Module: Informers::Utils
- Defined in:
- lib/informers/utils/hub.rb,
lib/informers/utils/core.rb,
lib/informers/utils/math.rb,
lib/informers/utils/tensor.rb
Defined Under Namespace
Modules: Hub
Class Method Summary collapse
- .dispatch_callback(progress_callback, data) ⇒ Object
- .get_top_items(items, top_k = 0) ⇒ Object
- .max(arr) ⇒ Object
- .mean_pooling(last_hidden_state, attention_mask) ⇒ Object
- .normalize(result) ⇒ Object
- .sigmoid(arr) ⇒ Object
- .softmax(arr) ⇒ Object
Class Method Details
.dispatch_callback(progress_callback, data) ⇒ Object
3 4 5 |
# File 'lib/informers/utils/core.rb', line 3 def self.dispatch_callback(progress_callback, data) progress_callback.(data) if progress_callback end |
.get_top_items(items, top_k = 0) ⇒ Object
23 24 25 26 27 28 29 30 31 32 33 34 35 |
# File 'lib/informers/utils/math.rb', line 23 def self.get_top_items(items, top_k = 0) # if top == 0, return all items = items .map.with_index { |x, i| [i, x] } # Get indices ([index, score]) .sort_by { |v| -v[1] } # Sort by log probabilities if !top_k.nil? && top_k > 0 items = items.slice(0, top_k) # Get top k items end items end |
.max(arr) ⇒ Object
37 38 39 40 41 42 |
# File 'lib/informers/utils/math.rb', line 37 def self.max(arr) if arr.length == 0 raise Error, "Array must not be empty" end arr.map.with_index.max_by { |v, _| v } end |
.mean_pooling(last_hidden_state, attention_mask) ⇒ Object
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
# File 'lib/informers/utils/tensor.rb', line 3 def self.mean_pooling(last_hidden_state, attention_mask) last_hidden_state.zip(attention_mask).map do |state, mask| state[0].size.times.map do |k| sum = 0.0 count = 0 state.zip(mask) do |s, m| count += m sum += s[k] * m end sum / count end end end |
.normalize(result) ⇒ Object
19 20 21 22 23 24 |
# File 'lib/informers/utils/tensor.rb', line 19 def self.normalize(result) result.map do |row| norm = Math.sqrt(row.sum { |v| v * v }) row.map { |v| v / norm } end end |
.sigmoid(arr) ⇒ Object
19 20 21 |
# File 'lib/informers/utils/math.rb', line 19 def self.sigmoid(arr) arr.map { |v| 1 / (1 + Math.exp(-v)) } end |
.softmax(arr) ⇒ Object
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
# File 'lib/informers/utils/math.rb', line 3 def self.softmax(arr) # Compute the maximum value in the array max_val = arr.max # Compute the exponentials of the array values exps = arr.map { |x| Math.exp(x - max_val) } # Compute the sum of the exponentials sum_exps = exps.sum # Compute the softmax values softmax_arr = exps.map { |x| x / sum_exps } softmax_arr end |