Module: Informers
- Defined in:
- lib/informers.rb,
lib/informers/env.rb,
lib/informers/model.rb,
lib/informers/models.rb,
lib/informers/configs.rb,
lib/informers/version.rb,
lib/informers/pipelines.rb,
lib/informers/utils/hub.rb,
lib/informers/tokenizers.rb,
lib/informers/utils/core.rb,
lib/informers/utils/math.rb,
lib/informers/utils/tensor.rb
Defined Under Namespace
Modules: Utils Classes: AutoConfig, AutoModel, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoTokenizer, BertForSequenceClassification, BertForTokenClassification, BertModel, BertPreTrainedModel, BertTokenizer, DebertaV2Model, DebertaV2PreTrainedModel, DebertaV2Tokenizer, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertModel, DistilBertPreTrainedModel, DistilBertTokenizer, EmbeddingPipeline, Error, FeatureExtractionPipeline, MPNetModel, MPNetPreTrainedModel, MPNetTokenizer, Model, ModelOutput, NomicBertModel, NomicBertPreTrainedModel, Pipeline, PreTrainedModel, PreTrainedTokenizer, PretrainedConfig, PretrainedMixin, QuestionAnsweringModelOutput, QuestionAnsweringPipeline, RerankingPipeline, RobertaTokenizer, SequenceClassifierOutput, TextClassificationPipeline, Todo, TokenClassificationPipeline, TokenClassifierOutput, XLMRobertaForSequenceClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, XLMRobertaTokenizer
Constant Summary collapse
- CACHE_HOME =
ENV.fetch("XDG_CACHE_HOME", File.join(ENV.fetch("HOME"), ".cache"))
- DEFAULT_CACHE_DIR =
File.(File.join(CACHE_HOME, "informers"))
- MODEL_TYPES =
{ EncoderOnly: 0, EncoderDecoder: 1, Seq2Seq: 2, Vision2Seq: 3, DecoderOnly: 4, MaskGeneration: 5 }
- MODEL_TYPE_MAPPING =
NOTE: These will be populated fully later
{}
- MODEL_NAME_TO_CLASS_MAPPING =
{}
- MODEL_CLASS_TO_NAME_MAPPING =
{}
- MODEL_MAPPING_NAMES_ENCODER_ONLY =
{ "bert" => ["BertModel", BertModel], "nomic_bert" => ["NomicBertModel", NomicBertModel], "deberta-v2" => ["DebertaV2Model", DebertaV2Model], "mpnet" => ["MPNetModel", MPNetModel], "distilbert" => ["DistilBertModel", DistilBertModel], "xlm-roberta" => ["XLMRobertaModel", XLMRobertaModel] }
- MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES =
{ "bert" => ["BertForSequenceClassification", BertForSequenceClassification], "distilbert" => ["DistilBertForSequenceClassification", DistilBertForSequenceClassification], "xlm-roberta" => ["XLMRobertaForSequenceClassification", XLMRobertaForSequenceClassification] }
- MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES =
{ "bert" => ["BertForTokenClassification", BertForTokenClassification] }
- MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES =
{ "distilbert" => ["DistilBertForQuestionAnswering", DistilBertForQuestionAnswering] }
- MODEL_CLASS_TYPE_MAPPING =
[ [MODEL_MAPPING_NAMES_ENCODER_ONLY, MODEL_TYPES[:EncoderOnly]], [MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]], [MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]], [MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, MODEL_TYPES[:EncoderOnly]] ]
- VERSION =
"1.0.3"
- SUPPORTED_TASKS =
{ "text-classification" => { tokenizer: AutoTokenizer, pipeline: TextClassificationPipeline, model: AutoModelForSequenceClassification, default: { model: "Xenova/distilbert-base-uncased-finetuned-sst-2-english" }, type: "text" }, "token-classification" => { tokenizer: AutoTokenizer, pipeline: TokenClassificationPipeline, model: AutoModelForTokenClassification, default: { model: "Xenova/bert-base-multilingual-cased-ner-hrl" }, type: "text" }, "question-answering" => { tokenizer: AutoTokenizer, pipeline: QuestionAnsweringPipeline, model: AutoModelForQuestionAnswering, default: { model: "Xenova/distilbert-base-cased-distilled-squad" }, type: "text" }, "feature-extraction" => { tokenizer: AutoTokenizer, pipeline: FeatureExtractionPipeline, model: AutoModel, default: { model: "Xenova/all-MiniLM-L6-v2" }, type: "text" }, "embedding" => { tokenizer: AutoTokenizer, pipeline: EmbeddingPipeline, model: AutoModel, default: { model: "sentence-transformers/all-MiniLM-L6-v2" }, type: "text" }, "reranking" => { tokenizer: AutoTokenizer, pipeline: RerankingPipeline, model: AutoModel, default: { model: "mixedbread-ai/mxbai-rerank-base-v1" }, type: "text" } }
- TASK_ALIASES =
{ "sentiment-analysis" => "text-classification", "ner" => "token-classification" }
- DEFAULT_PROGRESS_CALLBACK =
lambda do |msg| stream = $stderr tty = stream.tty? width = tty ? stream.winsize[1] : 80 if msg[:status] == "progress" && tty stream.print "\r#{Utils::Hub.display_progress(msg[:file], width, msg[:size], msg[:total_size])}" elsif msg[:status] == "done" && !msg[:cache_hit] if tty stream.puts else stream.puts Utils::Hub.display_progress(msg[:file], width, 1, 1) end end end
- NO_DEFAULT =
Object.new
Class Attribute Summary collapse
-
.allow_remote_models ⇒ Object
Returns the value of attribute allow_remote_models.
-
.cache_dir ⇒ Object
Returns the value of attribute cache_dir.
-
.remote_host ⇒ Object
Returns the value of attribute remote_host.
-
.remote_path_template ⇒ Object
Returns the value of attribute remote_path_template.
Class Method Summary collapse
Class Attribute Details
.allow_remote_models ⇒ Object
Returns the value of attribute allow_remote_models.
6 7 8 |
# File 'lib/informers/env.rb', line 6 def allow_remote_models @allow_remote_models end |
.cache_dir ⇒ Object
Returns the value of attribute cache_dir.
6 7 8 |
# File 'lib/informers/env.rb', line 6 def cache_dir @cache_dir end |
.remote_host ⇒ Object
Returns the value of attribute remote_host.
6 7 8 |
# File 'lib/informers/env.rb', line 6 def remote_host @remote_host end |
.remote_path_template ⇒ Object
Returns the value of attribute remote_path_template.
6 7 8 |
# File 'lib/informers/env.rb', line 6 def remote_path_template @remote_path_template end |
Class Method Details
.pipeline(task, model = nil, quantized: NO_DEFAULT, progress_callback: DEFAULT_PROGRESS_CALLBACK, config: nil, cache_dir: nil, local_files_only: false, revision: "main", model_file_name: nil) ⇒ Object
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
# File 'lib/informers/pipelines.rb', line 431 def pipeline( task, model = nil, quantized: NO_DEFAULT, progress_callback: DEFAULT_PROGRESS_CALLBACK, config: nil, cache_dir: nil, local_files_only: false, revision: "main", model_file_name: nil ) if quantized == NO_DEFAULT # TODO move default to task class quantized = !["embedding", "reranking"].include?(task) end # Apply aliases task = TASK_ALIASES[task] || task # Get pipeline info pipeline_info = SUPPORTED_TASKS[task.split("_", 1)[0]] if !pipeline_info raise Error, "Unsupported pipeline: #{task}. Must be one of #{SUPPORTED_TASKS.keys}" end # Use model if specified, otherwise, use default if !model model = pipeline_info[:default][:model] warn "No model specified. Using default model: #{model.inspect}." end = { quantized:, progress_callback:, config:, cache_dir:, local_files_only:, revision:, model_file_name: } classes = { tokenizer: pipeline_info[:tokenizer], model: pipeline_info[:model], processor: pipeline_info[:processor] } # Load model, tokenizer, and processor (if they exist) results = load_items(classes, model, ) results[:task] = task if model == "sentence-transformers/all-MiniLM-L6-v2" results[:model].instance_variable_set(:@output_names, ["token_embeddings"]) end Utils.dispatch_callback(progress_callback, { status: "ready", task: task, model: model }) pipeline_class = pipeline_info.fetch(:pipeline) pipeline_class.new(**results) end |