Class: Polars::DataFrame
- Inherits:
-
Object
- Object
- Polars::DataFrame
- Includes:
- Plot
- Defined in:
- lib/polars/data_frame.rb
Overview
Two-dimensional data structure representing data as a table with rows and columns.
Instance Method Summary collapse
-
#!=(other) ⇒ DataFrame
Not equal.
-
#%(other) ⇒ DataFrame
Returns the modulo.
-
#*(other) ⇒ DataFrame
Performs multiplication.
-
#+(other) ⇒ DataFrame
Performs addition.
-
#-(other) ⇒ DataFrame
Performs subtraction.
-
#/(other) ⇒ DataFrame
Performs division.
-
#<(other) ⇒ DataFrame
Less than.
-
#<=(other) ⇒ DataFrame
Less than or equal.
-
#==(other) ⇒ DataFrame
Equal.
-
#>(other) ⇒ DataFrame
Greater than.
-
#>=(other) ⇒ DataFrame
Greater than or equal.
-
#[](*args) ⇒ Object
Returns subset of the DataFrame.
-
#[]=(*key, value) ⇒ Object
Set item.
-
#apply(return_dtype: nil, inference_size: 256, &f) ⇒ Object
Apply a custom/user-defined function (UDF) over the rows of the DataFrame.
-
#cleared ⇒ DataFrame
Create an empty copy of the current DataFrame.
-
#columns ⇒ Array
Get column names.
-
#columns=(columns) ⇒ Object
Change the column names of the DataFrame.
-
#delete(name) ⇒ Series
Drop in place if exists.
-
#describe ⇒ DataFrame
Summary statistics for a DataFrame.
-
#drop(columns) ⇒ DataFrame
Remove column from DataFrame and return as new.
-
#drop_in_place(name) ⇒ Series
Drop in place.
-
#drop_nulls(subset: nil) ⇒ DataFrame
Return a new DataFrame where the null values are dropped.
-
#dtypes ⇒ Array
Get dtypes of columns in DataFrame.
-
#each(&block) ⇒ Object
Returns an enumerator.
-
#each_row(named: true, buffer_size: 500, &block) ⇒ Object
Returns an iterator over the DataFrame of rows of Ruby-native values.
-
#equals(other, null_equal: true) ⇒ Boolean
(also: #frame_equal)
Check if DataFrame is equal to other.
-
#estimated_size(unit = "b") ⇒ Numeric
Return an estimation of the total (heap) allocated size of the DataFrame.
-
#explode(columns) ⇒ DataFrame
Explode
DataFrameto long format by exploding a column with Lists. -
#extend(other) ⇒ DataFrame
Extend the memory backed by this
DataFramewith the values fromother. -
#fill_nan(fill_value) ⇒ DataFrame
Fill floating point NaN values by an Expression evaluation.
-
#fill_null(value = nil, strategy: nil, limit: nil, matches_supertype: true) ⇒ DataFrame
Fill null values using the specified value or strategy.
-
#filter(predicate) ⇒ DataFrame
Filter the rows in the DataFrame based on a predicate expression.
-
#fold(&operation) ⇒ Series
Apply a horizontal reduction on a DataFrame.
-
#gather_every(n, offset = 0) ⇒ DataFrame
(also: #take_every)
Take every nth row in the DataFrame and return as a new DataFrame.
-
#get_column(name) ⇒ Series
Get a single column as Series by name.
-
#get_column_index(name) ⇒ Series
(also: #find_idx_by_name)
Find the index of a column by name.
-
#get_columns ⇒ Array
Get the DataFrame as a Array of Series.
-
#group_by(by, maintain_order: false) ⇒ GroupBy
(also: #groupby, #group)
Start a group by operation.
-
#group_by_dynamic(index_column, every:, period: nil, offset: nil, truncate: true, include_boundaries: false, closed: "left", by: nil, start_by: "window") ⇒ DataFrame
(also: #groupby_dynamic)
Group based on a time value (or index value of type
:i32,:i64). -
#group_by_rolling(index_column:, period:, offset: nil, closed: "right", by: nil, check_sorted: true) ⇒ RollingGroupBy
(also: #groupby_rolling)
Create rolling groups based on a time column.
-
#hash_rows(seed: 0, seed_1: nil, seed_2: nil, seed_3: nil) ⇒ Series
Hash and combine the rows in this DataFrame.
-
#head(n = 5) ⇒ DataFrame
Get the first
nrows. -
#height ⇒ Integer
(also: #count, #length, #size)
Get the height of the DataFrame.
-
#hstack(columns, in_place: false) ⇒ DataFrame
Return a new DataFrame grown horizontally by stacking multiple Series to it.
-
#include?(name) ⇒ Boolean
Check if DataFrame includes column.
-
#initialize(data = nil, schema: nil, columns: nil, schema_overrides: nil, orient: nil, infer_schema_length: 100, nan_to_null: false) ⇒ DataFrame
constructor
Create a new DataFrame.
-
#insert_column(index, series) ⇒ DataFrame
(also: #insert_at_idx)
Insert a Series at a certain column index.
-
#interpolate ⇒ DataFrame
Interpolate intermediate values.
-
#is_duplicated ⇒ Series
Get a mask of all duplicated rows in this DataFrame.
-
#is_empty ⇒ Boolean
(also: #empty?)
Check if the dataframe is empty.
-
#is_unique ⇒ Series
Get a mask of all unique rows in this DataFrame.
-
#item ⇒ Object
Return the dataframe as a scalar.
-
#iter_rows(named: false, buffer_size: 500, &block) ⇒ Object
Returns an iterator over the DataFrame of rows of Ruby-native values.
-
#join(other, left_on: nil, right_on: nil, on: nil, how: "inner", suffix: "_right") ⇒ DataFrame
Join in SQL-like fashion.
-
#join_asof(other, left_on: nil, right_on: nil, on: nil, by_left: nil, by_right: nil, by: nil, strategy: "backward", suffix: "_right", tolerance: nil, allow_parallel: true, force_parallel: false) ⇒ DataFrame
Perform an asof join.
-
#lazy ⇒ LazyFrame
Start a lazy query from this point.
-
#limit(n = 5) ⇒ DataFrame
Get the first
nrows. -
#max(axis: 0) ⇒ DataFrame
Aggregate the columns of this DataFrame to their maximum value.
-
#mean(axis: 0, null_strategy: "ignore") ⇒ DataFrame
Aggregate the columns of this DataFrame to their mean value.
-
#median ⇒ DataFrame
Aggregate the columns of this DataFrame to their median value.
-
#melt(id_vars: nil, value_vars: nil, variable_name: nil, value_name: nil) ⇒ DataFrame
Unpivot a DataFrame from wide to long format.
-
#min(axis: 0) ⇒ DataFrame
Aggregate the columns of this DataFrame to their minimum value.
-
#n_chunks(strategy: "first") ⇒ Object
Get number of chunks used by the ChunkedArrays of this DataFrame.
-
#n_unique(subset: nil) ⇒ DataFrame
Return the number of unique rows, or the number of unique row-subsets.
-
#null_count ⇒ DataFrame
Create a new DataFrame that shows the null counts per column.
-
#partition_by(groups, maintain_order: true, include_key: true, as_dict: false) ⇒ Object
Split into multiple DataFrames partitioned by groups.
-
#pipe(func, *args, **kwargs, &block) ⇒ Object
Offers a structured way to apply a sequence of user-defined functions (UDFs).
-
#pivot(values:, index:, columns:, aggregate_fn: "first", maintain_order: true, sort_columns: false, separator: "_") ⇒ DataFrame
Create a spreadsheet-style pivot table as a DataFrame.
-
#plot(x = nil, y = nil, type: nil, group: nil, stacked: nil) ⇒ Vega::LiteChart
included
from Plot
Plot data.
-
#product ⇒ DataFrame
Aggregate the columns of this DataFrame to their product values.
-
#quantile(quantile, interpolation: "nearest") ⇒ DataFrame
Aggregate the columns of this DataFrame to their quantile value.
-
#rechunk ⇒ DataFrame
This will make sure all subsequent operations have optimal and predictable performance.
-
#rename(mapping) ⇒ DataFrame
Rename column names.
-
#replace(column, new_col) ⇒ DataFrame
Replace a column by a new Series.
-
#replace_column(index, series) ⇒ DataFrame
(also: #replace_at_idx)
Replace a column at an index location.
-
#reverse ⇒ DataFrame
Reverse the DataFrame.
-
#row(index = nil, by_predicate: nil, named: false) ⇒ Object
Get a row as tuple, either by index or by predicate.
-
#rows(named: false) ⇒ Array
Convert columnar data to rows as Ruby arrays.
-
#sample(n: nil, frac: nil, with_replacement: false, shuffle: false, seed: nil) ⇒ DataFrame
Sample from this DataFrame.
-
#schema ⇒ Hash
Get the schema.
-
#select(exprs) ⇒ DataFrame
Select columns from this DataFrame.
-
#set_sorted(column, *more_columns, descending: false) ⇒ DataFrame
Indicate that one or multiple columns are sorted.
-
#shape ⇒ Array
Get the shape of the DataFrame.
-
#shift(n, fill_value: nil) ⇒ DataFrame
Shift values by the given period.
-
#shift_and_fill(periods, fill_value) ⇒ DataFrame
Shift the values by a given period and fill the resulting null values.
-
#shrink_to_fit(in_place: false) ⇒ DataFrame
Shrink DataFrame memory usage.
-
#slice(offset, length = nil) ⇒ DataFrame
Get a slice of this DataFrame.
-
#sort(by, reverse: false, nulls_last: false) ⇒ DataFrame
Sort the DataFrame by column.
-
#sort!(by, reverse: false, nulls_last: false) ⇒ DataFrame
Sort the DataFrame by column in-place.
-
#std(ddof: 1) ⇒ DataFrame
Aggregate the columns of this DataFrame to their standard deviation value.
-
#sum(axis: 0, null_strategy: "ignore") ⇒ DataFrame
Aggregate the columns of this DataFrame to their sum value.
-
#tail(n = 5) ⇒ DataFrame
Get the last
nrows. -
#to_a ⇒ Array
Returns an array representing the DataFrame.
-
#to_csv(**options) ⇒ String
Write to comma-separated values (CSV) string.
-
#to_dummies(columns: nil, separator: "_", drop_first: false) ⇒ DataFrame
Get one hot encoded dummy variables.
-
#to_h(as_series: true) ⇒ Hash
Convert DataFrame to a hash mapping column name to values.
-
#to_hashes ⇒ Array
Convert every row to a dictionary.
-
#to_numo ⇒ Numo::NArray
Convert DataFrame to a 2D Numo array.
-
#to_s ⇒ String
(also: #inspect)
Returns a string representing the DataFrame.
-
#to_series(index = 0) ⇒ Series
Select column as Series at index location.
-
#to_struct(name) ⇒ Series
Convert a
DataFrameto aSeriesof typeStruct. -
#transpose(include_header: false, header_name: "column", column_names: nil) ⇒ DataFrame
Transpose a DataFrame over the diagonal.
-
#unique(maintain_order: true, subset: nil, keep: "first") ⇒ DataFrame
Drop duplicate rows from this DataFrame.
-
#unnest(names) ⇒ DataFrame
Decompose a struct into its fields.
-
#unstack(step:, how: "vertical", columns: nil, fill_values: nil) ⇒ DataFrame
Unstack a long table to a wide form without doing an aggregation.
-
#upsample(time_column:, every:, offset: nil, by: nil, maintain_order: false) ⇒ DataFrame
Upsample a DataFrame at a regular frequency.
-
#var(ddof: 1) ⇒ DataFrame
Aggregate the columns of this DataFrame to their variance value.
-
#vstack(df, in_place: false) ⇒ DataFrame
Grow this DataFrame vertically by stacking a DataFrame to it.
-
#width ⇒ Integer
Get the width of the DataFrame.
-
#with_column(column) ⇒ DataFrame
Return a new DataFrame with the column added or replaced.
-
#with_columns(exprs) ⇒ DataFrame
Add or overwrite multiple columns in a DataFrame.
-
#with_row_count(name: "row_nr", offset: 0) ⇒ DataFrame
Add a column at index 0 that counts the rows.
-
#write_avro(file, compression = "uncompressed") ⇒ nil
Write to Apache Avro file.
-
#write_csv(file = nil, has_header: true, include_header: nil, sep: ",", quote: '"', batch_size: 1024, datetime_format: nil, date_format: nil, time_format: nil, float_precision: nil, null_value: nil) ⇒ String?
Write to comma-separated values (CSV) file.
-
#write_ipc(file, compression: "uncompressed") ⇒ nil
Write to Arrow IPC binary stream or Feather file.
-
#write_json(file, pretty: false, row_oriented: false) ⇒ nil
Serialize to JSON representation.
-
#write_ndjson(file) ⇒ nil
Serialize to newline delimited JSON representation.
-
#write_parquet(file, compression: "zstd", compression_level: nil, statistics: false, row_group_size: nil) ⇒ nil
Write to Apache Parquet file.
Constructor Details
#initialize(data = nil, schema: nil, columns: nil, schema_overrides: nil, orient: nil, infer_schema_length: 100, nan_to_null: false) ⇒ DataFrame
Create a new DataFrame.
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
# File 'lib/polars/data_frame.rb', line 21 def initialize(data = nil, schema: nil, columns: nil, schema_overrides: nil, orient: nil, infer_schema_length: 100, nan_to_null: false) schema ||= columns if defined?(ActiveRecord) && (data.is_a?(ActiveRecord::Relation) || data.is_a?(ActiveRecord::Result)) raise ArgumentError, "Use read_database instead" end if data.nil? self._df = self.class.hash_to_rbdf({}, schema: schema, schema_overrides: schema_overrides) elsif data.is_a?(Hash) data = data.transform_keys { |v| v.is_a?(Symbol) ? v.to_s : v } self._df = self.class.hash_to_rbdf(data, schema: schema, schema_overrides: schema_overrides, nan_to_null: nan_to_null) elsif data.is_a?(::Array) self._df = self.class.sequence_to_rbdf(data, schema: schema, schema_overrides: schema_overrides, orient: orient, infer_schema_length: infer_schema_length) elsif data.is_a?(Series) self._df = self.class.series_to_rbdf(data, schema: schema, schema_overrides: schema_overrides) else raise ArgumentError, "DataFrame constructor called with unsupported type; got #{data.class.name}" end end |
Instance Method Details
#!=(other) ⇒ DataFrame
Not equal.
447 448 449 |
# File 'lib/polars/data_frame.rb', line 447 def !=(other) _comp(other, "neq") end |
#%(other) ⇒ DataFrame
Returns the modulo.
530 531 532 533 534 535 536 537 |
# File 'lib/polars/data_frame.rb', line 530 def %(other) if other.is_a?(DataFrame) return _from_rbdf(_df.rem_df(other._df)) end other = _prepare_other_arg(other) _from_rbdf(_df.rem(other._s)) end |
#*(other) ⇒ DataFrame
Performs multiplication.
482 483 484 485 486 487 488 489 |
# File 'lib/polars/data_frame.rb', line 482 def *(other) if other.is_a?(DataFrame) return _from_rbdf(_df.mul_df(other._df)) end other = _prepare_other_arg(other) _from_rbdf(_df.mul(other._s)) end |
#+(other) ⇒ DataFrame
Performs addition.
506 507 508 509 510 511 512 513 |
# File 'lib/polars/data_frame.rb', line 506 def +(other) if other.is_a?(DataFrame) return _from_rbdf(_df.add_df(other._df)) end other = _prepare_other_arg(other) _from_rbdf(_df.add(other._s)) end |
#-(other) ⇒ DataFrame
Performs subtraction.
518 519 520 521 522 523 524 525 |
# File 'lib/polars/data_frame.rb', line 518 def -(other) if other.is_a?(DataFrame) return _from_rbdf(_df.sub_df(other._df)) end other = _prepare_other_arg(other) _from_rbdf(_df.sub(other._s)) end |
#/(other) ⇒ DataFrame
Performs division.
494 495 496 497 498 499 500 501 |
# File 'lib/polars/data_frame.rb', line 494 def /(other) if other.is_a?(DataFrame) return _from_rbdf(_df.div_df(other._df)) end other = _prepare_other_arg(other) _from_rbdf(_df.div(other._s)) end |
#<(other) ⇒ DataFrame
Less than.
461 462 463 |
# File 'lib/polars/data_frame.rb', line 461 def <(other) _comp(other, "lt") end |
#<=(other) ⇒ DataFrame
Less than or equal.
475 476 477 |
# File 'lib/polars/data_frame.rb', line 475 def <=(other) _comp(other, "lt_eq") end |
#==(other) ⇒ DataFrame
Equal.
440 441 442 |
# File 'lib/polars/data_frame.rb', line 440 def ==(other) _comp(other, "eq") end |
#>(other) ⇒ DataFrame
Greater than.
454 455 456 |
# File 'lib/polars/data_frame.rb', line 454 def >(other) _comp(other, "gt") end |
#>=(other) ⇒ DataFrame
Greater than or equal.
468 469 470 |
# File 'lib/polars/data_frame.rb', line 468 def >=(other) _comp(other, "gt_eq") end |
#[](*args) ⇒ Object
Returns subset of the DataFrame.
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 |
# File 'lib/polars/data_frame.rb', line 571 def [](*args) if args.size == 2 row_selection, col_selection = args # df[.., unknown] if row_selection.is_a?(Range) # multiple slices # df[.., ..] if col_selection.is_a?(Range) raise Todo end end # df[2, ..] (select row as df) if row_selection.is_a?(Integer) if col_selection.is_a?(::Array) df = self[0.., col_selection] return df.slice(row_selection, 1) end # df[2, "a"] if col_selection.is_a?(::String) || col_selection.is_a?(Symbol) return self[col_selection][row_selection] end end # column selection can be "a" and ["a", "b"] if col_selection.is_a?(::String) || col_selection.is_a?(Symbol) col_selection = [col_selection] end # df[.., 1] if col_selection.is_a?(Integer) series = to_series(col_selection) return series[row_selection] end if col_selection.is_a?(::Array) # df[.., [1, 2]] if Utils.is_int_sequence(col_selection) series_list = col_selection.map { |i| to_series(i) } df = self.class.new(series_list) return df[row_selection] end end df = self[col_selection] return df[row_selection] elsif args.size == 1 item = args[0] # select single column # df["foo"] if item.is_a?(::String) || item.is_a?(Symbol) return Utils.wrap_s(_df.column(item.to_s)) end # df[idx] if item.is_a?(Integer) return slice(_pos_idx(item, 0), 1) end # df[..] if item.is_a?(Range) return Slice.new(self).apply(item) end if item.is_a?(::Array) && item.all? { |v| Utils.strlike?(v) } # select multiple columns # df[["foo", "bar"]] return _from_rbdf(_df.select(item.map(&:to_s))) end if Utils.is_int_sequence(item) item = Series.new("", item) end if item.is_a?(Series) dtype = item.dtype if dtype == String return _from_rbdf(_df.select(item)) elsif dtype == UInt32 return _from_rbdf(_df.take_with_series(item._s)) elsif [UInt8, UInt16, UInt64, Int8, Int16, Int32, Int64].include?(dtype) return _from_rbdf( _df.take_with_series(_pos_idxs(item, 0)._s) ) end end end # Ruby-specific if item.is_a?(Expr) || item.is_a?(Series) return filter(item) end raise ArgumentError, "Cannot get item of type: #{item.class.name}" end |
#[]=(*key, value) ⇒ Object
Set item.
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 |
# File 'lib/polars/data_frame.rb', line 673 def []=(*key, value) if key.length == 1 key = key.first elsif key.length != 2 raise ArgumentError, "wrong number of arguments (given #{key.length + 1}, expected 2..3)" end if Utils.strlike?(key) if value.is_a?(::Array) || (defined?(Numo::NArray) && value.is_a?(Numo::NArray)) value = Series.new(value) elsif !value.is_a?(Series) value = Polars.lit(value) end self._df = with_column(value.alias(key.to_s))._df elsif key.is_a?(::Array) row_selection, col_selection = key if Utils.strlike?(col_selection) s = self[col_selection] elsif col_selection.is_a?(Integer) raise Todo else raise ArgumentError, "column selection not understood: #{col_selection}" end s[row_selection] = value if col_selection.is_a?(Integer) replace_column(col_selection, s) elsif Utils.strlike?(col_selection) replace(col_selection, s) end else raise Todo end end |
#apply(return_dtype: nil, inference_size: 256, &f) ⇒ Object
The frame-level apply cannot track column names (as the UDF is a black-box
that may arbitrarily drop, rearrange, transform, or add new columns); if you
want to apply a UDF such that column names are preserved, you should use the
expression-level apply syntax instead.
Apply a custom/user-defined function (UDF) over the rows of the DataFrame.
The UDF will receive each row as a tuple of values: udf(row).
Implementing logic using a Ruby function is almost always significantly slower and more memory intensive than implementing the same logic using the native expression API because:
- The native expression engine runs in Rust; UDFs run in Ruby.
- Use of Ruby UDFs forces the DataFrame to be materialized in memory.
- Polars-native expressions can be parallelised (UDFs cannot).
- Polars-native expressions can be logically optimised (UDFs cannot).
Wherever possible you should strongly prefer the native expression API to achieve the best performance.
2591 2592 2593 2594 2595 2596 2597 2598 |
# File 'lib/polars/data_frame.rb', line 2591 def apply(return_dtype: nil, inference_size: 256, &f) out, is_df = _df.apply(f, return_dtype, inference_size) if is_df _from_rbdf(out) else _from_rbdf(Utils.wrap_s(out).to_frame._df) end end |
#cleared ⇒ DataFrame
Create an empty copy of the current DataFrame.
Returns a DataFrame with identical schema but no data.
2879 2880 2881 |
# File 'lib/polars/data_frame.rb', line 2879 def cleared height > 0 ? head(0) : clone end |
#columns ⇒ Array
Get column names.
364 365 366 |
# File 'lib/polars/data_frame.rb', line 364 def columns _df.columns end |
#columns=(columns) ⇒ Object
Change the column names of the DataFrame.
397 398 399 |
# File 'lib/polars/data_frame.rb', line 397 def columns=(columns) _df.set_column_names(columns) end |
#delete(name) ⇒ Series
Drop in place if exists.
2852 2853 2854 |
# File 'lib/polars/data_frame.rb', line 2852 def delete(name) drop_in_place(name) if include?(name) end |
#describe ⇒ DataFrame
Summary statistics for a DataFrame.
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 |
# File 'lib/polars/data_frame.rb', line 1341 def describe describe_cast = lambda do |stat| columns = [] self.columns.each_with_index do |s, i| if self[s].is_numeric || self[s].is_boolean columns << stat[0.., i].cast(:f64) else # for dates, strings, etc, we cast to string so that all # statistics can be shown columns << stat[0.., i].cast(:str) end end self.class.new(columns) end summary = _from_rbdf( Polars.concat( [ describe_cast.( self.class.new(columns.to_h { |c| [c, [height]] }) ), describe_cast.(null_count), describe_cast.(mean), describe_cast.(std), describe_cast.(min), describe_cast.(max), describe_cast.(median) ] )._df ) summary.insert_column( 0, Polars::Series.new( "describe", ["count", "null_count", "mean", "std", "min", "max", "median"], ) ) summary end |
#drop(columns) ⇒ DataFrame
Remove column from DataFrame and return as new.
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 |
# File 'lib/polars/data_frame.rb', line 2806 def drop(columns) if columns.is_a?(::Array) df = clone columns.each do |n| df._df.drop_in_place(n) end df else _from_rbdf(_df.drop(columns)) end end |
#drop_in_place(name) ⇒ Series
Drop in place.
2842 2843 2844 |
# File 'lib/polars/data_frame.rb', line 2842 def drop_in_place(name) Utils.wrap_s(_df.drop_in_place(name)) end |
#drop_nulls(subset: nil) ⇒ DataFrame
Return a new DataFrame where the null values are dropped.
1722 1723 1724 1725 1726 1727 |
# File 'lib/polars/data_frame.rb', line 1722 def drop_nulls(subset: nil) if subset.is_a?(::String) subset = [subset] end _from_rbdf(_df.drop_nulls(subset)) end |
#dtypes ⇒ Array
Get dtypes of columns in DataFrame. Dtypes can also be found in column headers when printing the DataFrame.
415 416 417 |
# File 'lib/polars/data_frame.rb', line 415 def dtypes _df.dtypes end |
#each(&block) ⇒ Object
Returns an enumerator.
564 565 566 |
# File 'lib/polars/data_frame.rb', line 564 def each(&block) get_columns.each(&block) end |
#each_row(named: true, buffer_size: 500, &block) ⇒ Object
Returns an iterator over the DataFrame of rows of Ruby-native values.
4573 4574 4575 |
# File 'lib/polars/data_frame.rb', line 4573 def each_row(named: true, buffer_size: 500, &block) iter_rows(named: named, buffer_size: buffer_size, &block) end |
#equals(other, null_equal: true) ⇒ Boolean Also known as: frame_equal
Check if DataFrame is equal to other.
1534 1535 1536 |
# File 'lib/polars/data_frame.rb', line 1534 def equals(other, null_equal: true) _df.equals(other._df, null_equal) end |
#estimated_size(unit = "b") ⇒ Numeric
Return an estimation of the total (heap) allocated size of the DataFrame.
Estimated size is given in the specified unit (bytes by default).
This estimation is the sum of the size of its buffers, validity, including nested arrays. Multiple arrays may share buffers and bitmaps. Therefore, the size of 2 arrays is not the sum of the sizes computed from this function. In particular, StructArray's size is an upper bound.
When an array is sliced, its allocated size remains constant because the buffer unchanged. However, this function will yield a smaller number. This is because this function returns the visible size of the buffer, not its total capacity.
FFI buffers are included in this estimation.
1088 1089 1090 1091 |
# File 'lib/polars/data_frame.rb', line 1088 def estimated_size(unit = "b") sz = _df.estimated_size Utils.scale_bytes(sz, to: unit) end |
#explode(columns) ⇒ DataFrame
Explode DataFrame to long format by exploding a column with Lists.
3068 3069 3070 |
# File 'lib/polars/data_frame.rb', line 3068 def explode(columns) lazy.explode(columns).collect(no_optimization: true) end |
#extend(other) ⇒ DataFrame
Extend the memory backed by this DataFrame with the values from other.
Different from vstack which adds the chunks from other to the chunks of this
DataFrame extend appends the data from other to the underlying memory
locations and thus may cause a reallocation.
If this does not cause a reallocation, the resulting data structure will not have any extra chunks and thus will yield faster queries.
Prefer extend over vstack when you want to do a query after a single append.
For instance during online operations where you add n rows and rerun a query.
Prefer vstack over extend when you want to append many times before doing a
query. For instance when you read in multiple files and when to store them in a
single DataFrame. In the latter case, finish the sequence of vstack
operations with a rechunk.
2774 2775 2776 2777 |
# File 'lib/polars/data_frame.rb', line 2774 def extend(other) _df.extend(other._df) self end |
#fill_nan(fill_value) ⇒ DataFrame
Note that floating point NaNs (Not a Number) are not missing values!
To replace missing values, use fill_null.
Fill floating point NaN values by an Expression evaluation.
3033 3034 3035 |
# File 'lib/polars/data_frame.rb', line 3033 def fill_nan(fill_value) lazy.fill_nan(fill_value).collect(no_optimization: true) end |
#fill_null(value = nil, strategy: nil, limit: nil, matches_supertype: true) ⇒ DataFrame
Fill null values using the specified value or strategy.
2993 2994 2995 2996 2997 2998 2999 3000 |
# File 'lib/polars/data_frame.rb', line 2993 def fill_null(value = nil, strategy: nil, limit: nil, matches_supertype: true) _from_rbdf( lazy .fill_null(value, strategy: strategy, limit: limit, matches_supertype: matches_supertype) .collect(no_optimization: true) ._df ) end |
#filter(predicate) ⇒ DataFrame
Filter the rows in the DataFrame based on a predicate expression.
1307 1308 1309 |
# File 'lib/polars/data_frame.rb', line 1307 def filter(predicate) lazy.filter(predicate).collect end |
#fold(&operation) ⇒ Series
Apply a horizontal reduction on a DataFrame.
This can be used to effectively determine aggregations on a row level, and can be applied to any DataType that can be supercasted (casted to a similar parent type).
An example of the supercast rules when applying an arithmetic operation on two DataTypes are for instance:
i8 + str = str f32 + i64 = f32 f32 + f64 = f64
4382 4383 4384 4385 4386 4387 4388 4389 |
# File 'lib/polars/data_frame.rb', line 4382 def fold(&operation) acc = to_series(0) 1.upto(width - 1) do |i| acc = operation.call(acc, to_series(i)) end acc end |
#gather_every(n, offset = 0) ⇒ DataFrame Also known as: take_every
Take every nth row in the DataFrame and return as a new DataFrame.
4610 4611 4612 |
# File 'lib/polars/data_frame.rb', line 4610 def gather_every(n, offset = 0) select(Utils.col("*").gather_every(n, offset)) end |
#get_column(name) ⇒ Series
Get a single column as Series by name.
2910 2911 2912 |
# File 'lib/polars/data_frame.rb', line 2910 def get_column(name) self[name] end |
#get_column_index(name) ⇒ Series Also known as: find_idx_by_name
Find the index of a column by name.
1394 1395 1396 |
# File 'lib/polars/data_frame.rb', line 1394 def get_column_index(name) _df.get_column_index(name) end |
#get_columns ⇒ Array
Get the DataFrame as a Array of Series.
2888 2889 2890 |
# File 'lib/polars/data_frame.rb', line 2888 def get_columns _df.get_columns.map { |s| Utils.wrap_s(s) } end |
#group_by(by, maintain_order: false) ⇒ GroupBy Also known as: groupby, group
Start a group by operation.
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 |
# File 'lib/polars/data_frame.rb', line 1832 def group_by(by, maintain_order: false) if !Utils.bool?(maintain_order) raise TypeError, "invalid input for group_by arg `maintain_order`: #{maintain_order}." end GroupBy.new( self, by, maintain_order: maintain_order ) end |
#group_by_dynamic(index_column, every:, period: nil, offset: nil, truncate: true, include_boundaries: false, closed: "left", by: nil, start_by: "window") ⇒ DataFrame Also known as: groupby_dynamic
Group based on a time value (or index value of type :i32, :i64).
Time windows are calculated and rows are assigned to windows. Different from a normal group by is that a row can be member of multiple groups. The time/index window could be seen as a rolling window, with a window size determined by dates/times/values instead of slots in the DataFrame.
A window is defined by:
- every: interval of the window
- period: length of the window
- offset: offset of the window
The every, period and offset arguments are created with
the following string language:
- 1ns (1 nanosecond)
- 1us (1 microsecond)
- 1ms (1 millisecond)
- 1s (1 second)
- 1m (1 minute)
- 1h (1 hour)
- 1d (1 day)
- 1w (1 week)
- 1mo (1 calendar month)
- 1y (1 calendar year)
- 1i (1 index count)
Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
In case of a group_by_dynamic on an integer column, the windows are defined by:
- "1i" # length 1
- "10i" # length 10
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 |
# File 'lib/polars/data_frame.rb', line 2173 def group_by_dynamic( index_column, every:, period: nil, offset: nil, truncate: true, include_boundaries: false, closed: "left", by: nil, start_by: "window" ) DynamicGroupBy.new( self, index_column, every, period, offset, truncate, include_boundaries, closed, by, start_by ) end |
#group_by_rolling(index_column:, period:, offset: nil, closed: "right", by: nil, check_sorted: true) ⇒ RollingGroupBy Also known as: groupby_rolling
Create rolling groups based on a time column.
Also works for index values of type :i32 or :i64.
Different from a dynamic_group_by the windows are now determined by the
individual values and are not of constant intervals. For constant intervals use
group_by_dynamic
The period and offset arguments are created either from a timedelta, or
by using the following string language:
- 1ns (1 nanosecond)
- 1us (1 microsecond)
- 1ms (1 millisecond)
- 1s (1 second)
- 1m (1 minute)
- 1h (1 hour)
- 1d (1 day)
- 1w (1 week)
- 1mo (1 calendar month)
- 1y (1 calendar year)
- 1i (1 index count)
Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
In case of a group_by_rolling on an integer column, the windows are defined by:
- "1i" # length 1
- "10i" # length 10
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 |
# File 'lib/polars/data_frame.rb', line 1935 def group_by_rolling( index_column:, period:, offset: nil, closed: "right", by: nil, check_sorted: true ) RollingGroupBy.new(self, index_column, period, offset, closed, by, check_sorted) end |
#hash_rows(seed: 0, seed_1: nil, seed_2: nil, seed_3: nil) ⇒ Series
Hash and combine the rows in this DataFrame.
The hash value is of type :u64.
4647 4648 4649 4650 4651 4652 4653 |
# File 'lib/polars/data_frame.rb', line 4647 def hash_rows(seed: 0, seed_1: nil, seed_2: nil, seed_3: nil) k0 = seed k1 = seed_1.nil? ? seed : seed_1 k2 = seed_2.nil? ? seed : seed_2 k3 = seed_3.nil? ? seed : seed_3 Utils.wrap_s(_df.hash_rows(k0, k1, k2, k3)) end |
#head(n = 5) ⇒ DataFrame
Get the first n rows.
1661 1662 1663 |
# File 'lib/polars/data_frame.rb', line 1661 def head(n = 5) _from_rbdf(_df.head(n)) end |
#height ⇒ Integer Also known as: count, length, size
Get the height of the DataFrame.
331 332 333 |
# File 'lib/polars/data_frame.rb', line 331 def height _df.height end |
#hstack(columns, in_place: false) ⇒ DataFrame
Return a new DataFrame grown horizontally by stacking multiple Series to it.
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 |
# File 'lib/polars/data_frame.rb', line 2676 def hstack(columns, in_place: false) if !columns.is_a?(::Array) columns = columns.get_columns end if in_place _df.hstack_mut(columns.map(&:_s)) self else _from_rbdf(_df.hstack(columns.map(&:_s))) end end |
#include?(name) ⇒ Boolean
Check if DataFrame includes column.
557 558 559 |
# File 'lib/polars/data_frame.rb', line 557 def include?(name) columns.include?(name) end |
#insert_column(index, series) ⇒ DataFrame Also known as: insert_at_idx
Insert a Series at a certain column index. This operation is in place.
1260 1261 1262 1263 1264 1265 1266 |
# File 'lib/polars/data_frame.rb', line 1260 def insert_column(index, series) if index < 0 index = columns.length + index end _df.insert_column(index, series._s) self end |
#interpolate ⇒ DataFrame
Interpolate intermediate values. The interpolation method is linear.
4680 4681 4682 |
# File 'lib/polars/data_frame.rb', line 4680 def interpolate select(Utils.col("*").interpolate) end |
#is_duplicated ⇒ Series
Get a mask of all duplicated rows in this DataFrame.
3556 3557 3558 |
# File 'lib/polars/data_frame.rb', line 3556 def is_duplicated Utils.wrap_s(_df.is_duplicated) end |
#is_empty ⇒ Boolean Also known as: empty?
Check if the dataframe is empty.
4694 4695 4696 |
# File 'lib/polars/data_frame.rb', line 4694 def is_empty height == 0 end |
#is_unique ⇒ Series
Get a mask of all unique rows in this DataFrame.
3581 3582 3583 |
# File 'lib/polars/data_frame.rb', line 3581 def is_unique Utils.wrap_s(_df.is_unique) end |
#item ⇒ Object
Return the dataframe as a scalar.
Equivalent to df[0,0], with a check that the shape is (1,1).
721 722 723 724 725 726 |
# File 'lib/polars/data_frame.rb', line 721 def item if shape != [1, 1] raise ArgumentError, "Can only call .item if the dataframe is of shape (1,1), dataframe is of shape #{shape}" end self[0, 0] end |
#iter_rows(named: false, buffer_size: 500, &block) ⇒ Object
Returns an iterator over the DataFrame of rows of Ruby-native values.
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 |
# File 'lib/polars/data_frame.rb', line 4526 def iter_rows(named: false, buffer_size: 500, &block) return to_enum(:iter_rows, named: named, buffer_size: buffer_size) unless block_given? # load into the local namespace for a modest performance boost in the hot loops columns = columns() # note: buffering rows results in a 2-4x speedup over individual calls # to ".row(i)", so it should only be disabled in extremely specific cases. if buffer_size offset = 0 while offset < height zerocopy_slice = slice(offset, buffer_size) rows_chunk = zerocopy_slice.rows(named: false) if named rows_chunk.each do |row| yield columns.zip(row).to_h end else rows_chunk.each(&block) end offset += buffer_size end elsif named height.times do |i| yield columns.zip(row(i)).to_h end else height.times do |i| yield row(i) end end end |
#join(other, left_on: nil, right_on: nil, on: nil, how: "inner", suffix: "_right") ⇒ DataFrame
Join in SQL-like fashion.
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 |
# File 'lib/polars/data_frame.rb', line 2518 def join(other, left_on: nil, right_on: nil, on: nil, how: "inner", suffix: "_right") lazy .join( other.lazy, left_on: left_on, right_on: right_on, on: on, how: how, suffix: suffix, ) .collect(no_optimization: true) end |
#join_asof(other, left_on: nil, right_on: nil, on: nil, by_left: nil, by_right: nil, by: nil, strategy: "backward", suffix: "_right", tolerance: nil, allow_parallel: true, force_parallel: false) ⇒ DataFrame
Perform an asof join.
This is similar to a left-join except that we match on nearest key rather than equal keys.
Both DataFrames must be sorted by the asof_join key.
For each row in the left DataFrame:
- A "backward" search selects the last row in the right DataFrame whose 'on' key is less than or equal to the left's key.
- A "forward" search selects the first row in the right DataFrame whose 'on' key is greater than or equal to the left's key.
The default is "backward".
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 |
# File 'lib/polars/data_frame.rb', line 2390 def join_asof( other, left_on: nil, right_on: nil, on: nil, by_left: nil, by_right: nil, by: nil, strategy: "backward", suffix: "_right", tolerance: nil, allow_parallel: true, force_parallel: false ) lazy .join_asof( other.lazy, left_on: left_on, right_on: right_on, on: on, by_left: by_left, by_right: by_right, by: by, strategy: strategy, suffix: suffix, tolerance: tolerance, allow_parallel: allow_parallel, force_parallel: force_parallel ) .collect(no_optimization: true) end |
#lazy ⇒ LazyFrame
Start a lazy query from this point.
3588 3589 3590 |
# File 'lib/polars/data_frame.rb', line 3588 def lazy wrap_ldf(_df.lazy) end |
#limit(n = 5) ⇒ DataFrame
Get the first n rows.
Alias for #head.
1630 1631 1632 |
# File 'lib/polars/data_frame.rb', line 1630 def limit(n = 5) head(n) end |
#max(axis: 0) ⇒ DataFrame
Aggregate the columns of this DataFrame to their maximum value.
3779 3780 3781 3782 3783 3784 3785 3786 3787 |
# File 'lib/polars/data_frame.rb', line 3779 def max(axis: 0) if axis == 0 lazy.max.collect(_eager: true) elsif axis == 1 Utils.wrap_s(_df.max_horizontal) else raise ArgumentError, "Axis should be 0 or 1." end end |
#mean(axis: 0, null_strategy: "ignore") ⇒ DataFrame
Aggregate the columns of this DataFrame to their mean value.
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 |
# File 'lib/polars/data_frame.rb', line 3897 def mean(axis: 0, null_strategy: "ignore") case axis when 0 lazy.mean.collect(_eager: true) when 1 Utils.wrap_s(_df.mean_horizontal(null_strategy)) else raise ArgumentError, "Axis should be 0 or 1." end end |
#median ⇒ DataFrame
Aggregate the columns of this DataFrame to their median value.
4012 4013 4014 |
# File 'lib/polars/data_frame.rb', line 4012 def median lazy.median.collect(_eager: true) end |
#melt(id_vars: nil, value_vars: nil, variable_name: nil, value_name: nil) ⇒ DataFrame
Unpivot a DataFrame from wide to long format.
Optionally leaves identifiers set.
This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (id_vars), while all other columns, considered measured variables (value_vars), are "unpivoted" to the row axis, leaving just two non-identifier columns, 'variable' and 'value'.
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 |
# File 'lib/polars/data_frame.rb', line 3212 def melt(id_vars: nil, value_vars: nil, variable_name: nil, value_name: nil) if value_vars.is_a?(::String) value_vars = [value_vars] end if id_vars.is_a?(::String) id_vars = [id_vars] end if value_vars.nil? value_vars = [] end if id_vars.nil? id_vars = [] end _from_rbdf( _df.melt(id_vars, value_vars, value_name, variable_name) ) end |
#min(axis: 0) ⇒ DataFrame
Aggregate the columns of this DataFrame to their minimum value.
3811 3812 3813 3814 3815 3816 3817 3818 3819 |
# File 'lib/polars/data_frame.rb', line 3811 def min(axis: 0) if axis == 0 lazy.min.collect(_eager: true) elsif axis == 1 Utils.wrap_s(_df.min_horizontal) else raise ArgumentError, "Axis should be 0 or 1." end end |
#n_chunks(strategy: "first") ⇒ Object
Get number of chunks used by the ChunkedArrays of this DataFrame.
3747 3748 3749 3750 3751 3752 3753 3754 3755 |
# File 'lib/polars/data_frame.rb', line 3747 def n_chunks(strategy: "first") if strategy == "first" _df.n_chunks elsif strategy == "all" get_columns.map(&:n_chunks) else raise ArgumentError, "Strategy: '{strategy}' not understood. Choose one of {{'first', 'all'}}" end end |
#n_unique(subset: nil) ⇒ DataFrame
Return the number of unique rows, or the number of unique row-subsets.
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 |
# File 'lib/polars/data_frame.rb', line 4185 def n_unique(subset: nil) if subset.is_a?(StringIO) subset = [Polars.col(subset)] elsif subset.is_a?(Expr) subset = [subset] end if subset.is_a?(::Array) && subset.length == 1 expr = Utils.expr_to_lit_or_expr(subset[0], str_to_lit: false) else struct_fields = subset.nil? ? Polars.all : subset expr = Polars.struct(struct_fields) end df = lazy.select(expr.n_unique).collect df.is_empty ? 0 : df.row(0)[0] end |
#null_count ⇒ DataFrame
Create a new DataFrame that shows the null counts per column.
4235 4236 4237 |
# File 'lib/polars/data_frame.rb', line 4235 def null_count _from_rbdf(_df.null_count) end |
#partition_by(groups, maintain_order: true, include_key: true, as_dict: false) ⇒ Object
Split into multiple DataFrames partitioned by groups.
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 |
# File 'lib/polars/data_frame.rb', line 3429 def partition_by(groups, maintain_order: true, include_key: true, as_dict: false) if groups.is_a?(::String) groups = [groups] elsif !groups.is_a?(::Array) groups = Array(groups) end if as_dict out = {} if groups.length == 1 _df.partition_by(groups, maintain_order, include_key).each do |df| df = _from_rbdf(df) out[df[groups][0, 0]] = df end else _df.partition_by(groups, maintain_order, include_key).each do |df| df = _from_rbdf(df) out[df[groups].row(0)] = df end end out else _df.partition_by(groups, maintain_order, include_key).map { |df| _from_rbdf(df) } end end |
#pipe(func, *args, **kwargs, &block) ⇒ Object
It is recommended to use LazyFrame when piping operations, in order to fully take advantage of query optimization and parallelization. See #lazy.
Offers a structured way to apply a sequence of user-defined functions (UDFs).
1765 1766 1767 |
# File 'lib/polars/data_frame.rb', line 1765 def pipe(func, *args, **kwargs, &block) func.call(self, *args, **kwargs, &block) end |
#pivot(values:, index:, columns:, aggregate_fn: "first", maintain_order: true, sort_columns: false, separator: "_") ⇒ DataFrame
Create a spreadsheet-style pivot table as a DataFrame.
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 |
# File 'lib/polars/data_frame.rb', line 3109 def pivot( values:, index:, columns:, aggregate_fn: "first", maintain_order: true, sort_columns: false, separator: "_" ) if values.is_a?(::String) values = [values] end if index.is_a?(::String) index = [index] end if columns.is_a?(::String) columns = [columns] end if aggregate_fn.is_a?(::String) case aggregate_fn when "first" aggregate_expr = Polars.element.first._rbexpr when "sum" aggregate_expr = Polars.element.sum._rbexpr when "max" aggregate_expr = Polars.element.max._rbexpr when "min" aggregate_expr = Polars.element.min._rbexpr when "mean" aggregate_expr = Polars.element.mean._rbexpr when "median" aggregate_expr = Polars.element.median._rbexpr when "last" aggregate_expr = Polars.element.last._rbexpr when "count" aggregate_expr = Polars.count._rbexpr else raise ArgumentError, "Argument aggregate fn: '#{aggregate_fn}' was not expected." end elsif aggregate_fn.nil? aggregate_expr = nil else aggregate_expr = aggregate_function._rbexpr end _from_rbdf( _df.pivot_expr( values, index, columns, maintain_order, sort_columns, aggregate_expr, separator ) ) end |
#plot(x = nil, y = nil, type: nil, group: nil, stacked: nil) ⇒ Vega::LiteChart Originally defined in module Plot
Plot data.
#product ⇒ DataFrame
Aggregate the columns of this DataFrame to their product values.
4038 4039 4040 |
# File 'lib/polars/data_frame.rb', line 4038 def product select(Polars.all.product) end |
#quantile(quantile, interpolation: "nearest") ⇒ DataFrame
Aggregate the columns of this DataFrame to their quantile value.
4069 4070 4071 |
# File 'lib/polars/data_frame.rb', line 4069 def quantile(quantile, interpolation: "nearest") lazy.quantile(quantile, interpolation: interpolation).collect(_eager: true) end |
#rechunk ⇒ DataFrame
This will make sure all subsequent operations have optimal and predictable performance.
4209 4210 4211 |
# File 'lib/polars/data_frame.rb', line 4209 def rechunk _from_rbdf(_df.rechunk) end |
#rename(mapping) ⇒ DataFrame
Rename column names.
1209 1210 1211 |
# File 'lib/polars/data_frame.rb', line 1209 def rename(mapping) lazy.rename(mapping).collect(no_optimization: true) end |
#replace(column, new_col) ⇒ DataFrame
Replace a column by a new Series.
1563 1564 1565 1566 |
# File 'lib/polars/data_frame.rb', line 1563 def replace(column, new_col) _df.replace(column.to_s, new_col._s) self end |
#replace_column(index, series) ⇒ DataFrame Also known as: replace_at_idx
Replace a column at an index location.
1429 1430 1431 1432 1433 1434 1435 |
# File 'lib/polars/data_frame.rb', line 1429 def replace_column(index, series) if index < 0 index = columns.length + index end _df.replace_column(index, series._s) self end |
#reverse ⇒ DataFrame
Reverse the DataFrame.
1178 1179 1180 |
# File 'lib/polars/data_frame.rb', line 1178 def reverse select(Polars.col("*").reverse) end |
#row(index = nil, by_predicate: nil, named: false) ⇒ Object
The index and by_predicate params are mutually exclusive. Additionally,
to ensure clarity, the by_predicate parameter must be supplied by keyword.
When using by_predicate it is an error condition if anything other than
one row is returned; more than one row raises TooManyRowsReturned, and
zero rows will raise NoRowsReturned (both inherit from RowsException).
Get a row as tuple, either by index or by predicate.
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 |
# File 'lib/polars/data_frame.rb', line 4430 def row(index = nil, by_predicate: nil, named: false) if !index.nil? && !by_predicate.nil? raise ArgumentError, "Cannot set both 'index' and 'by_predicate'; mutually exclusive" elsif index.is_a?(Expr) raise TypeError, "Expressions should be passed to the 'by_predicate' param" end if !index.nil? row = _df.row_tuple(index) if named columns.zip(row).to_h else row end elsif !by_predicate.nil? if !by_predicate.is_a?(Expr) raise TypeError, "Expected by_predicate to be an expression; found #{by_predicate.class.name}" end rows = filter(by_predicate).rows n_rows = rows.length if n_rows > 1 raise TooManyRowsReturned, "Predicate #{by_predicate} returned #{n_rows} rows" elsif n_rows == 0 raise NoRowsReturned, "Predicate #{by_predicate} returned no rows" end row = rows[0] if named columns.zip(row).to_h else row end else raise ArgumentError, "One of 'index' or 'by_predicate' must be set" end end |
#rows(named: false) ⇒ Array
Convert columnar data to rows as Ruby arrays.
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 |
# File 'lib/polars/data_frame.rb', line 4487 def rows(named: false) if named columns = columns() _df.row_tuples.map do |v| columns.zip(v).to_h end else _df.row_tuples end end |
#sample(n: nil, frac: nil, with_replacement: false, shuffle: false, seed: nil) ⇒ DataFrame
Sample from this DataFrame.
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 |
# File 'lib/polars/data_frame.rb', line 4275 def sample( n: nil, frac: nil, with_replacement: false, shuffle: false, seed: nil ) if !n.nil? && !frac.nil? raise ArgumentError, "cannot specify both `n` and `frac`" end if n.nil? && !frac.nil? frac = Series.new("frac", [frac]) unless frac.is_a?(Series) _from_rbdf( _df.sample_frac(frac._s, with_replacement, shuffle, seed) ) end if n.nil? n = 1 end n = Series.new("", [n]) unless n.is_a?(Series) _from_rbdf(_df.sample_n(n._s, with_replacement, shuffle, seed)) end |
#schema ⇒ Hash
Get the schema.
433 434 435 |
# File 'lib/polars/data_frame.rb', line 433 def schema columns.zip(dtypes).to_h end |
#select(exprs) ⇒ DataFrame
Select columns from this DataFrame.
3675 3676 3677 3678 3679 3680 3681 3682 |
# File 'lib/polars/data_frame.rb', line 3675 def select(exprs) _from_rbdf( lazy .select(exprs) .collect(no_optimization: true, string_cache: false) ._df ) end |
#set_sorted(column, *more_columns, descending: false) ⇒ DataFrame
Indicate that one or multiple columns are sorted.
4785 4786 4787 4788 4789 4790 4791 4792 4793 |
# File 'lib/polars/data_frame.rb', line 4785 def set_sorted( column, *more_columns, descending: false ) lazy .set_sorted(column, *more_columns, descending: descending) .collect(no_optimization: true) end |
#shape ⇒ Array
Get the shape of the DataFrame.
319 320 321 |
# File 'lib/polars/data_frame.rb', line 319 def shape _df.shape end |
#shift(n, fill_value: nil) ⇒ DataFrame
Shift values by the given period.
3498 3499 3500 |
# File 'lib/polars/data_frame.rb', line 3498 def shift(n, fill_value: nil) lazy.shift(n, fill_value: fill_value).collect(_eager: true) end |
#shift_and_fill(periods, fill_value) ⇒ DataFrame
Shift the values by a given period and fill the resulting null values.
3531 3532 3533 |
# File 'lib/polars/data_frame.rb', line 3531 def shift_and_fill(periods, fill_value) shift(periods, fill_value: fill_value) end |
#shrink_to_fit(in_place: false) ⇒ DataFrame
Shrink DataFrame memory usage.
Shrinks to fit the exact capacity needed to hold the data.
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 |
# File 'lib/polars/data_frame.rb', line 4582 def shrink_to_fit(in_place: false) if in_place _df.shrink_to_fit self else df = clone df._df.shrink_to_fit df end end |
#slice(offset, length = nil) ⇒ DataFrame
Get a slice of this DataFrame.
1597 1598 1599 1600 1601 1602 |
# File 'lib/polars/data_frame.rb', line 1597 def slice(offset, length = nil) if !length.nil? && length < 0 length = height - offset + length end _from_rbdf(_df.slice(offset, length)) end |
#sort(by, reverse: false, nulls_last: false) ⇒ DataFrame
Sort the DataFrame by column.
1486 1487 1488 1489 1490 |
# File 'lib/polars/data_frame.rb', line 1486 def sort(by, reverse: false, nulls_last: false) lazy .sort(by, reverse: reverse, nulls_last: nulls_last) .collect(no_optimization: true) end |
#sort!(by, reverse: false, nulls_last: false) ⇒ DataFrame
Sort the DataFrame by column in-place.
1502 1503 1504 |
# File 'lib/polars/data_frame.rb', line 1502 def sort!(by, reverse: false, nulls_last: false) self._df = sort(by, reverse: reverse, nulls_last: nulls_last)._df end |
#std(ddof: 1) ⇒ DataFrame
Aggregate the columns of this DataFrame to their standard deviation value.
3945 3946 3947 |
# File 'lib/polars/data_frame.rb', line 3945 def std(ddof: 1) lazy.std(ddof: ddof).collect(_eager: true) end |
#sum(axis: 0, null_strategy: "ignore") ⇒ DataFrame
Aggregate the columns of this DataFrame to their sum value.
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 |
# File 'lib/polars/data_frame.rb', line 3859 def sum(axis: 0, null_strategy: "ignore") case axis when 0 lazy.sum.collect(_eager: true) when 1 Utils.wrap_s(_df.sum_horizontal(null_strategy)) else raise ArgumentError, "Axis should be 0 or 1." end end |
#tail(n = 5) ⇒ DataFrame
Get the last n rows.
1692 1693 1694 |
# File 'lib/polars/data_frame.rb', line 1692 def tail(n = 5) _from_rbdf(_df.tail(n)) end |
#to_a ⇒ Array
Returns an array representing the DataFrame
550 551 552 |
# File 'lib/polars/data_frame.rb', line 550 def to_a rows(named: true) end |
#to_csv(**options) ⇒ String
Write to comma-separated values (CSV) string.
962 963 964 |
# File 'lib/polars/data_frame.rb', line 962 def to_csv(**) write_csv(**) end |
#to_dummies(columns: nil, separator: "_", drop_first: false) ⇒ DataFrame
Get one hot encoded dummy variables.
4100 4101 4102 4103 4104 4105 |
# File 'lib/polars/data_frame.rb', line 4100 def to_dummies(columns: nil, separator: "_", drop_first: false) if columns.is_a?(::String) columns = [columns] end _from_rbdf(_df.to_dummies(columns, separator, drop_first)) end |
#to_h(as_series: true) ⇒ Hash
Convert DataFrame to a hash mapping column name to values.
733 734 735 736 737 738 739 |
# File 'lib/polars/data_frame.rb', line 733 def to_h(as_series: true) if as_series get_columns.to_h { |s| [s.name, s] } else get_columns.to_h { |s| [s.name, s.to_a] } end end |
#to_hashes ⇒ Array
Convert every row to a dictionary.
Note that this is slow.
752 753 754 755 756 757 758 759 |
# File 'lib/polars/data_frame.rb', line 752 def to_hashes rbdf = _df names = columns height.times.map do |i| names.zip(rbdf.row_tuple(i)).to_h end end |
#to_numo ⇒ Numo::NArray
Convert DataFrame to a 2D Numo array.
This operation clones data.
773 774 775 776 777 778 779 780 |
# File 'lib/polars/data_frame.rb', line 773 def to_numo out = _df.to_numo if out.nil? Numo::NArray.vstack(width.times.map { |i| to_series(i).to_numo }).transpose else out end end |
#to_s ⇒ String Also known as: inspect
Returns a string representing the DataFrame.
542 543 544 |
# File 'lib/polars/data_frame.rb', line 542 def to_s _df.to_s end |
#to_series(index = 0) ⇒ Series
Select column as Series at index location.
808 809 810 811 812 813 |
# File 'lib/polars/data_frame.rb', line 808 def to_series(index = 0) if index < 0 index = columns.length + index end Utils.wrap_s(_df.select_at_idx(index)) end |
#to_struct(name) ⇒ Series
Convert a DataFrame to a Series of type Struct.
4724 4725 4726 |
# File 'lib/polars/data_frame.rb', line 4724 def to_struct(name) Utils.wrap_s(_df.to_struct(name)) end |
#transpose(include_header: false, header_name: "column", column_names: nil) ⇒ DataFrame
This is a very expensive operation. Perhaps you can do it differently.
Transpose a DataFrame over the diagonal.
1150 1151 1152 1153 |
# File 'lib/polars/data_frame.rb', line 1150 def transpose(include_header: false, header_name: "column", column_names: nil) keep_names_as = include_header ? header_name : nil _from_rbdf(_df.transpose(keep_names_as, column_names)) end |
#unique(maintain_order: true, subset: nil, keep: "first") ⇒ DataFrame
Note that this fails if there is a column of type List in the DataFrame or
subset.
Drop duplicate rows from this DataFrame.
4145 4146 4147 4148 4149 4150 4151 4152 |
# File 'lib/polars/data_frame.rb', line 4145 def unique(maintain_order: true, subset: nil, keep: "first") self._from_rbdf( lazy .unique(maintain_order: maintain_order, subset: subset, keep: keep) .collect(no_optimization: true) ._df ) end |
#unnest(names) ⇒ DataFrame
Decompose a struct into its fields.
The fields will be inserted into the DataFrame on the location of the
struct type.
4760 4761 4762 4763 4764 4765 |
# File 'lib/polars/data_frame.rb', line 4760 def unnest(names) if names.is_a?(::String) names = [names] end _from_rbdf(_df.unnest(names)) end |
#unstack(step:, how: "vertical", columns: nil, fill_values: nil) ⇒ DataFrame
This functionality is experimental and may be subject to changes without it being considered a breaking change.
Unstack a long table to a wide form without doing an aggregation.
This can be much faster than a pivot, because it can skip the grouping phase.
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 |
# File 'lib/polars/data_frame.rb', line 3301 def unstack(step:, how: "vertical", columns: nil, fill_values: nil) if !columns.nil? df = select(columns) else df = self end height = df.height if how == "vertical" n_rows = step n_cols = (height / n_rows.to_f).ceil else n_cols = step n_rows = (height / n_cols.to_f).ceil end n_fill = n_cols * n_rows - height if n_fill > 0 if !fill_values.is_a?(::Array) fill_values = [fill_values] * df.width end df = df.select( df.get_columns.zip(fill_values).map do |s, next_fill| s.extend_constant(next_fill, n_fill) end ) end if how == "horizontal" df = ( df.with_column( (Polars.arange(0, n_cols * n_rows, eager: true) % n_cols).alias( "__sort_order" ) ) .sort("__sort_order") .drop("__sort_order") ) end zfill_val = Math.log10(n_cols).floor + 1 slices = df.get_columns.flat_map do |s| n_cols.times.map do |slice_nbr| s.slice(slice_nbr * n_rows, n_rows).alias("%s_%0#{zfill_val}d" % [s.name, slice_nbr]) end end _from_rbdf(DataFrame.new(slices)._df) end |
#upsample(time_column:, every:, offset: nil, by: nil, maintain_order: false) ⇒ DataFrame
Upsample a DataFrame at a regular frequency.
The every and offset arguments are created with
the following string language:
- 1ns (1 nanosecond)
- 1us (1 microsecond)
- 1ms (1 millisecond)
- 1s (1 second)
- 1m (1 minute)
- 1h (1 hour)
- 1d (1 day)
- 1w (1 week)
- 1mo (1 calendar month)
- 1y (1 calendar year)
- 1i (1 index count)
Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 |
# File 'lib/polars/data_frame.rb', line 2264 def upsample( time_column:, every:, offset: nil, by: nil, maintain_order: false ) if by.nil? by = [] end if by.is_a?(::String) by = [by] end if offset.nil? offset = "0ns" end every = Utils._timedelta_to_pl_duration(every) offset = Utils._timedelta_to_pl_duration(offset) _from_rbdf( _df.upsample(by, time_column, every, offset, maintain_order) ) end |
#var(ddof: 1) ⇒ DataFrame
Aggregate the columns of this DataFrame to their variance value.
3986 3987 3988 |
# File 'lib/polars/data_frame.rb', line 3986 def var(ddof: 1) lazy.var(ddof: ddof).collect(_eager: true) end |
#vstack(df, in_place: false) ⇒ DataFrame
Grow this DataFrame vertically by stacking a DataFrame to it.
2725 2726 2727 2728 2729 2730 2731 2732 |
# File 'lib/polars/data_frame.rb', line 2725 def vstack(df, in_place: false) if in_place _df.vstack_mut(df._df) self else _from_rbdf(_df.vstack(df._df)) end end |
#width ⇒ Integer
Get the width of the DataFrame.
346 347 348 |
# File 'lib/polars/data_frame.rb', line 346 def width _df.width end |
#with_column(column) ⇒ DataFrame
Return a new DataFrame with the column added or replaced.
2640 2641 2642 2643 2644 |
# File 'lib/polars/data_frame.rb', line 2640 def with_column(column) lazy .with_column(column) .collect(no_optimization: true, string_cache: false) end |
#with_columns(exprs) ⇒ DataFrame
Add or overwrite multiple columns in a DataFrame.
3718 3719 3720 3721 3722 3723 3724 3725 |
# File 'lib/polars/data_frame.rb', line 3718 def with_columns(exprs) if !exprs.nil? && !exprs.is_a?(::Array) exprs = [exprs] end lazy .with_columns(exprs) .collect(no_optimization: true, string_cache: false) end |
#with_row_count(name: "row_nr", offset: 0) ⇒ DataFrame
Add a column at index 0 that counts the rows.
1797 1798 1799 |
# File 'lib/polars/data_frame.rb', line 1797 def with_row_count(name: "row_nr", offset: 0) _from_rbdf(_df.with_row_count(name, offset)) end |
#write_avro(file, compression = "uncompressed") ⇒ nil
Write to Apache Avro file.
974 975 976 977 978 979 980 981 982 983 |
# File 'lib/polars/data_frame.rb', line 974 def write_avro(file, compression = "uncompressed") if compression.nil? compression = "uncompressed" end if Utils.pathlike?(file) file = Utils.normalise_filepath(file) end _df.write_avro(file, compression) end |
#write_csv(file = nil, has_header: true, include_header: nil, sep: ",", quote: '"', batch_size: 1024, datetime_format: nil, date_format: nil, time_format: nil, float_precision: nil, null_value: nil) ⇒ String?
Write to comma-separated values (CSV) file.
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 |
# File 'lib/polars/data_frame.rb', line 899 def write_csv( file = nil, has_header: true, include_header: nil, sep: ",", quote: '"', batch_size: 1024, datetime_format: nil, date_format: nil, time_format: nil, float_precision: nil, null_value: nil ) include_header = has_header if include_header.nil? if sep.length > 1 raise ArgumentError, "only single byte separator is allowed" elsif quote.length > 1 raise ArgumentError, "only single byte quote char is allowed" elsif null_value == "" null_value = nil end if file.nil? buffer = StringIO.new buffer.set_encoding(Encoding::BINARY) _df.write_csv( buffer, include_header, sep.ord, quote.ord, batch_size, datetime_format, date_format, time_format, float_precision, null_value ) return buffer.string.force_encoding(Encoding::UTF_8) end if Utils.pathlike?(file) file = Utils.normalise_filepath(file) end _df.write_csv( file, include_header, sep.ord, quote.ord, batch_size, datetime_format, date_format, time_format, float_precision, null_value, ) nil end |
#write_ipc(file, compression: "uncompressed") ⇒ nil
Write to Arrow IPC binary stream or Feather file.
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 |
# File 'lib/polars/data_frame.rb', line 993 def write_ipc(file, compression: "uncompressed") return_bytes = file.nil? if return_bytes file = StringIO.new file.set_encoding(Encoding::BINARY) end if Utils.pathlike?(file) file = Utils.normalise_filepath(file) end if compression.nil? compression = "uncompressed" end _df.write_ipc(file, compression) return_bytes ? file.string : nil end |
#write_json(file, pretty: false, row_oriented: false) ⇒ nil
Serialize to JSON representation.
827 828 829 830 831 832 833 834 835 836 837 838 |
# File 'lib/polars/data_frame.rb', line 827 def write_json( file, pretty: false, row_oriented: false ) if Utils.pathlike?(file) file = Utils.normalise_filepath(file) end _df.write_json(file, pretty, row_oriented) nil end |
#write_ndjson(file) ⇒ nil
Serialize to newline delimited JSON representation.
846 847 848 849 850 851 852 853 |
# File 'lib/polars/data_frame.rb', line 846 def write_ndjson(file) if Utils.pathlike?(file) file = Utils.normalise_filepath(file) end _df.write_ndjson(file) nil end |
#write_parquet(file, compression: "zstd", compression_level: nil, statistics: false, row_group_size: nil) ⇒ nil
Write to Apache Parquet file.
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 |
# File 'lib/polars/data_frame.rb', line 1036 def write_parquet( file, compression: "zstd", compression_level: nil, statistics: false, row_group_size: nil ) if compression.nil? compression = "uncompressed" end if Utils.pathlike?(file) file = Utils.normalise_filepath(file) end _df.write_parquet( file, compression, compression_level, statistics, row_group_size ) end |