Module: Polars::IO

Included in:
Polars
Defined in:
lib/polars/io.rb

Instance Method Summary collapse

Instance Method Details

#read_avro(source, columns: nil, n_rows: nil) ⇒ DataFrame

Read into a DataFrame from Apache Avro format.

Parameters:

  • source (Object)

    Path to a file or a file-like object.

  • columns (Object) (defaults to: nil)

    Columns to select. Accepts a list of column indices (starting at zero) or a list of column names.

  • n_rows (Integer) (defaults to: nil)

    Stop reading from Apache Avro file after reading n_rows.

Returns:



465
466
467
468
469
470
471
# File 'lib/polars/io.rb', line 465

def read_avro(source, columns: nil, n_rows: nil)
  if Utils.pathlike?(source)
    source = Utils.normalise_filepath(source)
  end

  DataFrame._read_avro(source, n_rows: n_rows, columns: columns)
end

#read_csv(source, has_header: true, columns: nil, new_columns: nil, sep: ",", comment_char: nil, quote_char: '"', skip_rows: 0, dtypes: nil, null_values: nil, ignore_errors: false, parse_dates: false, n_threads: nil, infer_schema_length: 100, batch_size: 8192, n_rows: nil, encoding: "utf8", low_memory: false, rechunk: true, storage_options: nil, skip_rows_after_header: 0, row_count_name: nil, row_count_offset: 0, sample_size: 1024, eol_char: "\n") ⇒ DataFrame

Note:

This operation defaults to a rechunk operation at the end, meaning that all data will be stored continuously in memory. Set rechunk: false if you are benchmarking the csv-reader. A rechunk is an expensive operation.

Read a CSV file into a DataFrame.

Parameters:

  • source (Object)

    Path to a file or a file-like object.

  • has_header (Boolean) (defaults to: true)

    Indicate if the first row of dataset is a header or not. If set to false, column names will be autogenerated in the following format: column_x, with x being an enumeration over every column in the dataset starting at 1.

  • columns (Object) (defaults to: nil)

    Columns to select. Accepts a list of column indices (starting at zero) or a list of column names.

  • new_columns (Object) (defaults to: nil)

    Rename columns right after parsing the CSV file. If the given list is shorter than the width of the DataFrame the remaining columns will have their original name.

  • sep (String) (defaults to: ",")

    Single byte character to use as delimiter in the file.

  • comment_char (String) (defaults to: nil)

    Single byte character that indicates the start of a comment line, for instance #.

  • quote_char (String) (defaults to: '"')

    Single byte character used for csv quoting. Set to nil to turn off special handling and escaping of quotes.

  • skip_rows (Integer) (defaults to: 0)

    Start reading after skip_rows lines.

  • dtypes (Object) (defaults to: nil)

    Overwrite dtypes during inference.

  • null_values (Object) (defaults to: nil)

    Values to interpret as null values. You can provide a:

    • String: All values equal to this string will be null.
    • Array: All values equal to any string in this array will be null.
    • Hash: A hash that maps column name to a null value string.
  • ignore_errors (Boolean) (defaults to: false)

    Try to keep reading lines if some lines yield errors. First try infer_schema_length: 0 to read all columns as :str to check which values might cause an issue.

  • parse_dates (Boolean) (defaults to: false)

    Try to automatically parse dates. If this does not succeed, the column remains of data type :str.

  • n_threads (Integer) (defaults to: nil)

    Number of threads to use in csv parsing. Defaults to the number of physical cpu's of your system.

  • infer_schema_length (Integer) (defaults to: 100)

    Maximum number of lines to read to infer schema. If set to 0, all columns will be read as :utf8. If set to nil, a full table scan will be done (slow).

  • batch_size (Integer) (defaults to: 8192)

    Number of lines to read into the buffer at once. Modify this to change performance.

  • n_rows (Integer) (defaults to: nil)

    Stop reading from CSV file after reading n_rows. During multi-threaded parsing, an upper bound of n_rows rows cannot be guaranteed.

  • encoding ("utf8", "utf8-lossy") (defaults to: "utf8")

    Lossy means that invalid utf8 values are replaced with characters. When using other encodings than utf8 or utf8-lossy, the input is first decoded im memory with Ruby.

  • low_memory (Boolean) (defaults to: false)

    Reduce memory usage at expense of performance.

  • rechunk (Boolean) (defaults to: true)

    Make sure that all columns are contiguous in memory by aggregating the chunks into a single array.

  • storage_options (Hash) (defaults to: nil)

    Extra options that make sense for a particular storage connection.

  • skip_rows_after_header (Integer) (defaults to: 0)

    Skip this number of rows when the header is parsed.

  • row_count_name (String) (defaults to: nil)

    If not nil, this will insert a row count column with the given name into the DataFrame.

  • row_count_offset (Integer) (defaults to: 0)

    Offset to start the row_count column (only used if the name is set).

  • sample_size (Integer) (defaults to: 1024)

    Set the sample size. This is used to sample statistics to estimate the allocation needed.

  • eol_char (String) (defaults to: "\n")

    Single byte end of line character.

Returns:



91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# File 'lib/polars/io.rb', line 91

def read_csv(
  source,
  has_header: true,
  columns: nil,
  new_columns: nil,
  sep: ",",
  comment_char: nil,
  quote_char: '"',
  skip_rows: 0,
  dtypes: nil,
  null_values: nil,
  ignore_errors: false,
  parse_dates: false,
  n_threads: nil,
  infer_schema_length: 100,
  batch_size: 8192,
  n_rows: nil,
  encoding: "utf8",
  low_memory: false,
  rechunk: true,
  storage_options: nil,
  skip_rows_after_header: 0,
  row_count_name: nil,
  row_count_offset: 0,
  sample_size: 1024,
  eol_char: "\n"
)
  _check_arg_is_1byte("sep", sep, false)
  _check_arg_is_1byte("comment_char", comment_char, false)
  _check_arg_is_1byte("quote_char", quote_char, true)
  _check_arg_is_1byte("eol_char", eol_char, false)

  projection, columns = Utils.handle_projection_columns(columns)

  storage_options ||= {}

  if columns && !has_header
    columns.each do |column|
      if !column.start_with?("column_")
        raise ArgumentError, "Specified column names do not start with \"column_\", but autogenerated header names were requested."
      end
    end
  end

  if projection || new_columns
    raise Todo
  end

  df = nil
  _prepare_file_arg(source) do |data|
    df = DataFrame._read_csv(
      data,
      has_header: has_header,
      columns: columns || projection,
      sep: sep,
      comment_char: comment_char,
      quote_char: quote_char,
      skip_rows: skip_rows,
      dtypes: dtypes,
      null_values: null_values,
      ignore_errors: ignore_errors,
      parse_dates: parse_dates,
      n_threads: n_threads,
      infer_schema_length: infer_schema_length,
      batch_size: batch_size,
      n_rows: n_rows,
      encoding: encoding == "utf8-lossy" ? encoding : "utf8",
      low_memory: low_memory,
      rechunk: rechunk,
      skip_rows_after_header: skip_rows_after_header,
      row_count_name: row_count_name,
      row_count_offset: row_count_offset,
      sample_size: sample_size,
      eol_char: eol_char
    )
  end

  if new_columns
    Utils._update_columns(df, new_columns)
  else
    df
  end
end

#read_csv_batched(source, has_header: true, columns: nil, new_columns: nil, sep: ",", comment_char: nil, quote_char: '"', skip_rows: 0, dtypes: nil, null_values: nil, ignore_errors: false, parse_dates: false, n_threads: nil, infer_schema_length: 100, batch_size: 50_000, n_rows: nil, encoding: "utf8", low_memory: false, rechunk: true, skip_rows_after_header: 0, row_count_name: nil, row_count_offset: 0, sample_size: 1024, eol_char: "\n") ⇒ BatchedCsvReader

Read a CSV file in batches.

Upon creation of the BatchedCsvReader, polars will gather statistics and determine the file chunks. After that work will only be done if next_batches is called.

Examples:

reader = Polars.read_csv_batched(
  "./tpch/tables_scale_100/lineitem.tbl", sep: "|", parse_dates: true
)
reader.next_batches(5)

Parameters:

  • source (Object)

    Path to a file or a file-like object.

  • has_header (Boolean) (defaults to: true)

    Indicate if the first row of dataset is a header or not. If set to False, column names will be autogenerated in the following format: column_x, with x being an enumeration over every column in the dataset starting at 1.

  • columns (Object) (defaults to: nil)

    Columns to select. Accepts a list of column indices (starting at zero) or a list of column names.

  • new_columns (Object) (defaults to: nil)

    Rename columns right after parsing the CSV file. If the given list is shorter than the width of the DataFrame the remaining columns will have their original name.

  • sep (String) (defaults to: ",")

    Single byte character to use as delimiter in the file.

  • comment_char (String) (defaults to: nil)

    Single byte character that indicates the start of a comment line, for instance #.

  • quote_char (String) (defaults to: '"')

    Single byte character used for csv quoting, default = ". Set to nil to turn off special handling and escaping of quotes.

  • skip_rows (Integer) (defaults to: 0)

    Start reading after skip_rows lines.

  • dtypes (Object) (defaults to: nil)

    Overwrite dtypes during inference.

  • null_values (Object) (defaults to: nil)

    Values to interpret as null values. You can provide a:

    • String: All values equal to this string will be null.
    • Array: All values equal to any string in this array will be null.
    • Hash: A hash that maps column name to a null value string.
  • ignore_errors (Boolean) (defaults to: false)

    Try to keep reading lines if some lines yield errors. First try infer_schema_length: 0 to read all columns as :str to check which values might cause an issue.

  • parse_dates (Boolean) (defaults to: false)

    Try to automatically parse dates. If this does not succeed, the column remains of data type :str.

  • n_threads (Integer) (defaults to: nil)

    Number of threads to use in csv parsing. Defaults to the number of physical cpu's of your system.

  • infer_schema_length (Integer) (defaults to: 100)

    Maximum number of lines to read to infer schema. If set to 0, all columns will be read as :str. If set to nil, a full table scan will be done (slow).

  • batch_size (Integer) (defaults to: 50_000)

    Number of lines to read into the buffer at once. Modify this to change performance.

  • n_rows (Integer) (defaults to: nil)

    Stop reading from CSV file after reading n_rows. During multi-threaded parsing, an upper bound of n_rows rows cannot be guaranteed.

  • encoding ("utf8", "utf8-lossy") (defaults to: "utf8")

    Lossy means that invalid utf8 values are replaced with characters. When using other encodings than utf8 or utf8-lossy, the input is first decoded im memory with Ruby. Defaults to utf8.

  • low_memory (Boolean) (defaults to: false)

    Reduce memory usage at expense of performance.

  • rechunk (Boolean) (defaults to: true)

    Make sure that all columns are contiguous in memory by aggregating the chunks into a single array.

  • skip_rows_after_header (Integer) (defaults to: 0)

    Skip this number of rows when the header is parsed.

  • row_count_name (String) (defaults to: nil)

    If not nil, this will insert a row count column with the given name into the DataFrame.

  • row_count_offset (Integer) (defaults to: 0)

    Offset to start the row_count column (only used if the name is set).

  • sample_size (Integer) (defaults to: 1024)

    Set the sample size. This is used to sample statistics to estimate the allocation needed.

  • eol_char (String) (defaults to: "\n")

    Single byte end of line character.

Returns:

  • (BatchedCsvReader)


760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
# File 'lib/polars/io.rb', line 760

def read_csv_batched(
  source,
  has_header: true,
  columns: nil,
  new_columns: nil,
  sep: ",",
  comment_char: nil,
  quote_char: '"',
  skip_rows: 0,
  dtypes: nil,
  null_values: nil,
  ignore_errors: false,
  parse_dates: false,
  n_threads: nil,
  infer_schema_length: 100,
  batch_size: 50_000,
  n_rows: nil,
  encoding: "utf8",
  low_memory: false,
  rechunk: true,
  skip_rows_after_header: 0,
  row_count_name: nil,
  row_count_offset: 0,
  sample_size: 1024,
  eol_char: "\n"
)
  projection, columns = Utils.handle_projection_columns(columns)

  if columns && !has_header
    columns.each do |column|
      if !column.start_with?("column_")
        raise ArgumentError, "Specified column names do not start with \"column_\", but autogenerated header names were requested."
      end
    end
  end

  if projection || new_columns
    raise Todo
  end

  BatchedCsvReader.new(
    source,
    has_header: has_header,
    columns: columns || projection,
    sep: sep,
    comment_char: comment_char,
    quote_char: quote_char,
    skip_rows: skip_rows,
    dtypes: dtypes,
    null_values: null_values,
    ignore_errors: ignore_errors,
    parse_dates: parse_dates,
    n_threads: n_threads,
    infer_schema_length: infer_schema_length,
    batch_size: batch_size,
    n_rows: n_rows,
    encoding: encoding == "utf8-lossy" ? encoding : "utf8",
    low_memory: low_memory,
    rechunk: rechunk,
    skip_rows_after_header: skip_rows_after_header,
    row_count_name: row_count_name,
    row_count_offset: row_count_offset,
    sample_size: sample_size,
    eol_char: eol_char,
    new_columns: new_columns
  )
end

#read_database(query) ⇒ DataFrame Also known as: read_sql

Read a SQL query into a DataFrame.

Parameters:

  • query (Object)

    ActiveRecord::Relation or ActiveRecord::Result.

Returns:



609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
# File 'lib/polars/io.rb', line 609

def read_database(query)
  if !defined?(ActiveRecord)
    raise Error, "Active Record not available"
  end

  result =
    if query.is_a?(ActiveRecord::Result)
      query
    elsif query.is_a?(ActiveRecord::Relation)
      query.connection.select_all(query.to_sql)
    elsif query.is_a?(::String)
      ActiveRecord::Base.connection.select_all(query)
    else
      raise ArgumentError, "Expected ActiveRecord::Relation, ActiveRecord::Result, or String"
    end

  data = {}
  schema_overrides = {}

  result.columns.each_with_index do |k, i|
    column_type = result.column_types[i]

    data[k] =
      if column_type
        result.rows.map { |r| column_type.deserialize(r[i]) }
      else
        result.rows.map { |r| r[i] }
      end

    polars_type =
      case column_type&.type
      when :binary
        Binary
      when :boolean
        Boolean
      when :date
        Date
      when :datetime, :timestamp
        Datetime
      when :decimal
        Decimal
      when :float
        Float64
      when :integer
        Int64
      when :string, :text
        String
      when :time
        Time
      end

    schema_overrides[k] = polars_type if polars_type
  end

  DataFrame.new(data, schema_overrides: schema_overrides)
end

#read_ipc(source, columns: nil, n_rows: nil, memory_map: true, storage_options: nil, row_count_name: nil, row_count_offset: 0, rechunk: true) ⇒ DataFrame

Read into a DataFrame from Arrow IPC (Feather v2) file.

Parameters:

  • source (Object)

    Path to a file or a file-like object.

  • columns (Object) (defaults to: nil)

    Columns to select. Accepts a list of column indices (starting at zero) or a list of column names.

  • n_rows (Integer) (defaults to: nil)

    Stop reading from IPC file after reading n_rows.

  • memory_map (Boolean) (defaults to: true)

    Try to memory map the file. This can greatly improve performance on repeated queries as the OS may cache pages. Only uncompressed IPC files can be memory mapped.

  • storage_options (Hash) (defaults to: nil)

    Extra options that make sense for a particular storage connection.

  • row_count_name (String) (defaults to: nil)

    If not nil, this will insert a row count column with give name into the DataFrame.

  • row_count_offset (Integer) (defaults to: 0)

    Offset to start the row_count column (only use if the name is set).

  • rechunk (Boolean) (defaults to: true)

    Make sure that all data is contiguous.

Returns:



497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# File 'lib/polars/io.rb', line 497

def read_ipc(
  source,
  columns: nil,
  n_rows: nil,
  memory_map: true,
  storage_options: nil,
  row_count_name: nil,
  row_count_offset: 0,
  rechunk: true
)
  storage_options ||= {}
  _prepare_file_arg(source, **storage_options) do |data|
    DataFrame._read_ipc(
      data,
      columns: columns,
      n_rows: n_rows,
      row_count_name: row_count_name,
      row_count_offset: row_count_offset,
      rechunk: rechunk,
      memory_map: memory_map
    )
  end
end

#read_ipc_schema(source) ⇒ Hash

Get a schema of the IPC file without reading data.

Parameters:

  • source (Object)

    Path to a file or a file-like object.

Returns:

  • (Hash)


834
835
836
837
838
839
840
# File 'lib/polars/io.rb', line 834

def read_ipc_schema(source)
  if Utils.pathlike?(source)
    source = Utils.normalise_filepath(source)
  end

  _ipc_schema(source)
end

#read_json(source) ⇒ DataFrame

Read into a DataFrame from a JSON file.

Parameters:

  • source (Object)

    Path to a file or a file-like object.

Returns:



589
590
591
# File 'lib/polars/io.rb', line 589

def read_json(source)
  DataFrame._read_json(source)
end

#read_ndjson(source) ⇒ DataFrame

Read into a DataFrame from a newline delimited JSON file.

Parameters:

  • source (Object)

    Path to a file or a file-like object.

Returns:



599
600
601
# File 'lib/polars/io.rb', line 599

def read_ndjson(source)
  DataFrame._read_ndjson(source)
end

#read_parquet(source, columns: nil, n_rows: nil, storage_options: nil, parallel: "auto", row_count_name: nil, row_count_offset: 0, low_memory: false, use_statistics: true, rechunk: true) ⇒ DataFrame

Note:

This operation defaults to a rechunk operation at the end, meaning that all data will be stored continuously in memory. Set rechunk: false if you are benchmarking the parquet-reader. A rechunk is an expensive operation.

Read into a DataFrame from a parquet file.

Parameters:

  • source (Object)

    Path to a file or a file-like object.

  • columns (Object) (defaults to: nil)

    Columns to select. Accepts a list of column indices (starting at zero) or a list of column names.

  • n_rows (Integer) (defaults to: nil)

    Stop reading from parquet file after reading n_rows.

  • storage_options (Hash) (defaults to: nil)

    Extra options that make sense for a particular storage connection.

  • parallel ("auto", "columns", "row_groups", "none") (defaults to: "auto")

    This determines the direction of parallelism. 'auto' will try to determine the optimal direction.

  • row_count_name (String) (defaults to: nil)

    If not nil, this will insert a row count column with give name into the DataFrame.

  • row_count_offset (Integer) (defaults to: 0)

    Offset to start the row_count column (only use if the name is set).

  • low_memory (Boolean) (defaults to: false)

    Reduce memory pressure at the expense of performance.

  • use_statistics (Boolean) (defaults to: true)

    Use statistics in the parquet to determine if pages can be skipped from reading.

  • rechunk (Boolean) (defaults to: true)

    Make sure that all columns are contiguous in memory by aggregating the chunks into a single array.

Returns:



556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
# File 'lib/polars/io.rb', line 556

def read_parquet(
  source,
  columns: nil,
  n_rows: nil,
  storage_options: nil,
  parallel: "auto",
  row_count_name: nil,
  row_count_offset: 0,
  low_memory: false,
  use_statistics: true,
  rechunk: true
)
  _prepare_file_arg(source) do |data|
    DataFrame._read_parquet(
      data,
      columns: columns,
      n_rows: n_rows,
      parallel: parallel,
      row_count_name: row_count_name,
      row_count_offset: row_count_offset,
      low_memory: low_memory,
      use_statistics: use_statistics,
      rechunk: rechunk
    )
  end
end

#read_parquet_schema(source) ⇒ Hash

Get a schema of the Parquet file without reading data.

Parameters:

  • source (Object)

    Path to a file or a file-like object.

Returns:

  • (Hash)


848
849
850
851
852
853
854
# File 'lib/polars/io.rb', line 848

def read_parquet_schema(source)
  if Utils.pathlike?(source)
    source = Utils.normalise_filepath(source)
  end

  _parquet_schema(source)
end

#scan_csv(source, has_header: true, sep: ",", comment_char: nil, quote_char: '"', skip_rows: 0, dtypes: nil, null_values: nil, ignore_errors: false, cache: true, with_column_names: nil, infer_schema_length: 100, n_rows: nil, encoding: "utf8", low_memory: false, rechunk: true, skip_rows_after_header: 0, row_count_name: nil, row_count_offset: 0, parse_dates: false, eol_char: "\n") ⇒ LazyFrame

Lazily read from a CSV file or multiple files via glob patterns.

This allows the query optimizer to push down predicates and projections to the scan level, thereby potentially reducing memory overhead.

Parameters:

  • source (Object)

    Path to a file.

  • has_header (Boolean) (defaults to: true)

    Indicate if the first row of dataset is a header or not. If set to false, column names will be autogenerated in the following format: column_x, with x being an enumeration over every column in the dataset starting at 1.

  • sep (String) (defaults to: ",")

    Single byte character to use as delimiter in the file.

  • comment_char (String) (defaults to: nil)

    Single byte character that indicates the start of a comment line, for instance #.

  • quote_char (String) (defaults to: '"')

    Single byte character used for csv quoting. Set to None to turn off special handling and escaping of quotes.

  • skip_rows (Integer) (defaults to: 0)

    Start reading after skip_rows lines. The header will be parsed at this offset.

  • dtypes (Object) (defaults to: nil)

    Overwrite dtypes during inference.

  • null_values (Object) (defaults to: nil)

    Values to interpret as null values. You can provide a:

    • String: All values equal to this string will be null.
    • Array: All values equal to any string in this array will be null.
    • Hash: A hash that maps column name to a null value string.
  • ignore_errors (Boolean) (defaults to: false)

    Try to keep reading lines if some lines yield errors. First try infer_schema_length: 0 to read all columns as :str to check which values might cause an issue.

  • cache (Boolean) (defaults to: true)

    Cache the result after reading.

  • with_column_names (Object) (defaults to: nil)

    Apply a function over the column names. This can be used to update a schema just in time, thus before scanning.

  • infer_schema_length (Integer) (defaults to: 100)

    Maximum number of lines to read to infer schema. If set to 0, all columns will be read as :str. If set to nil, a full table scan will be done (slow).

  • n_rows (Integer) (defaults to: nil)

    Stop reading from CSV file after reading n_rows.

  • encoding ("utf8", "utf8-lossy") (defaults to: "utf8")

    Lossy means that invalid utf8 values are replaced with characters.

  • low_memory (Boolean) (defaults to: false)

    Reduce memory usage in expense of performance.

  • rechunk (Boolean) (defaults to: true)

    Reallocate to contiguous memory when all chunks/ files are parsed.

  • skip_rows_after_header (Integer) (defaults to: 0)

    Skip this number of rows when the header is parsed.

  • row_count_name (String) (defaults to: nil)

    If not nil, this will insert a row count column with the given name into the DataFrame.

  • row_count_offset (Integer) (defaults to: 0)

    Offset to start the row_count column (only used if the name is set).

  • parse_dates (Boolean) (defaults to: false)

    Try to automatically parse dates. If this does not succeed, the column remains of data type :str.

  • eol_char (String) (defaults to: "\n")

    Single byte end of line character.

Returns:



244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# File 'lib/polars/io.rb', line 244

def scan_csv(
  source,
  has_header: true,
  sep: ",",
  comment_char: nil,
  quote_char: '"',
  skip_rows: 0,
  dtypes: nil,
  null_values: nil,
  ignore_errors: false,
  cache: true,
  with_column_names: nil,
  infer_schema_length: 100,
  n_rows: nil,
  encoding: "utf8",
  low_memory: false,
  rechunk: true,
  skip_rows_after_header: 0,
  row_count_name: nil,
  row_count_offset: 0,
  parse_dates: false,
  eol_char: "\n"
)
  _check_arg_is_1byte("sep", sep, false)
  _check_arg_is_1byte("comment_char", comment_char, false)
  _check_arg_is_1byte("quote_char", quote_char, true)

  if Utils.pathlike?(source)
    source = Utils.normalise_filepath(source)
  end

  LazyFrame._scan_csv(
    source,
    has_header: has_header,
    sep: sep,
    comment_char: comment_char,
    quote_char: quote_char,
    skip_rows: skip_rows,
    dtypes: dtypes,
    null_values: null_values,
    ignore_errors: ignore_errors,
    cache: cache,
    with_column_names: with_column_names,
    infer_schema_length: infer_schema_length,
    n_rows: n_rows,
    low_memory: low_memory,
    rechunk: rechunk,
    skip_rows_after_header: skip_rows_after_header,
    encoding: encoding,
    row_count_name: row_count_name,
    row_count_offset: row_count_offset,
    parse_dates: parse_dates,
    eol_char: eol_char,
  )
end

#scan_ipc(source, n_rows: nil, cache: true, rechunk: true, row_count_name: nil, row_count_offset: 0, storage_options: nil, memory_map: true) ⇒ LazyFrame

Lazily read from an Arrow IPC (Feather v2) file or multiple files via glob patterns.

This allows the query optimizer to push down predicates and projections to the scan level, thereby potentially reducing memory overhead.

Parameters:

  • source (String)

    Path to a IPC file.

  • n_rows (Integer) (defaults to: nil)

    Stop reading from IPC file after reading n_rows.

  • cache (Boolean) (defaults to: true)

    Cache the result after reading.

  • rechunk (Boolean) (defaults to: true)

    Reallocate to contiguous memory when all chunks/ files are parsed.

  • row_count_name (String) (defaults to: nil)

    If not nil, this will insert a row count column with give name into the DataFrame.

  • row_count_offset (Integer) (defaults to: 0)

    Offset to start the row_count column (only use if the name is set).

  • storage_options (Hash) (defaults to: nil)

    Extra options that make sense for a particular storage connection.

  • memory_map (Boolean) (defaults to: true)

    Try to memory map the file. This can greatly improve performance on repeated queries as the OS may cache pages. Only uncompressed IPC files can be memory mapped.

Returns:



326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# File 'lib/polars/io.rb', line 326

def scan_ipc(
  source,
  n_rows: nil,
  cache: true,
  rechunk: true,
  row_count_name: nil,
  row_count_offset: 0,
  storage_options: nil,
  memory_map: true
)
  LazyFrame._scan_ipc(
    source,
    n_rows: n_rows,
    cache: cache,
    rechunk: rechunk,
    row_count_name: row_count_name,
    row_count_offset: row_count_offset,
    storage_options: storage_options,
    memory_map: memory_map
  )
end

#scan_ndjson(source, infer_schema_length: 100, batch_size: 1024, n_rows: nil, low_memory: false, rechunk: true, row_count_name: nil, row_count_offset: 0) ⇒ LazyFrame

Lazily read from a newline delimited JSON file.

This allows the query optimizer to push down predicates and projections to the scan level, thereby potentially reducing memory overhead.

Parameters:

  • source (String)

    Path to a file.

  • infer_schema_length (Integer) (defaults to: 100)

    Infer the schema length from the first infer_schema_length rows.

  • batch_size (Integer) (defaults to: 1024)

    Number of rows to read in each batch.

  • n_rows (Integer) (defaults to: nil)

    Stop reading from JSON file after reading n_rows.

  • low_memory (Boolean) (defaults to: false)

    Reduce memory pressure at the expense of performance.

  • rechunk (Boolean) (defaults to: true)

    Reallocate to contiguous memory when all chunks/ files are parsed.

  • row_count_name (String) (defaults to: nil)

    If not nil, this will insert a row count column with give name into the DataFrame.

  • row_count_offset (Integer) (defaults to: 0)

    Offset to start the row_count column (only use if the name is set).

Returns:



428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# File 'lib/polars/io.rb', line 428

def scan_ndjson(
  source,
  infer_schema_length: 100,
  batch_size: 1024,
  n_rows: nil,
  low_memory: false,
  rechunk: true,
  row_count_name: nil,
  row_count_offset: 0
)
  if Utils.pathlike?(source)
    source = Utils.normalise_filepath(source)
  end

  LazyFrame._scan_ndjson(
    source,
    infer_schema_length: infer_schema_length,
    batch_size: batch_size,
    n_rows: n_rows,
    low_memory: low_memory,
    rechunk: rechunk,
    row_count_name: row_count_name,
    row_count_offset: row_count_offset,
  )
end

#scan_parquet(source, n_rows: nil, cache: true, parallel: "auto", rechunk: true, row_count_name: nil, row_count_offset: 0, storage_options: nil, low_memory: false) ⇒ LazyFrame

Lazily read from a parquet file or multiple files via glob patterns.

This allows the query optimizer to push down predicates and projections to the scan level, thereby potentially reducing memory overhead.

Parameters:

  • source (String)

    Path to a file.

  • n_rows (Integer) (defaults to: nil)

    Stop reading from parquet file after reading n_rows.

  • cache (Boolean) (defaults to: true)

    Cache the result after reading.

  • parallel ("auto", "columns", "row_groups", "none") (defaults to: "auto")

    This determines the direction of parallelism. 'auto' will try to determine the optimal direction.

  • rechunk (Boolean) (defaults to: true)

    In case of reading multiple files via a glob pattern rechunk the final DataFrame into contiguous memory chunks.

  • row_count_name (String) (defaults to: nil)

    If not nil, this will insert a row count column with give name into the DataFrame.

  • row_count_offset (Integer) (defaults to: 0)

    Offset to start the row_count column (only use if the name is set).

  • storage_options (Hash) (defaults to: nil)

    Extra options that make sense for a particular storage connection.

  • low_memory (Boolean) (defaults to: false)

    Reduce memory pressure at the expense of performance.

Returns:



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# File 'lib/polars/io.rb', line 376

def scan_parquet(
  source,
  n_rows: nil,
  cache: true,
  parallel: "auto",
  rechunk: true,
  row_count_name: nil,
  row_count_offset: 0,
  storage_options: nil,
  low_memory: false
)
  if Utils.pathlike?(source)
    source = Utils.normalise_filepath(source)
  end

  LazyFrame._scan_parquet(
    source,
    n_rows:n_rows,
    cache: cache,
    parallel: parallel,
    rechunk: rechunk,
    row_count_name: row_count_name,
    row_count_offset: row_count_offset,
    storage_options: storage_options,
    low_memory: low_memory
  )
end