another Vec4 or Quat.
call-seq:
dot_product(vec4) -> float
dot_product(quat) -> float
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 |
# File 'ext/snow-math/snow-math.c', line 3612
static VALUE sm_vec4_dot_product(VALUE sm_self, VALUE sm_other)
{
if (!SM_IS_A(sm_other, vec4) &&
!SM_IS_A(sm_other, quat)) {
rb_raise(rb_eArgError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_other));
return Qnil;
}
return rb_float_new(
vec4_dot_product(
*sm_unwrap_vec4(sm_self, NULL),
*sm_unwrap_vec4(sm_other, NULL)));
}
|
#fetch ⇒ Object Also known as: []
Gets the component of the Quat at the given index.
call-seq: fetch(index) -> float
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 |
# File 'ext/snow-math/snow-math.c', line 3903
static VALUE sm_quat_fetch (VALUE sm_self, VALUE sm_index)
{
static const int max_index = sizeof(quat_t) / sizeof(s_float_t);
const quat_t *self = sm_unwrap_quat(sm_self, NULL);
int index = NUM2INT(sm_index);
if (index < 0 || index >= max_index) {
rb_raise(rb_eRangeError,
"Index %d is out of bounds, must be from 0 through %d", index, max_index - 1);
}
return rb_float_new(self[0][NUM2INT(sm_index)]);
}
|
#inverse(*args) ⇒ Object Also known as: ~
Returns the inverse of this Quat. Note that this is not the same as the inverse of, for example, a Vec4.
call-seq:
inverse(output = nil) -> output or new quat
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 |
# File 'ext/snow-math/snow-math.c', line 3971
static VALUE sm_quat_inverse(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
quat_t *self;
rb_scan_args(argc, argv, "01", &sm_out);
self = sm_unwrap_quat(sm_self, NULL);
if (argc == 1) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
quat_t *output;
if (!SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_quat(sm_out, NULL);
quat_inverse (*self, *output);
}} else if (argc == 0) {
SM_LABEL(skip_output): {
quat_t output;
quat_inverse (*self, output);
sm_out = sm_wrap_quat(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to inverse");
}
return sm_out;
}
|
#inverse! ⇒ Object
Calls #inverse(self)
call-seq: inverse! -> self
136 137 138 |
# File 'lib/snow-math/quat.rb', line 136 def inverse! inverse self end |
#length ⇒ Object
Returns the length of the Quat in components. Result is always 4.
call-seq: length -> fixnum
3957 3958 3959 3960 |
# File 'ext/snow-math/snow-math.c', line 3957
static VALUE sm_quat_length (VALUE self)
{
return SIZET2NUM(sizeof(quat_t) / sizeof(s_float_t));
}
|
#load_identity ⇒ Object
Sets self to the identity quaternion.
call-seq:
load_identity -> self
4293 4294 4295 4296 4297 4298 |
# File 'ext/snow-math/snow-math.c', line 4293
static VALUE sm_quat_identity(VALUE sm_self)
{
quat_t *self = sm_unwrap_quat(sm_self, NULL);
quat_identity(*self);
return sm_self;
}
|
#magnitude ⇒ Object
Returns the magnitude of self.
call-seq:
magnitude -> float
3775 3776 3777 3778 |
# File 'ext/snow-math/snow-math.c', line 3775
static VALUE sm_vec4_magnitude(VALUE sm_self)
{
return rb_float_new(vec4_length(*sm_unwrap_vec4(sm_self, NULL)));
}
|
#magnitude_squared ⇒ Object
Returns the squared magnitude of self.
call-seq:
magnitude_squared -> float
3762 3763 3764 3765 |
# File 'ext/snow-math/snow-math.c', line 3762
static VALUE sm_vec4_magnitude_squared(VALUE sm_self)
{
return rb_float_new(vec4_length_squared(*sm_unwrap_vec4(sm_self, NULL)));
}
|
#multiply(rhs, output = nil) ⇒ Object Also known as: *
Wrapper around #multiply_quat, #multiply_vec3, and #scale respectively.
call-seq:
multiply(quat, output = nil) -> output or new quat
multiply(scalar, output = nil) -> output or new quat
multiply(vec3, output = nil) -> output or new vec3
167 168 169 170 171 172 173 174 |
# File 'lib/snow-math/quat.rb', line 167 def multiply(rhs, output = nil) case rhs when ::Snow::Quat then multiply_quat(rhs, output) when ::Snow::Vec3 then multiply_vec3(rhs, output) when Numeric then scale(rhs, output) else raise TypeError, "Invalid type for RHS" end end |
#multiply!(rhs) ⇒ Object
Calls #multiply(rhs, self) for scaling and Quat multiplication, otherwise calls #multiply(rhs, rhs) for Vec3 multiplication.
call-seq:
multiply!(quat) -> self
multiply!(scalar) -> self
multiply!(vec3) -> vec3
183 184 185 186 187 188 |
# File 'lib/snow-math/quat.rb', line 183 def multiply!(rhs) case rhs when ::Snow::Vec3 then multiply(rhs, rhs) else multiply(rhs, self) end end |
#multiply_quat(*args) ⇒ Object
Concatenates this quaternion and another and returns the result.
call-seq:
multiply_quat(quat, output = nil) -> output or new quat
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 |
# File 'ext/snow-math/snow-math.c', line 4011
static VALUE sm_quat_multiply(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_rhs;
VALUE sm_out;
quat_t *self;
quat_t *rhs;
rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out);
self = sm_unwrap_quat(sm_self, NULL);
if (!!SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_rhs));
return Qnil;
}
rhs = sm_unwrap_quat(sm_rhs, NULL);
if (argc == 2) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
quat_t *output;
if (!!SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_quat(sm_out, NULL);
quat_multiply(*self, *rhs, *output);
}} else if (argc == 1) {
SM_LABEL(skip_output): {
quat_t output;
quat_multiply(*self, *rhs, output);
sm_out = sm_wrap_quat(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to multiply_quat");
}
return sm_out;
}
|
#multiply_quat!(rhs) ⇒ Object
Calls #multiply_quat(rhs, self)
call-seq: multiply_quat!(rhs) -> self
150 151 152 |
# File 'lib/snow-math/quat.rb', line 150 def multiply_quat!(rhs) multiply_quat rhs, self end |
#multiply_vec3(*args) ⇒ Object
Multiplies a quaternion and vec3, returning the rotated vec3.
call-seq:
multiply_vec3(quat, output = nil) -> output or new quat
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 |
# File 'ext/snow-math/snow-math.c', line 4060
static VALUE sm_quat_multiply_vec3(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_rhs;
VALUE sm_out;
quat_t *self;
vec3_t *rhs;
rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out);
self = sm_unwrap_quat(sm_self, NULL);
if (!SM_IS_A(sm_rhs, vec3) && !SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_THREE_OR_FOUR_FORMAT_LIT,
rb_obj_classname(sm_rhs));
return Qnil;
}
rhs = sm_unwrap_vec3(sm_rhs, NULL);
if (argc == 2) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
vec3_t *output;
if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_THREE_OR_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_vec3(sm_out, NULL);
quat_multiply_vec3(*self, *rhs, *output);
}} else if (argc == 1) {
SM_LABEL(skip_output): {
vec3_t output;
quat_multiply_vec3(*self, *rhs, output);
sm_out = sm_wrap_vec3(output, rb_obj_class(sm_rhs));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to multiply_vec3");
}
return sm_out;
}
|
#multiply_vec3!(rhs) ⇒ Object
Calls #multiply_vec3(rhs, rhs)
call-seq: multiply_vec3!(rhs) -> rhs
157 158 159 |
# File 'lib/snow-math/quat.rb', line 157 def multiply_vec3!(rhs) multiply_vec3 rhs, rhs end |
#negate(*args) ⇒ Object Also known as: -@
Negates this vector or quaternions’s components and returns the result.
call-seq:
negate(output = nil) -> output or new vec4 or quat
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 |
# File 'ext/snow-math/snow-math.c', line 3322
static VALUE sm_vec4_negate(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
vec4_t *self;
rb_scan_args(argc, argv, "01", &sm_out);
self = sm_unwrap_vec4(sm_self, NULL);
if (argc == 1) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
vec4_t *output;
if (!SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_vec4(sm_out, NULL);
vec4_negate (*self, *output);
}} else if (argc == 0) {
SM_LABEL(skip_output): {
vec4_t output;
vec4_negate (*self, output);
sm_out = sm_wrap_vec4(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to negate");
}
return sm_out;
}
|
#negate! ⇒ Object
Calls #negate(self)
call-seq: negate! -> self
143 144 145 |
# File 'lib/snow-math/quat.rb', line 143 def negate! negate self end |
#normalize(*args) ⇒ Object
Returns a normalized Vec4 or Quat, depending on the type of the receiver and output.
call-seq:
normalize(output = nil) -> output or new vec4 / quat
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 |
# File 'ext/snow-math/snow-math.c', line 3242
static VALUE sm_vec4_normalize(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
vec4_t *self;
rb_scan_args(argc, argv, "01", &sm_out);
self = sm_unwrap_vec4(sm_self, NULL);
if (argc == 1) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
vec4_t *output;
if (!SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
}
rb_check_frozen(sm_out);
output = sm_unwrap_vec4(sm_out, NULL);
vec4_normalize (*self, *output);
}} else if (argc == 0) {
SM_LABEL(skip_output): {
vec4_t output;
vec4_normalize (*self, output);
sm_out = sm_wrap_vec4(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to normalize");
}
return sm_out;
}
|
#normalize! ⇒ Object
Calls #normalize(self)
call-seq: normalize! -> self
129 130 131 |
# File 'lib/snow-math/quat.rb', line 129 def normalize! normalize self end |
#scale(*args) ⇒ Object
Scales this vector or quaternion’s components by a scalar value and returns the result. The return type is that of the receiver.
call-seq:
scale(scalar, output = nil) -> output or new vec4
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 |
# File 'ext/snow-math/snow-math.c', line 3789
static VALUE sm_vec4_scale(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
VALUE sm_scalar;
s_float_t scalar;
vec4_t *self = sm_unwrap_vec4(sm_self, NULL);
rb_scan_args(argc, argv, "11", &sm_scalar, &sm_out);
scalar = rb_num2dbl(sm_scalar);
if ((SM_IS_A(sm_out, vec4) || SM_IS_A(sm_out, quat))) {
rb_check_frozen(sm_out);
vec4_scale(*self, scalar, *sm_unwrap_vec4(sm_out, NULL));
} else {
vec4_t out;
vec4_scale(*self, scalar, out);
sm_out = sm_wrap_vec4(out, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}
return sm_out;
}
|
#scale!(rhs) ⇒ Object
Calls #scale(rhs, self)
call-seq: scale!(rhs) -> self
207 208 209 |
# File 'lib/snow-math/quat.rb', line 207 def scale!(rhs) scale rhs, self end |
#set(*args) ⇒ Object
Sets the Quat’s components.
call-seq:
set(x, y, z, w = 1) -> new quaternion with components [x, y, z, w]
set([x, y, z, w]) -> new quaternion with components [x, y, z, w]
set(quat) -> copy of quat
set(vec2) -> new quaternion with the components [vec2.xy, 0, 1]
set(vec3) -> new quaternion with the components [vec3.xyz, 1]
set(vec4) -> new quaternion with the components of vec4
set(mat3) -> new quaternion from mat3
set(mat4) -> new quaternion from mat4
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 |
# File 'ext/snow-math/snow-math.c', line 4138
static VALUE sm_quat_init(int argc, VALUE *argv, VALUE sm_self)
{
quat_t *self = sm_unwrap_quat(sm_self, NULL);
size_t arr_index = 0;
rb_check_frozen(sm_self);
switch(argc) {
/* Default value */
case 0: { break; }
/* Copy or by-array */
case 1: {
if (SM_IS_A(argv[0], quat) ||
SM_IS_A(argv[0], vec4)) {
sm_unwrap_quat(argv[0], *self);
break;
}
if (SM_IS_A(argv[0], vec2)) {
sm_unwrap_vec2(argv[0], *self);
self[0][2] = s_float_lit(0.0);
self[0][3] = s_float_lit(1.0);
break;
}
if (SM_IS_A(argv[0], vec3)) {
sm_unwrap_vec3(argv[0], *self);
self[0][3] = s_float_lit(1.0);
break;
}
if (SM_IS_A(argv[0], mat4)) {
const mat4_t *mat = sm_unwrap_mat4(argv[0], NULL);
quat_from_mat4(*mat, *self);
break;
}
if (SM_IS_A(argv[0], mat3)) {
const mat3_t *mat = sm_unwrap_mat3(argv[0], NULL);
quat_from_mat3(*mat, *self);
break;
}
/* Optional offset into array provided */
if (0) {
case 2:
arr_index = NUM2SIZET(argv[1]);
}
/* Array of values */
if (SM_RB_IS_A(argv[0], rb_cArray)) {
VALUE arrdata = argv[0];
const size_t arr_end = arr_index + 3;
s_float_t *vec_elem = *self;
for (; arr_index < arr_end; ++arr_index, ++vec_elem) {
*vec_elem = (s_float_t)rb_num2dbl(rb_ary_entry(arrdata, (long)arr_index));
}
break;
}
rb_raise(rb_eArgError, "Expected either an array of Numerics or a Quat");
break;
}
/* W */
case 4: {
self[0][3] = (s_float_t)rb_num2dbl(argv[3]);
case 3: /* X, Y, Z */
self[0][0] = (s_float_t)rb_num2dbl(argv[0]);
self[0][1] = (s_float_t)rb_num2dbl(argv[1]);
self[0][2] = (s_float_t)rb_num2dbl(argv[2]);
break;
}
default: {
rb_raise(rb_eArgError, "Invalid arguments to initialize/set");
break;
}
} /* switch (argc) */
return sm_self;
}
|
#size ⇒ Object
Returns the length in bytes of the Quat. When compiled to use doubles as the base type, this is always 32. Otherwise, when compiled to use floats, it’s always 16.
call-seq: size -> fixnum
3945 3946 3947 3948 |
# File 'ext/snow-math/snow-math.c', line 3945
static VALUE sm_quat_size (VALUE self)
{
return SIZET2NUM(sizeof(quat_t));
}
|
#slerp(*args) ⇒ Object
Returns a quaternion interpolated between self and destination using spherical linear interpolation. Alpha is the interpolation value and must be clamped from 0 to 1.
call-seq:
slerp(destination, alpha, output = nil) -> output or new quat
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 |
# File 'ext/snow-math/snow-math.c', line 4310
static VALUE sm_quat_slerp(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
VALUE sm_destination;
VALUE sm_alpha;
quat_t *destination;
quat_t *self = sm_unwrap_vec4(sm_self, NULL);
s_float_t alpha;
rb_scan_args(argc, argv, "21", &sm_destination, &sm_alpha, &sm_out);
alpha = rb_num2dbl(sm_alpha);
if (!SM_IS_A(sm_destination, vec4) && !SM_IS_A(sm_destination, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_destination));
return Qnil;
}
destination = sm_unwrap_quat(sm_destination, NULL);
if ((SM_IS_A(sm_out, vec4) || SM_IS_A(sm_out, quat))) {
rb_check_frozen(sm_out);
quat_slerp(*self, *destination, alpha, *sm_unwrap_quat(sm_out, NULL));
} else {
quat_t out;
quat_slerp(*self, *destination, alpha, out);
sm_out = sm_wrap_quat(out, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}
return sm_out;
}
|
#slerp!(destination, alpha) ⇒ Object
Calls #slerp(destination, alpha, self)
call-seq: slerp!(destination, alpha) -> self
221 222 223 |
# File 'lib/snow-math/quat.rb', line 221 def slerp!(destination, alpha) slerp(destination, alpha, self) end |
#store ⇒ Object Also known as: []=
Sets the Quat’s component at the index to the value.
call-seq: store(index, value) -> value
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 |
# File 'ext/snow-math/snow-math.c', line 3922
static VALUE sm_quat_store (VALUE sm_self, VALUE sm_index, VALUE sm_value)
{
static const int max_index = sizeof(quat_t) / sizeof(s_float_t);
quat_t *self = sm_unwrap_quat(sm_self, NULL);
int index = NUM2INT(sm_index);
rb_check_frozen(sm_self);
if (index < 0 || index >= max_index) {
rb_raise(rb_eRangeError,
"Index %d is out of bounds, must be from 0 through %d", index, max_index - 1);
}
self[0][index] = (s_float_t)rb_num2dbl(sm_value);
return sm_value;
}
|
#subtract(*args) ⇒ Object Also known as: -
Subtracts another vector or quaternion’s components from this vector’s and returns the result. The return type is that of the receiver.
call-seq:
subtract(vec4, output = nil) -> output or new vec4
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 |
# File 'ext/snow-math/snow-math.c', line 3561
static VALUE sm_vec4_subtract(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_rhs;
VALUE sm_out;
vec4_t *self;
vec4_t *rhs;
rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out);
self = sm_unwrap_vec4(sm_self, NULL);
if (!SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_rhs));
return Qnil;
}
rhs = sm_unwrap_vec4(sm_rhs, NULL);
if (argc == 2) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
vec4_t *output;
if (!SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_rhs));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_vec4(sm_out, NULL);
vec4_subtract(*self, *rhs, *output);
}} else if (argc == 1) {
SM_LABEL(skip_output): {
vec4_t output;
vec4_subtract(*self, *rhs, output);
sm_out = sm_wrap_vec4(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to subtract");
}
return sm_out;
}
|
#subtract!(rhs) ⇒ Object
Calls #subtract(rhs, self)
call-seq: subtract!(rhs) -> self
200 201 202 |
# File 'lib/snow-math/quat.rb', line 200 def subtract!(rhs) subtract rhs, self end |
#to_s ⇒ Object
Returns a string representation of self.
Quat[].to_s # => "{ 0.0, 0.0, 0.0, 1.0 }"
call-seq:
to_s -> string
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 |
# File 'ext/snow-math/snow-math.c', line 4233
static VALUE sm_quat_to_s(VALUE self)
{
const s_float_t *v;
v = (const s_float_t *)*sm_unwrap_quat(self, NULL);
return rb_sprintf(
"{ "
"%f, %f, %f, %f"
" }",
v[0], v[1], v[2], v[3]);
}
|
#w ⇒ Object
Returns the W component of the quaternion.
call-seq: w -> float
115 116 117 |
# File 'lib/snow-math/quat.rb', line 115 def w self[3] end |
#w=(value) ⇒ Object
Sets the W component of the quaternion.
call-seq: w = value -> value
122 123 124 |
# File 'lib/snow-math/quat.rb', line 122 def w=(value) self[3] = value end |
#x ⇒ Object
Returns the X component of the quaternion.
call-seq: x -> float
73 74 75 |
# File 'lib/snow-math/quat.rb', line 73 def x self[0] end |
#x=(value) ⇒ Object
Sets the X component of the quaternion.
call-seq: x = value -> value
80 81 82 |
# File 'lib/snow-math/quat.rb', line 80 def x=(value) self[0] = value end |
#y ⇒ Object
Returns the Y component of the quaternion.
call-seq: y -> float
87 88 89 |
# File 'lib/snow-math/quat.rb', line 87 def y self[1] end |
#y=(value) ⇒ Object
Sets the Y component of the quaternion.
call-seq: y = value -> value
94 95 96 |
# File 'lib/snow-math/quat.rb', line 94 def y=(value) self[1] = value end |
#z ⇒ Object
Returns the Z component of the quaternion.
call-seq: z -> float
101 102 103 |
# File 'lib/snow-math/quat.rb', line 101 def z self[2] end |
#z=(value) ⇒ Object
Sets the Z component of the quaternion.
call-seq: z = value -> value
108 109 110 |
# File 'lib/snow-math/quat.rb', line 108 def z=(value) self[2] = value end |