Class: N65::Instruction

Inherits:
Object
  • Object
show all
Includes:
Regexes
Defined in:
lib/n65/instruction.rb

Overview

Represents a single 6502 Instruction

Defined Under Namespace

Classes: AddressOutOfRange, ArgumentTooLarge, InvalidAddressingMode, InvalidInstruction, UnresolvedSymbols

Constant Summary collapse

AddressingModes =
{
  :relative => {
    :example     => 'B** my_label',
    :display     => '%s $%.4X',
    :regex       => /$^/i,  #  Will never match this one
    :regex_label => /^#{Branches}\s+#{Sym}$/
  },

  :immediate => { 
    :example     => 'AAA #$FF',
    :display     => '%s #$%.2X',
    :regex       => /^#{Mnemonic}\s+#{Immediate}$/,
    :regex_label => /^#{Mnemonic}\s+#(<|>)#{Sym}$/
  },

  :implied => {
    :example     => 'AAA',
    :display     => '%s',
    :regex       => /^#{Mnemonic}$/
  },

  :zero_page => {
    :example     => 'AAA $FF',
    :display     => '%s $%.2X',
    :regex       => /^#{Mnemonic}\s+#{Num8}$/,
    :regex_label => /^#{Mnemonic}\s+#{Sym}\s+zp$/
  },

  :zero_page_x => {
    :example     => 'AAA $FF, X',
    :display     => '%s $%.2X, X',
    :regex       => /^#{Mnemonic}\s+#{Num8}\s?,\s?#{XReg}$/,
    :regex_label => /^#{Mnemonic}\s+#{Sym}\s?,\s?#{XReg}\s+zp$/
  },

  :zero_page_y => {
    :example     => 'AAA $FF, Y',
    :display     => '%s $%.2X, Y',
    :regex       => /^#{Mnemonic}\s+#{Num8}\s?,\s?#{YReg}$/,
    :regex_label => /^#{Mnemonic}\s+#{Sym}\s?,\s?#{YReg} zp$/
  },

  :absolute => {
    :example     => 'AAA $FFFF',
    :display     => '%s $%.4X',
    :regex       => /^#{Mnemonic}\s+#{Num16}$/,
    :regex_label => /^#{Mnemonic}\s+#{Sym}$/
  },

  :absolute_x => {
    :example     => 'AAA $FFFF, X',
    :display     => '%s $%.4X, X',
    :regex       => /^#{Mnemonic}\s+#{Num16}\s?,\s?#{XReg}$/,
    :regex_label => /^#{Mnemonic}\s+#{Sym}\s?,\s?#{XReg}$/
  },

  :absolute_y => {
    :example     => 'AAA $FFFF, Y',
    :display     => '%s $%.4X, Y',
    :regex       => /^#{Mnemonic}\s+#{Num16}\s?,\s?#{YReg}$/,
    :regex_label => /^#{Mnemonic}\s+#{Sym}\s?,\s?#{YReg}$/
  },

  :indirect => {
    :example     => 'AAA ($FFFF)',
    :display     => '%s ($%.4X)',
    :regex       => /^#{Mnemonic}\s+\(#{Num16}\)$/,
    :regex_label => /^#{Mnemonic}\s+\(#{Sym}\)$/
  },

  :indirect_x => {
    :example     => 'AAA ($FF, X)',
    :display     => '%s ($%.2X, X)',
    :regex       => /^#{Mnemonic}\s+\(#{Num8}\s?,\s?#{XReg}\)$/,
    :regex_label => /^#{Mnemonic}\s+\(#{Sym}\s?,\s?#{XReg}\)$/
  },

  :indirect_y => {
    :example     => 'AAA ($FF), Y)',
    :display => '%s ($%.2X), Y',
    :regex       => /^#{Mnemonic}\s+\(#{Num8}\)\s?,\s?#{YReg}$/,
    :regex_label => /^#{Mnemonic}\s+\(#{Sym}\)\s?,\s?#{YReg}$/
  }
}

Constants included from Regexes

Regexes::Bin16, Regexes::Bin8, Regexes::Branches, Regexes::Hex16, Regexes::Hex8, Regexes::Immediate, Regexes::Mnemonic, Regexes::Num16, Regexes::Num8, Regexes::Sym, Regexes::XReg, Regexes::YReg

Instance Attribute Summary collapse

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(op, arg, mode, byte_selector = nil) ⇒ Instruction

Create an instruction. Having the instruction op a downcased symbol is nice

because that can later be used to index into our opcodes hash in OpCodes
OpCodes contains the definitions of each OpCode


172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# File 'lib/n65/instruction.rb', line 172

def initialize(op, arg, mode, byte_selector = nil)

  ##  Lookup the definition of this opcode, otherwise it is an invalid instruction
  @byte_selector = byte_selector.nil? ? nil : byte_selector.to_sym
  fail(InvalidInstruction, "Bad Byte selector: #{byte_selector}") unless [:>, :<, nil].include?(@byte_selector)

  @op = op.downcase.to_sym
  definition = OpCodes[@op]
  fail(InvalidInstruction, op) if definition.nil?

  @arg = arg

  ##  Be sure the mode is an actually supported mode.
  @mode = mode.to_sym
  fail(InvalidAddressingMode, mode) unless AddressingModes.has_key?(@mode)

  if definition[@mode].nil?
    fail(InvalidInstruction, "#{op} cannot be used in #{mode} mode")
  end

  @description, @flags = definition.values_at(:description, :flags)
  @hex, @length, @cycles, @boundry_add = definition[@mode].values_at(:hex, :len, :cycles, :boundry_add)
end

Instance Attribute Details

#addressObject (readonly)

Returns the value of attribute address.



9
10
11
# File 'lib/n65/instruction.rb', line 9

def address
  @address
end

#argObject (readonly)

Returns the value of attribute arg.



9
10
11
# File 'lib/n65/instruction.rb', line 9

def arg
  @arg
end

#boundry_addObject (readonly)

Returns the value of attribute boundry_add.



9
10
11
# File 'lib/n65/instruction.rb', line 9

def boundry_add
  @boundry_add
end

#cycleObject (readonly)

Returns the value of attribute cycle.



9
10
11
# File 'lib/n65/instruction.rb', line 9

def cycle
  @cycle
end

#descriptionObject (readonly)

Returns the value of attribute description.



9
10
11
# File 'lib/n65/instruction.rb', line 9

def description
  @description
end

#flagsObject (readonly)

Returns the value of attribute flags.



9
10
11
# File 'lib/n65/instruction.rb', line 9

def flags
  @flags
end

#hexObject (readonly)

Returns the value of attribute hex.



9
10
11
# File 'lib/n65/instruction.rb', line 9

def hex
  @hex
end

#lengthObject (readonly)

Returns the value of attribute length.



9
10
11
# File 'lib/n65/instruction.rb', line 9

def length
  @length
end

#modeObject (readonly)

Returns the value of attribute mode.



9
10
11
# File 'lib/n65/instruction.rb', line 9

def mode
  @mode
end

#opObject (readonly)

Returns the value of attribute op.



9
10
11
# File 'lib/n65/instruction.rb', line 9

def op
  @op
end

Class Method Details

.parse(line) ⇒ Object

Parse one line of assembly, returns nil if the line

is ultimately empty of asm instructions
Raises SyntaxError if the line is malformed in some way


110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# File 'lib/n65/instruction.rb', line 110

def self.parse(line)

  ##  Try to parse this line in each addressing mode
  AddressingModes.each do |mode, parse_info|

    ##  We have regexes that match each addressing mode
    match_data = parse_info[:regex].match(line)

    unless match_data.nil?
      ##  We must have a straight instruction without symbols, construct 
      ##  an Instruction from the match_data, and return it
      _, op, arg_hex, arg_bin = match_data.to_a

      ##  Until I think of something better, it seems that the union regex
      ##  puts a hexidecimal argument in one capture, and a binary in the next
      ##  This is annoying, but still not as annoying as using Treetop to parse
      if arg_hex != nil
        return Instruction.new(op, arg_hex.to_i(16), mode)
      elsif arg_bin != nil
        return Instruction.new(op, arg_bin.to_i(2), mode)
      else
        return Instruction.new(op, nil, mode)
      end

    else
      ##  Can this addressing mode even use labels?
      unless parse_info[:regex_label].nil?

        ##  See if it does in fact have a symbolic argument
        match_data = parse_info[:regex_label].match(line)

        unless match_data.nil?
          ##  We have found an assembly instruction containing a symbolic 
          ##  argument.  We can resolve this symbol later by looking at the
          ##  symbol table in the #exec method
          match_array = match_data.to_a

          ##  If we have a 4 element array, this means we matched something 
          ##  like LDA #<label, which is a legal immediate one byte value
          ##  by taking the msb.  We need to make that distinction in the
          ##  Instruction, by passing an extra argument
          if match_array.size == 4
            _, op, byte_selector, arg = match_array
            return Instruction.new(op, arg, mode, byte_selector.to_sym)
          else
            _, op, arg = match_array
            return Instruction.new(op, arg, mode)
          end
        end
      end
    end
  end

  ##  We just don't recognize this line of asm, it must be a Syntax Error
  fail(SyntaxError, line)
end

Instance Method Details

#apply_byte_selector(byte_selector, value) ⇒ Object

Apply a byte selector to an argument



243
244
245
246
247
248
249
250
251
# File 'lib/n65/instruction.rb', line 243

def apply_byte_selector(byte_selector, value)
  return value if byte_selector.nil?
  case byte_selector
  when :>
    high_byte(value)
  when :<
    low_byte(value)
  end
end

#emit_bytesObject

Emit bytes from asm structure



256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# File 'lib/n65/instruction.rb', line 256

def emit_bytes
  case @length
  when 1
    [@hex]
  when 2
    if zero_page_instruction? && @arg < 0 || @arg > 0xff
      fail(ArgumentTooLarge, "For #{@op} in #{@mode} mode, only 8-bit values are allowed")
    end
    [@hex, @arg]
  when 3
    [@hex] + break_16(@arg)
  else
    fail("Can't handle instructions > 3 bytes")
  end
end

#exec(assembler) ⇒ Object

Execute writes the emitted bytes to virtual memory, and updates PC

If there is a symbolic argument, we can try to resolve it now, or
promise to resolve it later.


208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# File 'lib/n65/instruction.rb', line 208

def exec(assembler)

  promise = assembler.with_saved_state do |saved_assembler|
    @arg = saved_assembler.symbol_table.resolve_symbol(@arg)

    ##  If the instruction uses a byte selector, we need to apply that.
    @arg = apply_byte_selector(@byte_selector, @arg)

    ##  If the instruction is relative we need to work out how far away it is
    @arg = @arg - saved_assembler.program_counter - 2 if @mode == :relative

    saved_assembler.write_memory(emit_bytes)
  end

  case @arg
  when Fixnum, NilClass
    assembler.write_memory(emit_bytes)
  when String
    begin
      ##  This is a bug, I don't believe it will ever get here.
      ##  I think it always resolves every symbol later.
      promise.call
    rescue SymbolTable::UndefinedSymbol
      placeholder = [@hex, 0xDE, 0xAD][0...@length]
      ##  I still have to write a placeholder instruction of the right
      ##  length.  The promise will come back and resolve the address.
      assembler.write_memory(placeholder)
      return promise
    end
  end
end

#to_sObject

Pretty Print



275
276
277
278
279
280
281
282
# File 'lib/n65/instruction.rb', line 275

def to_s
  #display = AddressingModes[@mode][:display]
  #if @arg.kind_of?(String)
    #sprintf("#{display} (#{@mode}, #{@arg})", @op, 0x0)
  #else
    #sprintf("#{display} (#{@mode})", @op, @arg)
  #end
end

#zero_page_instruction?Boolean

Return if this instruction is a zero page instruction

Returns:

  • (Boolean)


199
200
201
# File 'lib/n65/instruction.rb', line 199

def zero_page_instruction?
  [:zero_page, :zero_page_x, :zero_page_y].include?(@mode)
end