Class: Snow::Mat4
- Inherits:
-
Data
- Object
- Data
- Snow::Mat4
- Includes:
- ArraySupport, BaseMarshalSupport, FiddlePointerSupport, InspectSupport
- Defined in:
- lib/snow-math/mat4.rb,
lib/snow-math/ptr.rb,
lib/snow-math/to_a.rb,
lib/snow-math/inspect.rb,
lib/snow-math/marshal.rb,
ext/snow-math/snow-math.c
Overview
A 4x4 matrix. Useful for anything from rotation to projection to almost any other 3D transformation you might need.
Constant Summary collapse
- IDENTITY =
self.new.freeze
- ONE =
self.new(Array.new(16, 1)).freeze
- ZERO =
self.new(Array.new(16, 0)).freeze
Class Method Summary collapse
-
.angle_axis(*args) ⇒ Object
Returns a Mat4 describing a rotation around an axis.
-
.frustum(*args) ⇒ Object
Returns a matrix describing a frustum perspective.
-
.look_at(*args) ⇒ Object
Returns a matrix describing a view transformation for an eye looking at center with the given up vector.
-
.new(*args) ⇒ Object
(also: [])
Allocates a new Mat4.
-
.orthographic(*args) ⇒ Object
Returns a matrix describing an orthographic projection.
-
.perspective(*args) ⇒ Object
Returns a matrix describing a perspective projection.
-
.translation(*args) ⇒ Object
Returns a translation matrix for the given X, Y, and Z translations (or using the vector’s components as such).
Instance Method Summary collapse
-
#==(sm_other) ⇒ Object
Tests this Mat4 and another Mat4 for equivalency.
-
#address ⇒ Object
Returns the memory address of the object.
-
#adjoint(*args) ⇒ Object
Returns an adjoint matrix.
-
#adjoint! ⇒ Object
Calls #adjoint(self).
-
#copy(*args) ⇒ Object
(also: #dup, #clone)
Returns a copy of self.
-
#determinant ⇒ Object
Returns the matrix determinant.
-
#fetch ⇒ Object
(also: #[])
Gets the component of the Mat4 at the given index.
-
#get_column3(*args) ⇒ Object
Returns a Vec3 whose components are that of the column at the given index.
-
#get_column4(*args) ⇒ Object
Returns a Vec4 whose components are that of the column at the given index.
-
#get_row3(*args) ⇒ Object
Returns a Vec3 whose components are that of the row at the given index.
-
#get_row4(*args) ⇒ Object
Returns a Vec4 whose components are that of the row at the given index.
-
#initialize(*args) ⇒ Object
constructor
Sets the Mat4’s components.
-
#inverse_affine(*args) ⇒ Object
Returns an inverse affine matrix if successful.
-
#inverse_affine! ⇒ Object
Calls #inverse_affine(self).
-
#inverse_general(*args) ⇒ Object
Returns an generalized inverse matrix if successful.
-
#inverse_general! ⇒ Object
Calls #inverse_general(self).
-
#inverse_orthogonal(*args) ⇒ Object
Returns an inverse orthogonal matrix.
-
#inverse_orthogonal! ⇒ Object
Calls #inverse_orthogonal(self).
-
#inverse_rotate_vec3(*args) ⇒ Object
Convenience function to rotate a Vec3 using the inverse of self.
-
#inverse_rotate_vec3!(rhs) ⇒ Object
Calls #inverse_rotate_vec3(rhs, rhs).
-
#length ⇒ Object
Returns the length of the Mat4 in components.
-
#load_identity ⇒ Object
Sets self to the identity matrix.
-
#multiply(rhs, out = nil) ⇒ Object
(also: #*)
Calls #multiply_mat4, #multiply_vec4, #transform_vec3, and #scale, respectively.
-
#multiply!(rhs) ⇒ Object
Calls #multiply(rhs, self) when rhs is a scalar or Mat4, otherwise calls #multiply(rhs, rhs).
-
#multiply_mat4(*args) ⇒ Object
Multiplies this and another Mat4 together and returns the result.
-
#multiply_mat4!(rhs) ⇒ Object
Calls #multiply_mat4(rhs, self).
-
#multiply_vec4(*args) ⇒ Object
Transforms a Vec4 using self and returns the resulting vector.
-
#multiply_vec4!(rhs) ⇒ Object
Calls #multiply_vec4(rhs, rhs).
-
#rotate_vec3(*args) ⇒ Object
Rotates a Vec3 by self, using only the inner 9x9 matrix to transform the vector.
-
#rotate_vec3!(rhs) ⇒ Object
Calls #inverse_transform_vec3(rhs, rhs).
-
#scale(*args) ⇒ Object
(also: #**)
Scales the inner 9x9 matrix’s columns by X, Y, and Z and returns the result.
-
#scale!(x, y, z) ⇒ Object
Calls #scale(x, y, z, self).
-
#set(*args) ⇒ Object
Sets the Mat4’s components.
-
#set_column3(sm_index, sm_value) ⇒ Object
Sets the matrix’s column at the given index to the given vector.
-
#set_column4(sm_index, sm_value) ⇒ Object
Sets the matrix’s column at the given index to the given vector.
-
#set_row3(sm_index, sm_value) ⇒ Object
Sets the matrix’s row at the given index to the given vector.
-
#set_row4(sm_index, sm_value) ⇒ Object
Sets the matrix’s row at the given index to the given vector.
-
#size ⇒ Object
Returns the length in bytes of the Mat4.
-
#store ⇒ Object
(also: #[]=)
Sets the Mat4’s component at the index to the value.
-
#to_mat3(*args) ⇒ Object
Converts the Mat4 to a Mat3.
- #to_quat ⇒ Object
-
#to_s ⇒ Object
Returns a string representation of self.
-
#transform_vec3(*args) ⇒ Object
Transforms a Vec3 using self and returns the resulting vector.
-
#transform_vec3!(rhs) ⇒ Object
Calls #transform_vec3(rhs, rhs).
-
#translate(*args) ⇒ Object
Translates this matrix by X, Y, and Z (or a Vec3’s X, Y, and Z components) and returns the result.
-
#translate!(*args) ⇒ Object
Calls #translate(*args, self).
-
#transpose(*args) ⇒ Object
(also: #~)
Transposes this matrix and returns the result.
-
#transpose! ⇒ Object
Calls #transpose(self).
Methods included from BaseMarshalSupport
Methods included from InspectSupport
Methods included from ArraySupport
Methods included from FiddlePointerSupport
Constructor Details
#initialize(*args) ⇒ Object
Sets the Mat4’s components.
call-seq:
set(m1, m2, ..., m15, m16) -> new mat4 with components
set([m1, m2, ..., m15, m16]) -> new mat4 with components
set(mat4) -> copy of mat4
set(mat3) -> new mat4 with mat3's components
set(quat) -> quat as mat4
set(Vec4, Vec4, Vec4, Vec4) -> new mat4 with given row vectors
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 |
# File 'ext/snow-math/snow-math.c', line 5115
static VALUE sm_mat4_init(int argc, VALUE *argv, VALUE sm_self)
{
mat4_t *self = sm_unwrap_mat4(sm_self, NULL);
size_t arr_index = 0;
rb_check_frozen(sm_self);
switch (argc) {
case 0: {
/* Identity (handled in _new) */
break;
}
/* Copy Mat4 or provided [Numeric..] */
case 1: {
/* Copy Mat4 */
if (SM_IS_A(argv[0], mat4)) {
sm_unwrap_mat4(argv[0], *self);
break;
}
/* Copy Mat3 */
if (SM_IS_A(argv[0], mat3)) {
mat3_to_mat4(*sm_unwrap_mat4(argv[0], NULL), *self);
break;
}
/* Build from Quaternion */
if (SM_IS_A(argv[0], quat)) {
mat4_from_quat(*sm_unwrap_quat(argv[0], NULL), *self);
break;
}
/* Optional offset into array provided */
if (0) {
case 2:
arr_index = NUM2SIZET(argv[1]);
}
/* Array of values */
if (SM_RB_IS_A(argv[0], rb_cArray)) {
VALUE arrdata = argv[0];
const size_t arr_end = arr_index + 16;
s_float_t *mat_elem = *self;
for (; arr_index < arr_end; ++arr_index, ++mat_elem) {
*mat_elem = rb_num2dbl(rb_ary_entry(arrdata, (long)arr_index));
}
break;
}
rb_raise(rb_eArgError, "Expected either an array of Numerics or a Mat4");
break;
}
/* Mat4(Vec4, Vec4, Vec4, Vec4) */
case 4: {
size_t arg_index;
s_float_t *mat_elem = *self;
for (arg_index = 0; arg_index < 4; ++arg_index, mat_elem += 4) {
if (!SM_IS_A(argv[arg_index], vec4) && !SM_IS_A(argv[arg_index], quat)) {
rb_raise(
rb_eArgError,
"Argument %d must be a Vec4 or Quat when supplying four arguments to initialize/set",
(int)(arg_index + 1));
}
sm_unwrap_vec4(argv[arg_index], mat_elem);
}
break;
}
/* Mat4(Numeric m00 .. m16) */
case 16: {
s_float_t *mat_elem = *self;
VALUE *argv_p = argv;
for (; argc; --argc, ++argv_p, ++mat_elem) {
*mat_elem = (s_float_t)rb_num2dbl(*argv_p);
}
break;
}
default: {
rb_raise(rb_eArgError, "Invalid arguments to initialize/set");
break;
}
} /* switch (argc) */
return sm_self;
}
|
Class Method Details
.angle_axis(*args) ⇒ Object
Returns a Mat4 describing a rotation around an axis.
call-seq:
angle_axis(angle_degrees, axis_vec3, output = nil) -> output or new mat4
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 |
# File 'ext/snow-math/snow-math.c', line 5244
static VALUE sm_mat4_angle_axis(int argc, VALUE *argv, VALUE self)
{
VALUE sm_angle;
VALUE sm_axis;
VALUE sm_out;
s_float_t angle;
const vec3_t *axis;
rb_scan_args(argc, argv, "21", &sm_angle, &sm_axis, &sm_out);
if (!SM_IS_A(sm_axis, vec3) && !SM_IS_A(sm_axis, vec4) && !SM_IS_A(sm_axis, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_THREE_OR_FOUR_FORMAT_LIT,
rb_obj_classname(sm_axis));
return Qnil;
}
angle = (s_float_t)rb_num2dbl(sm_angle);
axis = sm_unwrap_vec3(sm_axis, NULL);
if (SM_IS_A(sm_out, mat4)) {
rb_check_frozen(sm_out);
mat4_t *out = sm_unwrap_mat4(sm_out, NULL);
mat4_rotation(angle, (*axis)[0], (*axis)[1], (*axis)[2], *out);
} else {
mat4_t out;
mat4_rotation(angle, (*axis)[0], (*axis)[1], (*axis)[2], out);
sm_out = sm_wrap_mat4(out, self);
rb_obj_call_init(sm_out, 0, 0);
}
return sm_out;
}
|
.frustum(*args) ⇒ Object
Returns a matrix describing a frustum perspective.
call-seq:
frustum(left, right, bottom, top, z_near, z_far, output = nil) -> output or new mat4
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 |
# File 'ext/snow-math/snow-math.c', line 5696
static VALUE sm_mat4_frustum(int argc, VALUE *argv, VALUE self)
{
VALUE sm_left;
VALUE sm_right;
VALUE sm_bottom;
VALUE sm_top;
VALUE sm_z_near;
VALUE sm_z_far;
VALUE sm_out;
s_float_t left;
s_float_t right;
s_float_t bottom;
s_float_t top;
s_float_t z_near;
s_float_t z_far;
rb_scan_args(argc, argv, "61", &sm_left, &sm_right, &sm_bottom, &sm_top, &sm_z_near, &sm_z_far, &sm_out);
left = (s_float_t)rb_num2dbl(sm_left);
right = (s_float_t)rb_num2dbl(sm_right);
bottom = (s_float_t)rb_num2dbl(sm_bottom);
top = (s_float_t)rb_num2dbl(sm_top);
z_near = (s_float_t)rb_num2dbl(sm_z_near);
z_far = (s_float_t)rb_num2dbl(sm_z_far);
if (SM_IS_A(sm_out, mat4)) {
rb_check_frozen(sm_out);
mat4_t *out = sm_unwrap_mat4(sm_out, NULL);
mat4_frustum(left, right, bottom, top, z_near, z_far, *out);
} else {
mat4_t out;
mat4_frustum(left, right, bottom, top, z_near, z_far, out);
sm_out = sm_wrap_mat4(out, Qnil);
rb_obj_call_init(sm_out, 0, 0);
}
return sm_out;
}
|
.look_at(*args) ⇒ Object
Returns a matrix describing a view transformation for an eye looking at center with the given up vector.
call-seq:
look_at(eye, center, up, output = nil) -> output or new mat4
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 |
# File 'ext/snow-math/snow-math.c', line 5832
static VALUE sm_mat4_look_at(int argc, VALUE *argv, VALUE self)
{
VALUE sm_eye;
VALUE sm_center;
VALUE sm_up;
VALUE sm_out;
const vec3_t *eye;
const vec3_t *center;
const vec3_t *up;
rb_scan_args(argc, argv, "31", &sm_eye, &sm_center, &sm_up, &sm_out);
eye = sm_unwrap_vec3(sm_eye, NULL);
center = sm_unwrap_vec3(sm_center, NULL);
up = sm_unwrap_vec3(sm_up, NULL);
if (SM_IS_A(sm_out, mat4)) {
rb_check_frozen(sm_out);
mat4_t *out = sm_unwrap_mat4(sm_out, NULL);
mat4_look_at(*eye, *center, *up, *out);
} else {
mat4_t out;
mat4_look_at(*eye, *center, *up, out);
sm_out = sm_wrap_mat4(out, self);
rb_obj_call_init(sm_out, 0, 0);
}
return sm_out;
}
|
.new(*args) ⇒ Object Also known as: []
Allocates a new Mat4.
call-seq:
new() -> identity mat4
new(m1, m2, ..., m15, m16) -> new mat4 with components
new([m1, m2, ..., m15, m16]) -> new mat4 with components
new(mat4) -> copy of mat4
new(mat3) -> new mat4 with mat3's components
new(quat) -> quat as mat4
new(Vec4, Vec4, Vec4, Vec4) -> new mat4 with given row vectors
5095 5096 5097 5098 5099 5100 |
# File 'ext/snow-math/snow-math.c', line 5095
static VALUE sm_mat4_new(int argc, VALUE *argv, VALUE self)
{
VALUE sm_mat = sm_wrap_mat4(g_mat4_identity, self);
rb_obj_call_init(sm_mat, argc, argv);
return sm_mat;
}
|
.orthographic(*args) ⇒ Object
Returns a matrix describing an orthographic projection.
call-seq:
orthographic(left, right, bottom, top, z_near, z_far, output = nil) -> output or new mat4
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 |
# File 'ext/snow-math/snow-math.c', line 5743
static VALUE sm_mat4_orthographic(int argc, VALUE *argv, VALUE self)
{
VALUE sm_left;
VALUE sm_right;
VALUE sm_bottom;
VALUE sm_top;
VALUE sm_z_near;
VALUE sm_z_far;
VALUE sm_out;
s_float_t left;
s_float_t right;
s_float_t bottom;
s_float_t top;
s_float_t z_near;
s_float_t z_far;
rb_scan_args(argc, argv, "61", &sm_left, &sm_right, &sm_bottom, &sm_top, &sm_z_near, &sm_z_far, &sm_out);
left = (s_float_t)rb_num2dbl(sm_left);
right = (s_float_t)rb_num2dbl(sm_right);
bottom = (s_float_t)rb_num2dbl(sm_bottom);
top = (s_float_t)rb_num2dbl(sm_top);
z_near = (s_float_t)rb_num2dbl(sm_z_near);
z_far = (s_float_t)rb_num2dbl(sm_z_far);
if (SM_IS_A(sm_out, mat4)) {
rb_check_frozen(sm_out);
mat4_t *out = sm_unwrap_mat4(sm_out, NULL);
mat4_orthographic(left, right, bottom, top, z_near, z_far, *out);
} else {
mat4_t out;
mat4_orthographic(left, right, bottom, top, z_near, z_far, out);
sm_out = sm_wrap_mat4(out, self);
rb_obj_call_init(sm_out, 0, 0);
}
return sm_out;
}
|
.perspective(*args) ⇒ Object
Returns a matrix describing a perspective projection.
call-seq:
perspective(fov_y_degrees, aspect, z_near, z_far, output = nil) -> output or new mat4
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 |
# File 'ext/snow-math/snow-math.c', line 5790
static VALUE sm_mat4_perspective(int argc, VALUE *argv, VALUE self)
{
VALUE sm_fov_y;
VALUE sm_aspect;
VALUE sm_z_near;
VALUE sm_z_far;
VALUE sm_out;
s_float_t fov_y;
s_float_t aspect;
s_float_t z_near;
s_float_t z_far;
rb_scan_args(argc, argv, "41", &sm_fov_y, &sm_aspect, &sm_z_near, &sm_z_far, &sm_out);
fov_y = (s_float_t)rb_num2dbl(sm_fov_y);
aspect = (s_float_t)rb_num2dbl(sm_aspect);
z_near = (s_float_t)rb_num2dbl(sm_z_near);
z_far = (s_float_t)rb_num2dbl(sm_z_far);
if (SM_IS_A(sm_out, mat4)) {
rb_check_frozen(sm_out);
mat4_t *out = sm_unwrap_mat4(sm_out, NULL);
mat4_perspective(fov_y, aspect, z_near, z_far, *out);
} else {
mat4_t out;
mat4_perspective(fov_y, aspect, z_near, z_far, out);
sm_out = sm_wrap_mat4(out, self);
rb_obj_call_init(sm_out, 0, 0);
}
return sm_out;
}
|
.translation(*args) ⇒ Object
Returns a translation matrix for the given X, Y, and Z translations (or using the vector’s components as such).
call-seq:
translation(x, y, z, output = nil) -> output or new mat4
translation(vec3, output = nil) -> output or new mat4
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 |
# File 'ext/snow-math/snow-math.c', line 5039
static VALUE sm_mat4_translation(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out = Qnil;
vec3_t xyz;
SM_LABEL(argc_reconfig):
switch (argc) {
case 2: case 4: {
sm_out = argv[--argc];
if (RTEST(sm_out)) {
SM_RAISE_IF_NOT_TYPE(sm_out, mat4);
}
goto SM_LABEL(argc_reconfig);
}
case 1: {
sm_unwrap_vec3(argv[0], xyz);
goto SM_LABEL(get_output);
}
case 3: {
xyz[0] = rb_num2dbl(argv[0]);
xyz[1] = rb_num2dbl(argv[1]);
xyz[2] = rb_num2dbl(argv[2]);
SM_LABEL(get_output):
if (RTEST(sm_out)) {
rb_check_frozen(sm_out);
mat4_t *out = sm_unwrap_mat4(sm_out, NULL);
mat4_translation(xyz[0], xyz[1], xyz[2], *out);
} else {
mat4_t out;
mat4_translation(xyz[0], xyz[1], xyz[2], out);
sm_out = sm_wrap_mat4(out, sm_self);
rb_obj_call_init(sm_out, 0, 0);
}
}
}
return sm_out;
}
|
Instance Method Details
#==(sm_other) ⇒ Object
Tests this Mat4 and another Mat4 for equivalency.
call-seq:
mat4 == other_mat4 -> bool
5903 5904 5905 5906 5907 5908 5909 5910 |
# File 'ext/snow-math/snow-math.c', line 5903
static VALUE sm_mat4_equals(VALUE sm_self, VALUE sm_other)
{
if (!RTEST(sm_other) || !SM_IS_A(sm_other, mat4)) {
return Qfalse;
}
return mat4_equals(*sm_unwrap_mat4(sm_self, NULL), *sm_unwrap_mat4(sm_other, NULL)) ? Qtrue : Qfalse;
}
|
#address ⇒ Object
Returns the memory address of the object.
call-seq: address -> fixnum
6894 6895 6896 6897 6898 6899 |
# File 'ext/snow-math/snow-math.c', line 6894
static VALUE sm_get_address(VALUE sm_self)
{
void *data_ptr = NULL;
Data_Get_Struct(sm_self, void, data_ptr);
return ULL2NUM((unsigned long long)data_ptr);
}
|
#adjoint(*args) ⇒ Object
Returns an adjoint matrix.
call-seq:
adjoint(output = nil) -> output or new mat4
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 |
# File 'ext/snow-math/snow-math.c', line 4590
static VALUE sm_mat4_adjoint(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
mat4_t *self;
rb_scan_args(argc, argv, "01", &sm_out);
self = sm_unwrap_mat4(sm_self, NULL);
if (argc == 1) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
mat4_t *output;
SM_RAISE_IF_NOT_TYPE(sm_out, mat4);
rb_check_frozen(sm_out);
output = sm_unwrap_mat4(sm_out, NULL);
mat4_adjoint (*self, *output);
}} else if (argc == 0) {
SM_LABEL(skip_output): {
mat4_t output;
mat4_adjoint (*self, output);
sm_out = sm_wrap_mat4(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to adjoint");
}
return sm_out;
}
|
#adjoint! ⇒ Object
Calls #adjoint(self)
call-seq: adjoint! -> self
65 66 67 |
# File 'lib/snow-math/mat4.rb', line 65 def adjoint! adjoint self end |
#copy(*args) ⇒ Object Also known as: dup, clone
Returns a copy of self.
call-seq:
copy(output = nil) -> output or new mat4
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 |
# File 'ext/snow-math/snow-math.c', line 4450
static VALUE sm_mat4_copy(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
mat4_t *self;
rb_scan_args(argc, argv, "01", &sm_out);
self = sm_unwrap_mat4(sm_self, NULL);
if (argc == 1) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
mat4_t *output;
SM_RAISE_IF_NOT_TYPE(sm_out, mat4);
rb_check_frozen(sm_out);
output = sm_unwrap_mat4(sm_out, NULL);
mat4_copy (*self, *output);
}} else if (argc == 0) {
SM_LABEL(skip_output): {
mat4_t output;
mat4_copy (*self, output);
sm_out = sm_wrap_mat4(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to copy");
}
return sm_out;
}
|
#determinant ⇒ Object
Returns the matrix determinant.
call-seq:
determinant -> float
4970 4971 4972 4973 |
# File 'ext/snow-math/snow-math.c', line 4970
static VALUE sm_mat4_determinant(VALUE sm_self)
{
return mat4_determinant(*sm_unwrap_mat4(sm_self, NULL));
}
|
#fetch ⇒ Object Also known as: []
Gets the component of the Mat4 at the given index.
call-seq: fetch(index) -> float
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 |
# File 'ext/snow-math/snow-math.c', line 4383
static VALUE sm_mat4_fetch (VALUE sm_self, VALUE sm_index)
{
static const int max_index = sizeof(mat4_t) / sizeof(s_float_t);
const mat4_t *self = sm_unwrap_mat4(sm_self, NULL);
int index = NUM2INT(sm_index);
if (index < 0 || index >= max_index) {
rb_raise(rb_eRangeError,
"Index %d is out of bounds, must be from 0 through %d", index, max_index - 1);
}
return rb_float_new(self[0][NUM2INT(sm_index)]);
}
|
#get_column3(*args) ⇒ Object
Returns a Vec3 whose components are that of the column at the given index.
call-seq:
get_column3(index, output = nil) -> output or new vec3
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 |
# File 'ext/snow-math/snow-math.c', line 5413
static VALUE sm_mat4_get_column3(int argc, VALUE *argv, VALUE sm_self)
{
mat4_t *self;
int index;
VALUE sm_out;
self = sm_unwrap_mat4(sm_self, NULL);
index = NUM2INT(argv[0]);
sm_out = Qnil;
if (index < 0 || index > 3) {
rb_raise(rb_eRangeError, "Index %d is out of range, must be (0 .. 3)", index);
return Qnil;
}
switch (argc) {
case 2: {
vec3_t *out;
sm_out = argv[1];
if (RTEST(sm_out)) {
if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_THREE_OR_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
} else {
goto SM_LABEL(no_output);
}
out = sm_unwrap_vec3(sm_out, NULL);
mat4_get_column3(*self, index, *out);
break;
}
case 1: SM_LABEL(no_output): {
vec3_t out;
mat4_get_column3(*self, index, out);
sm_out = sm_wrap_vec3(out, Qnil);
rb_obj_call_init(sm_out, 0, 0);
break;
}
default: {
rb_raise(rb_eArgError, "Invalid number of arguments to get_column3 - expected 1 or 2");
break;
}
}
return sm_out;
}
|
#get_column4(*args) ⇒ Object
Returns a Vec4 whose components are that of the column at the given index.
call-seq:
get_column4(index, output = nil) -> output or new vec4
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 |
# File 'ext/snow-math/snow-math.c', line 5477
static VALUE sm_mat4_get_column4(int argc, VALUE *argv, VALUE sm_self)
{
mat4_t *self;
int index;
VALUE sm_out;
self = sm_unwrap_mat4(sm_self, NULL);
index = NUM2INT(argv[0]);
sm_out = Qnil;
if (index < 0 || index > 3) {
rb_raise(rb_eRangeError, "Index %d is out of range, must be (0 .. 3)", index);
return Qnil;
}
switch (argc) {
case 2: {
vec4_t *out;
sm_out = argv[1];
if (RTEST(sm_out)) {
if (!SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
} else {
goto SM_LABEL(no_output);
}
out = sm_unwrap_vec4(sm_out, NULL);
mat4_get_column4(*self, index, *out);
break;
}
case 1: SM_LABEL(no_output): {
vec4_t out;
mat4_get_column4(*self, index, out);
sm_out = sm_wrap_vec4(out, Qnil);
rb_obj_call_init(sm_out, 0, 0);
break;
}
default: {
rb_raise(rb_eArgError, "Invalid number of arguments to get_column4 - expected 1 or 2");
break;
}
}
return sm_out;
}
|
#get_row3(*args) ⇒ Object
Returns a Vec3 whose components are that of the row at the given index.
call-seq:
get_row3(index, output = nil) -> output or new vec3
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 |
# File 'ext/snow-math/snow-math.c', line 5285
static VALUE sm_mat4_get_row3(int argc, VALUE *argv, VALUE sm_self)
{
mat4_t *self;
int index;
VALUE sm_out;
self = sm_unwrap_mat4(sm_self, NULL);
index = NUM2INT(argv[0]);
sm_out = Qnil;
if (index < 0 || index > 3) {
rb_raise(rb_eRangeError, "Index %d is out of range, must be (0 .. 3)", index);
return Qnil;
}
switch (argc) {
case 2: {
vec3_t *out;
sm_out = argv[1];
if (RTEST(sm_out)) {
if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_THREE_OR_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
} else {
goto SM_LABEL(no_output);
}
out = sm_unwrap_vec3(sm_out, NULL);
mat4_get_row3(*self, index, *out);
break;
}
case 1: SM_LABEL(no_output): {
vec3_t out;
mat4_get_row3(*self, index, out);
sm_out = sm_wrap_vec3(out, Qnil);
rb_obj_call_init(sm_out, 0, 0);
break;
}
default: {
rb_raise(rb_eArgError, "Invalid number of arguments to get_row3 - expected 1 or 2");
break;
}
}
return sm_out;
}
|
#get_row4(*args) ⇒ Object
Returns a Vec4 whose components are that of the row at the given index.
call-seq:
get_row4(index, output = nil) -> output or new vec4
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 |
# File 'ext/snow-math/snow-math.c', line 5349
static VALUE sm_mat4_get_row4(int argc, VALUE *argv, VALUE sm_self)
{
mat4_t *self;
int index;
VALUE sm_out;
self = sm_unwrap_mat4(sm_self, NULL);
index = NUM2INT(argv[0]);
sm_out = Qnil;
if (index < 0 || index > 3) {
rb_raise(rb_eRangeError, "Index %d is out of range, must be (0 .. 3)", index);
return Qnil;
}
switch (argc) {
case 2: {
vec4_t *out;
sm_out = argv[1];
if (RTEST(sm_out)) {
if (!SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
} else {
goto SM_LABEL(no_output);
}
out = sm_unwrap_vec4(sm_out, NULL);
mat4_get_row4(*self, index, *out);
break;
}
case 1: SM_LABEL(no_output): {
vec4_t out;
mat4_get_row4(*self, index, out);
sm_out = sm_wrap_vec4(out, Qnil);
rb_obj_call_init(sm_out, 0, 0);
break;
}
default: {
rb_raise(rb_eArgError, "Invalid number of arguments to get_row4 - expected 1 or 2");
break;
}
}
return sm_out;
}
|
#inverse_affine(*args) ⇒ Object
Returns an inverse affine matrix if successful. Otherwise, returns nil.
call-seq:
inverse_affine(output = nil) -> output, new mat4, or nil
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 |
# File 'ext/snow-math/snow-math.c', line 4862
static VALUE sm_mat4_inverse_affine(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out = Qnil;
mat4_t *self;
rb_scan_args(argc, argv, "01", &sm_out);
self = sm_unwrap_mat4(sm_self, NULL);
if (argc == 1) {
mat4_t *output;
if (!RTEST(sm_out)) {
goto SM_LABEL(output_lbl);
}
if (!SM_IS_A(sm_out, mat4)) {
rb_raise(rb_eTypeError,
"Invalid argument to output of inverse_affine: expected %s, got %s",
rb_class2name(s_sm_mat4_klass),
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_mat4(sm_out, NULL);
if (!mat4_inverse_affine(*self, *output)) {
return Qnil;
}
} else if (argc == 0) {
SM_LABEL(output_lbl): {
mat4_t output;
if (!mat4_inverse_affine(*self, output)) {
return Qnil;
}
sm_out = sm_wrap_mat4(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}
} else {
rb_raise(rb_eArgError, "Invalid number of arguments to inverse_affine");
}
return sm_out;
}
|
#inverse_affine! ⇒ Object
Calls #inverse_affine(self)
call-seq: inverse_affine! -> self
154 155 156 |
# File 'lib/snow-math/mat4.rb', line 154 def inverse_affine! inverse_affine self end |
#inverse_general(*args) ⇒ Object
Returns an generalized inverse matrix if successful. Otherwise, returns nil.
call-seq:
inverse_general(output = nil) -> output, new mat4, or nil
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 |
# File 'ext/snow-math/snow-math.c', line 4916
static VALUE sm_mat4_inverse_general(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out = Qnil;
mat4_t *self;
rb_scan_args(argc, argv, "01", &sm_out);
self = sm_unwrap_mat4(sm_self, NULL);
if (argc == 1) {
mat4_t *output;
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}
if (!SM_IS_A(sm_out, mat4)) {
rb_raise(rb_eTypeError,
"Invalid argument to output of inverse_general: expected %s, got %s",
rb_class2name(s_sm_mat4_klass),
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_mat4(sm_out, NULL);
if (!mat4_inverse_general(*self, *output)) {
return Qnil;
}
} else if (argc == 0) {
SM_LABEL(skip_output): {
mat4_t output;
if (!mat4_inverse_general(*self, output)) {
return Qnil;
}
sm_out = sm_wrap_mat4(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}
} else {
rb_raise(rb_eArgError, "Invalid number of arguments to inverse_general");
}
return sm_out;
}
|
#inverse_general! ⇒ Object
Calls #inverse_general(self)
call-seq: inverse_general! -> self
161 162 163 |
# File 'lib/snow-math/mat4.rb', line 161 def inverse_general! inverse_general self end |
#inverse_orthogonal(*args) ⇒ Object
Returns an inverse orthogonal matrix.
call-seq:
inverse_orthogonal(output = nil) -> output or new mat4
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 |
# File 'ext/snow-math/snow-math.c', line 4555
static VALUE sm_mat4_inverse_orthogonal(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
mat4_t *self;
rb_scan_args(argc, argv, "01", &sm_out);
self = sm_unwrap_mat4(sm_self, NULL);
if (argc == 1) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
mat4_t *output;
SM_RAISE_IF_NOT_TYPE(sm_out, mat4);
rb_check_frozen(sm_out);
output = sm_unwrap_mat4(sm_out, NULL);
mat4_inverse_orthogonal (*self, *output);
}} else if (argc == 0) {
SM_LABEL(skip_output): {
mat4_t output;
mat4_inverse_orthogonal (*self, output);
sm_out = sm_wrap_mat4(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to inverse_orthogonal");
}
return sm_out;
}
|
#inverse_orthogonal! ⇒ Object
Calls #inverse_orthogonal(self)
call-seq: inverse_orthogonal! -> self
58 59 60 |
# File 'lib/snow-math/mat4.rb', line 58 def inverse_orthogonal! inverse_orthogonal self end |
#inverse_rotate_vec3(*args) ⇒ Object
Convenience function to rotate a Vec3 using the inverse of self. Returns the resulting vector.
call-seq:
inv_rotate_vec3(vec3, output = nil) -> output or new vec3
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 |
# File 'ext/snow-math/snow-math.c', line 4813
static VALUE sm_mat4_inv_rotate_vec3(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_rhs;
VALUE sm_out;
mat4_t *self;
vec3_t *rhs;
rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out);
self = sm_unwrap_mat4(sm_self, NULL);
if (!SM_IS_A(sm_rhs, vec3) && !SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_THREE_OR_FOUR_FORMAT_LIT,
rb_obj_classname(sm_rhs));
return Qnil;
}
rhs = sm_unwrap_vec3(sm_rhs, NULL);
if (argc == 2) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
vec3_t *output;
if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_THREE_OR_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_vec3(sm_out, NULL);
mat4_inv_rotate_vec3(*self, *rhs, *output);
}} else if (argc == 1) {
SM_LABEL(skip_output): {
vec3_t output;
mat4_inv_rotate_vec3(*self, *rhs, output);
sm_out = sm_wrap_vec3(output, rb_obj_class(sm_rhs));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to inverse_rotate_vec3");
}
return sm_out;
}
|
#inverse_rotate_vec3!(rhs) ⇒ Object
Calls #inverse_rotate_vec3(rhs, rhs)
call-seq: inverse_rotate_vec3!(rhs) -> rhs
100 101 102 |
# File 'lib/snow-math/mat4.rb', line 100 def inverse_rotate_vec3!(rhs) inverse_rotate_vec3 rhs, rhs end |
#length ⇒ Object
Returns the length of the Mat4 in components. Result is always 16.
call-seq: length -> fixnum
4437 4438 4439 4440 |
# File 'ext/snow-math/snow-math.c', line 4437
static VALUE sm_mat4_length (VALUE self)
{
return SIZET2NUM(sizeof(mat4_t) / sizeof(s_float_t));
}
|
#load_identity ⇒ Object
Sets self to the identity matrix.
call-seq:
load_identity -> self
5681 5682 5683 5684 5685 5686 |
# File 'ext/snow-math/snow-math.c', line 5681
static VALUE sm_mat4_identity(VALUE sm_self)
{
mat4_t *self = sm_unwrap_mat4(sm_self, NULL);
mat4_identity(*self);
return sm_self;
}
|
#multiply(rhs, out = nil) ⇒ Object Also known as: *
Calls #multiply_mat4, #multiply_vec4, #transform_vec3, and #scale, respectively.
When calling multiply with scalar as rhs, scalar is passed as the value to scale all columns by.
call-seq:
multiply(mat4, output = nil) -> output or new mat4
multiply(vec4, output = nil) -> output or new vec4
multiply(vec3, output = nil) -> output or new vec3
multiply(scalar, output = nil) -> output or new mat4
115 116 117 118 119 120 121 122 123 |
# File 'lib/snow-math/mat4.rb', line 115 def multiply(rhs, out = nil) case rhs when ::Snow::Mat4 then multiply_mat4(rhs, out) when ::Snow::Vec4 then multiply_vec4(rhs, out) when ::Snow::Vec3 then transform_vec3(rhs, out) when Numeric then scale(rhs, rhs, rhs, out) else raise TypeError, "Invalid type for RHS" end end |
#multiply!(rhs) ⇒ Object
Calls #multiply(rhs, self) when rhs is a scalar or Mat4, otherwise calls #multiply(rhs, rhs).
127 128 129 130 131 132 133 |
# File 'lib/snow-math/mat4.rb', line 127 def multiply!(rhs) multiply rhs, case rhs when Mat4, Numeric then self when Vec4, Vec3 then rhs else raise TypeError, "Invalid type for RHS" end end |
#multiply_mat4(*args) ⇒ Object
Multiplies this and another Mat4 together and returns the result.
call-seq:
multiply_mat4(mat4, output = nil) -> output or new mat4
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 |
# File 'ext/snow-math/snow-math.c', line 4625
static VALUE sm_mat4_multiply(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_rhs;
VALUE sm_out;
mat4_t *self;
mat4_t *rhs;
rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out);
self = sm_unwrap_mat4(sm_self, NULL);
SM_RAISE_IF_NOT_TYPE(sm_rhs, mat4);
rhs = sm_unwrap_mat4(sm_rhs, NULL);
if (argc == 2) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
mat4_t *output;
SM_RAISE_IF_NOT_TYPE(sm_out, mat4);
rb_check_frozen(sm_out);
output = sm_unwrap_mat4(sm_out, NULL);
mat4_multiply(*self, *rhs, *output);
}} else if (argc == 1) {
SM_LABEL(skip_output): {
mat4_t output;
mat4_multiply(*self, *rhs, output);
sm_out = sm_wrap_mat4(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to multiply_mat4");
}
return sm_out;
}
|
#multiply_mat4!(rhs) ⇒ Object
Calls #multiply_mat4(rhs, self)
call-seq: multiply_mat4!(rhs) -> self
72 73 74 |
# File 'lib/snow-math/mat4.rb', line 72 def multiply_mat4!(rhs) multiply_mat4 rhs, self end |
#multiply_vec4(*args) ⇒ Object
Transforms a Vec4 using self and returns the resulting vector.
call-seq:
multiply_vec4(vec4, output = nil) -> output or new vec4
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 |
# File 'ext/snow-math/snow-math.c', line 4664
static VALUE sm_mat4_multiply_vec4(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_rhs;
VALUE sm_out;
mat4_t *self;
vec4_t *rhs;
rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out);
self = sm_unwrap_mat4(sm_self, NULL);
if (!SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_rhs));
return Qnil;
}
rhs = sm_unwrap_vec4(sm_rhs, NULL);
if (argc == 2) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
vec4_t *output;
if (!SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_vec4(sm_out, NULL);
mat4_multiply_vec4(*self, *rhs, *output);
}} else if (argc == 1) {
SM_LABEL(skip_output): {
vec4_t output;
mat4_multiply_vec4(*self, *rhs, output);
sm_out = sm_wrap_vec4(output, rb_obj_class(sm_rhs));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to multiply_vec4");
}
return sm_out;
}
|
#multiply_vec4!(rhs) ⇒ Object
Calls #multiply_vec4(rhs, rhs)
call-seq: multiply_vec4!(rhs) -> rhs
79 80 81 |
# File 'lib/snow-math/mat4.rb', line 79 def multiply_vec4!(rhs) multiply_vec4 rhs, rhs end |
#rotate_vec3(*args) ⇒ Object
Rotates a Vec3 by self, using only the inner 9x9 matrix to transform the vector. Returns the rotated vector.
call-seq:
rotate_vec3(vec3, output = nil) -> output or new vec3
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 |
# File 'ext/snow-math/snow-math.c', line 4763
static VALUE sm_mat4_rotate_vec3(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_rhs;
VALUE sm_out;
mat4_t *self;
vec3_t *rhs;
rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out);
self = sm_unwrap_mat4(sm_self, NULL);
if (!SM_IS_A(sm_rhs, vec3) && !SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_THREE_OR_FOUR_FORMAT_LIT,
rb_obj_classname(sm_rhs));
return Qnil;
}
rhs = sm_unwrap_vec3(sm_rhs, NULL);
if (argc == 2) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
vec3_t *output;
if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_THREE_OR_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_vec3(sm_out, NULL);
mat4_rotate_vec3(*self, *rhs, *output);
}} else if (argc == 1) {
SM_LABEL(skip_output): {
vec3_t output;
mat4_rotate_vec3(*self, *rhs, output);
sm_out = sm_wrap_vec3(output, rb_obj_class(sm_rhs));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to rotate_vec3");
}
return sm_out;
}
|
#rotate_vec3!(rhs) ⇒ Object
Calls #inverse_transform_vec3(rhs, rhs)
call-seq: inverse_transform_vec3!(rhs) -> rhs
93 94 95 |
# File 'lib/snow-math/mat4.rb', line 93 def rotate_vec3!(rhs) inverse_transform_vec3 rhs, rhs end |
#scale(*args) ⇒ Object Also known as: **
Scales the inner 9x9 matrix’s columns by X, Y, and Z and returns the result.
call-seq:
scale(x, y, z, output = nil) -> output or new mat4
5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 |
# File 'ext/snow-math/snow-math.c', line 5870
static VALUE sm_mat4_scale(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
VALUE sm_x, sm_y, sm_z;
s_float_t x, y, z;
mat4_t *self = sm_unwrap_mat4(sm_self, NULL);
rb_scan_args(argc, argv, "31", &sm_x, &sm_y, &sm_z, &sm_out);
x = rb_num2dbl(sm_x);
y = rb_num2dbl(sm_y);
z = rb_num2dbl(sm_z);
if (SM_IS_A(sm_out, mat4)) {
rb_check_frozen(sm_out);
mat4_scale(*self, x, y, z, *sm_unwrap_mat4(sm_out, NULL));
} else {
mat4_t out;
mat4_scale(*self, x, y, z, out);
sm_out = sm_wrap_mat4(out, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}
return sm_out;
}
|
#scale!(x, y, z) ⇒ Object
Calls #scale(x, y, z, self)
call-seq: scale!(x, y, z) -> self
138 139 140 |
# File 'lib/snow-math/mat4.rb', line 138 def scale!(x, y, z) scale x, y, z, self end |
#set(*args) ⇒ Object
Sets the Mat4’s components.
call-seq:
set(m1, m2, ..., m15, m16) -> new mat4 with components
set([m1, m2, ..., m15, m16]) -> new mat4 with components
set(mat4) -> copy of mat4
set(mat3) -> new mat4 with mat3's components
set(quat) -> quat as mat4
set(Vec4, Vec4, Vec4, Vec4) -> new mat4 with given row vectors
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 |
# File 'ext/snow-math/snow-math.c', line 5115
static VALUE sm_mat4_init(int argc, VALUE *argv, VALUE sm_self)
{
mat4_t *self = sm_unwrap_mat4(sm_self, NULL);
size_t arr_index = 0;
rb_check_frozen(sm_self);
switch (argc) {
case 0: {
/* Identity (handled in _new) */
break;
}
/* Copy Mat4 or provided [Numeric..] */
case 1: {
/* Copy Mat4 */
if (SM_IS_A(argv[0], mat4)) {
sm_unwrap_mat4(argv[0], *self);
break;
}
/* Copy Mat3 */
if (SM_IS_A(argv[0], mat3)) {
mat3_to_mat4(*sm_unwrap_mat4(argv[0], NULL), *self);
break;
}
/* Build from Quaternion */
if (SM_IS_A(argv[0], quat)) {
mat4_from_quat(*sm_unwrap_quat(argv[0], NULL), *self);
break;
}
/* Optional offset into array provided */
if (0) {
case 2:
arr_index = NUM2SIZET(argv[1]);
}
/* Array of values */
if (SM_RB_IS_A(argv[0], rb_cArray)) {
VALUE arrdata = argv[0];
const size_t arr_end = arr_index + 16;
s_float_t *mat_elem = *self;
for (; arr_index < arr_end; ++arr_index, ++mat_elem) {
*mat_elem = rb_num2dbl(rb_ary_entry(arrdata, (long)arr_index));
}
break;
}
rb_raise(rb_eArgError, "Expected either an array of Numerics or a Mat4");
break;
}
/* Mat4(Vec4, Vec4, Vec4, Vec4) */
case 4: {
size_t arg_index;
s_float_t *mat_elem = *self;
for (arg_index = 0; arg_index < 4; ++arg_index, mat_elem += 4) {
if (!SM_IS_A(argv[arg_index], vec4) && !SM_IS_A(argv[arg_index], quat)) {
rb_raise(
rb_eArgError,
"Argument %d must be a Vec4 or Quat when supplying four arguments to initialize/set",
(int)(arg_index + 1));
}
sm_unwrap_vec4(argv[arg_index], mat_elem);
}
break;
}
/* Mat4(Numeric m00 .. m16) */
case 16: {
s_float_t *mat_elem = *self;
VALUE *argv_p = argv;
for (; argc; --argc, ++argv_p, ++mat_elem) {
*mat_elem = (s_float_t)rb_num2dbl(*argv_p);
}
break;
}
default: {
rb_raise(rb_eArgError, "Invalid arguments to initialize/set");
break;
}
} /* switch (argc) */
return sm_self;
}
|
#set_column3(sm_index, sm_value) ⇒ Object
Sets the matrix’s column at the given index to the given vector.
call-seq:
set_column3(index, vec3) -> self
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 |
# File 'ext/snow-math/snow-math.c', line 5576
static VALUE sm_mat4_set_column3(VALUE sm_self, VALUE sm_index, VALUE sm_value)
{
const vec3_t *value;
int index;
mat4_t *self;
if (!SM_IS_A(sm_value, vec3) && !SM_IS_A(sm_value, vec4) && !SM_IS_A(sm_value, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_THREE_OR_FOUR_FORMAT_LIT,
rb_obj_classname(sm_value));
return Qnil;
}
self = sm_unwrap_mat4(sm_self, NULL);
value = sm_unwrap_vec3(sm_value, NULL);
index = NUM2INT(sm_index);
if (index < 0 || index > 3) {
rb_raise(rb_eRangeError, "Index %d is out of range, must be (0 .. 3)", index);
return Qnil;
}
mat4_set_column3(index, *value, *self);
return sm_self;
}
|
#set_column4(sm_index, sm_value) ⇒ Object
Sets the matrix’s column at the given index to the given vector.
call-seq:
set_column4(index, vec4) -> self
5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 |
# File 'ext/snow-math/snow-math.c', line 5646
static VALUE sm_mat4_set_column4(VALUE sm_self, VALUE sm_index, VALUE sm_value)
{
const vec4_t *value;
int index;
mat4_t *self;
if (!SM_IS_A(sm_value, vec4) && !SM_IS_A(sm_value, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_value));
return Qnil;
}
self = sm_unwrap_mat4(sm_self, NULL);
value = sm_unwrap_vec4(sm_value, NULL);
index = NUM2INT(sm_index);
if (index < 0 || index > 3) {
rb_raise(rb_eRangeError, "Index %d is out of range, must be (0 .. 3)", index);
return Qnil;
}
mat4_set_column4(index, *value, *self);
return sm_self;
}
|
#set_row3(sm_index, sm_value) ⇒ Object
Sets the matrix’s row at the given index to the given vector.
call-seq:
set_row3(index, vec3) -> self
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 |
# File 'ext/snow-math/snow-math.c', line 5541
static VALUE sm_mat4_set_row3(VALUE sm_self, VALUE sm_index, VALUE sm_value)
{
const vec3_t *value;
int index;
mat4_t *self;
if (!SM_IS_A(sm_value, vec3) && !SM_IS_A(sm_value, vec4) && !SM_IS_A(sm_value, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_THREE_OR_FOUR_FORMAT_LIT,
rb_obj_classname(sm_value));
return Qnil;
}
self = sm_unwrap_mat4(sm_self, NULL);
value = sm_unwrap_vec3(sm_value, NULL);
index = NUM2INT(sm_index);
if (index < 0 || index > 3) {
rb_raise(rb_eRangeError, "Index %d is out of range, must be (0 .. 3)", index);
return Qnil;
}
mat4_set_row3(index, *value, *self);
return sm_self;
}
|
#set_row4(sm_index, sm_value) ⇒ Object
Sets the matrix’s row at the given index to the given vector.
call-seq:
set_row4(index, vec4) -> self
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 |
# File 'ext/snow-math/snow-math.c', line 5611
static VALUE sm_mat4_set_row4(VALUE sm_self, VALUE sm_index, VALUE sm_value)
{
const vec4_t *value;
int index;
mat4_t *self;
if (!SM_IS_A(sm_value, vec4) && !SM_IS_A(sm_value, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_value));
return Qnil;
}
self = sm_unwrap_mat4(sm_self, NULL);
value = sm_unwrap_vec4(sm_value, NULL);
index = NUM2INT(sm_index);
if (index < 0 || index > 3) {
rb_raise(rb_eRangeError, "Index %d is out of range, must be (0 .. 3)", index);
return Qnil;
}
mat4_set_row4(index, *value, *self);
return sm_self;
}
|
#size ⇒ Object
Returns the length in bytes of the Mat4. When compiled to use doubles as the base type, this is always 128. Otherwise, when compiled to use floats, it’s always 64.
call-seq: size -> fixnum
4425 4426 4427 4428 |
# File 'ext/snow-math/snow-math.c', line 4425
static VALUE sm_mat4_size (VALUE self)
{
return SIZET2NUM(sizeof(mat4_t));
}
|
#store ⇒ Object Also known as: []=
Sets the Mat4’s component at the index to the value.
call-seq: store(index, value) -> value
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 |
# File 'ext/snow-math/snow-math.c', line 4402
static VALUE sm_mat4_store (VALUE sm_self, VALUE sm_index, VALUE sm_value)
{
static const int max_index = sizeof(mat4_t) / sizeof(s_float_t);
mat4_t *self = sm_unwrap_mat4(sm_self, NULL);
int index = NUM2INT(sm_index);
rb_check_frozen(sm_self);
if (index < 0 || index >= max_index) {
rb_raise(rb_eRangeError,
"Index %d is out of bounds, must be from 0 through %d", index, max_index - 1);
}
self[0][index] = (s_float_t)rb_num2dbl(sm_value);
return sm_value;
}
|
#to_mat3(*args) ⇒ Object
Converts the Mat4 to a Mat3.
call-seq:
to_mat3(output = nil) -> output or new mat3
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 |
# File 'ext/snow-math/snow-math.c', line 4485
static VALUE sm_mat4_to_mat3(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
mat4_t *self;
rb_scan_args(argc, argv, "01", &sm_out);
self = sm_unwrap_mat4(sm_self, NULL);
if (argc == 1) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
mat3_t *output;
SM_RAISE_IF_NOT_TYPE(sm_out, mat3);
rb_check_frozen(sm_out);
output = sm_unwrap_mat3(sm_out, NULL);
mat4_to_mat3 (*self, *output);
}} else if (argc == 0) {
SM_LABEL(skip_output): {
mat3_t output;
mat4_to_mat3 (*self, output);
sm_out = sm_wrap_mat3(output, s_sm_mat4_klass);
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to to_mat3");
}
return sm_out;
}
|
#to_s ⇒ Object
Returns a string representation of self.
Mat4[].to_s # => "{ 1.0, 0.0, 0.0, 0.0,\n
# 0.0, 1.0, 0.0, 0.0,\n"
# 0.0, 0.0, 1.0, 0.0,\n"
# 0.0, 0.0, 0.0, 1.0 }"
call-seq:
to_s -> string
5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 |
# File 'ext/snow-math/snow-math.c', line 5219
static VALUE sm_mat4_to_s(VALUE self)
{
const s_float_t *v;
v = (const s_float_t *)*sm_unwrap_mat4(self, NULL);
return rb_sprintf(
"{ "
"%f, %f, %f, %f" ",\n "
"%f, %f, %f, %f" ",\n "
"%f, %f, %f, %f" ",\n "
"%f, %f, %f, %f"
" }",
v[0], v[1], v[2], v[3],
v[4], v[5], v[6], v[7],
v[8], v[9], v[10], v[11],
v[12], v[13], v[14], v[15]);
}
|
#transform_vec3(*args) ⇒ Object
Transforms a Vec3 using self and returns the resulting vector.
call-seq:
transform_vec3(vec3, output = nil) -> output or new vec3
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 |
# File 'ext/snow-math/snow-math.c', line 4713
static VALUE sm_mat4_transform_vec3(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_rhs;
VALUE sm_out;
mat4_t *self;
vec3_t *rhs;
rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out);
self = sm_unwrap_mat4(sm_self, NULL);
if (!SM_IS_A(sm_rhs, vec3) && !SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_THREE_OR_FOUR_FORMAT_LIT,
rb_obj_classname(sm_rhs));
return Qnil;
}
rhs = sm_unwrap_vec3(sm_rhs, NULL);
if (argc == 2) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
vec3_t *output;
if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_THREE_OR_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_vec3(sm_out, NULL);
mat4_transform_vec3(*self, *rhs, *output);
}} else if (argc == 1) {
SM_LABEL(skip_output): {
vec3_t output;
mat4_transform_vec3(*self, *rhs, output);
sm_out = sm_wrap_vec3(output, rb_obj_class(sm_rhs));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to transform_vec3");
}
return sm_out;
}
|
#transform_vec3!(rhs) ⇒ Object
Calls #transform_vec3(rhs, rhs)
call-seq: transform_vec3!(rhs) -> rhs
86 87 88 |
# File 'lib/snow-math/mat4.rb', line 86 def transform_vec3!(rhs) transform_vec3 rhs, rhs end |
#translate(*args) ⇒ Object
Translates this matrix by X, Y, and Z (or a Vec3’s X, Y, and Z components) and returns the result. Essentially the same as multiplying this matrix by a translation matrix, but slightly more convenient.
call-seq:
translate(x, y, z, output = nil) -> output or new mat4
translate(vec3, output = nil) -> output or new mat4
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 |
# File 'ext/snow-math/snow-math.c', line 4986
static VALUE sm_mat4_translate(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out = Qnil;
mat4_t *self = sm_unwrap_mat4(sm_self, NULL);
vec3_t xyz;
SM_LABEL(argc_reconfig):
switch (argc) {
case 2: case 4: {
sm_out = argv[--argc];
if (RTEST(sm_out)) {
SM_RAISE_IF_NOT_TYPE(sm_out, mat4);
}
goto SM_LABEL(argc_reconfig);
}
case 1: {
sm_unwrap_vec3(argv[0], xyz);
goto SM_LABEL(get_output);
}
case 3: {
xyz[0] = rb_num2dbl(argv[0]);
xyz[1] = rb_num2dbl(argv[1]);
xyz[2] = rb_num2dbl(argv[2]);
SM_LABEL(get_output):
if (RTEST(sm_out)) {
rb_check_frozen(sm_out);
mat4_t *out = sm_unwrap_mat4(sm_out, NULL);
mat4_translate(xyz[0], xyz[1], xyz[2], *self, *out);
} else {
mat4_t out;
mat4_translate(xyz[0], xyz[1], xyz[2], *self, out);
sm_out = sm_wrap_mat4(out, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}
}
}
return sm_out;
}
|
#translate!(*args) ⇒ Object
Calls #translate(*args, self)
call-seq:
translate!(vec3) -> self
translate!(x, y, z) -> self
147 148 149 |
# File 'lib/snow-math/mat4.rb', line 147 def translate!(*args) translate(*args, self) end |
#transpose(*args) ⇒ Object Also known as: ~
Transposes this matrix and returns the result.
call-seq:
transpose(output = nil) -> output or new mat4
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 |
# File 'ext/snow-math/snow-math.c', line 4520
static VALUE sm_mat4_transpose(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
mat4_t *self;
rb_scan_args(argc, argv, "01", &sm_out);
self = sm_unwrap_mat4(sm_self, NULL);
if (argc == 1) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
mat4_t *output;
SM_RAISE_IF_NOT_TYPE(sm_out, mat4);
rb_check_frozen(sm_out);
output = sm_unwrap_mat4(sm_out, NULL);
mat4_transpose (*self, *output);
}} else if (argc == 0) {
SM_LABEL(skip_output): {
mat4_t output;
mat4_transpose (*self, output);
sm_out = sm_wrap_mat4(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to transpose");
}
return sm_out;
}
|
#transpose! ⇒ Object
Calls #transpose(self)
call-seq: transpose! -> self
51 52 53 |
# File 'lib/snow-math/mat4.rb', line 51 def transpose! transpose self end |