Module: NumRu::GAnalysis::MetZ
- Defined in:
- lib/numru/ganalysis/met_z.rb
Overview
Meterological analysis regarding vertical section, integration, etc.
Class Method Summary collapse
-
.integrate_w_p_to_ps(v, pdim, ps, vs: nil, fact: nil, name: nil, long_name: nil) ⇒ Object
Integrate v with p to ps (where v==vs if vs is given).
-
.mass_strm_any(v, ps, w, wcoord, vs = nil, ws = nil) ⇒ Object
mass stream function on any vertical coordinate.
-
.mass_strm_p(v, ps, pcoord = nil, vs = nil) ⇒ Object
Derive the mass stream function in the pressure coordinate.
Class Method Details
.integrate_w_p_to_ps(v, pdim, ps, vs: nil, fact: nil, name: nil, long_name: nil) ⇒ Object
Integrate v with p to ps (where v==vs if vs is given)
Normally, p and ps are pressure, but they are actually arbitrary. The assumption here is that the ps is the upper cap of p, and the integration with p is from the smallest p up to ps. fact is a factor. E.g., 1/gravity to get mass-weighted integration through dp/g = -rho dz
ARGUMENT
-
v [GPhys] a multi-dimensional GPhys
-
pdim [Integer or String] The dimension of p
-
ps [GPhys] the capping value of p (~surface pressure); rank must be one smaller than v’s (no-missing data allowed)
-
vs [nil or GPhys] v at ps (shape must be ps’s); if nil, v is interpolated. (If vs==nil, no extrapolation is made when ps>p.max)
-
fact [nil or UNumeric or..] factor to be multiplied afterwords (e.g., 1/Met.g)
-
name [nil or String] name to be set
-
long_name [nil or String] long_name to be set
RETURN VALUE
-
a GPhys
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
# File 'lib/numru/ganalysis/met_z.rb', line 331 def integrate_w_p_to_ps(v, pdim, ps, vs: nil, fact: nil, name: nil, long_name: nil) pdim = v.dim_index(pdim) p = v.coord(pdim) if ps if p.units !~ ps.units raise("units mis-match #{p.units} vs #{ps.units}") end if p.units != ps.units p = p.convert_units(ps.units) end pv = p.val psv = ps.val if psv.is_a?(NArrayMiss) raise("data missing exists in ps") if psv.count_invalid != 0 psv = psv.to_na end else pv = p.val psv = NArray.float(1).fill!(pv.max) end vv = v.val if vv.is_a?(NArrayMiss) mask = vv.get_mask misval = 9.9692099683868690e+36 # near 15 * 2^119 (as nc fill val) vv = vv.to_na(misval) else mask = nil misval = nil end nzbound = nil if ps if pv[0] > pv[-1] # reverse the p coordinate to the increasing order pv = pv[-1..0] vv = vv[ *([true]*pdim + [-1..0,false]) ] end if vs vsv = vs.val if vsv.is_a?(NArrayMiss) raise("data missing exists in vs") if vsv.count_invalid != 0 vsv = vsv.to_na end else vsv = nil end vv, pv, nzbound = GPhys.c_cap_by_boundary(vv, pdim, pv, true, psv, vsv, misval) mask_e = NArray.byte(*vv.shape).fill!(1) # pdim has get longer by one mask_e[ *( [true]*pdim + [0..-2,false]) ] = mask mask = mask_e end psv = psv.newdim!(pdim) if ps for iidx in [0,20] sel = [iidx,50,true,0] vi = GPhys.c_cell_integ_irreg(vv, mask, pv, pdim, nzbound, psv, nil) end osh = v.shape.clone osh.delete_at(pdim) vi.reshape!(*osh) data = VArray.new(vi, v.data, v.name) data.units = v.units * p.units data = data * fact if fact data.name = name if name data.long_name = long_name if long_name grid = v.grid.delete_axes(pdim) grid.set_lost_axes( Array.new ) # reset GPhys.new(grid, data) end |
.mass_strm_any(v, ps, w, wcoord, vs = nil, ws = nil) ⇒ Object
mass stream function on any vertical coordinate
Similar to mass_strm_p, but it supports representation to have an arbitrary physical quantity, such as potential temperature, as the vertical coordinate (instead of pressure).
Applicable both to pressure- and sigma-coordinate input data
ARGUMENTS
-
v [GPhys] : meridional wind with a vertical dimension (p or sigma) It must have a latitudinal dimension too. Longitudinal and time dimensions are optional. If it has a longitudinal dimension, zonal mean is taken. The order of the dimensions is not restricted.
-
ps [GPhys] : surface pressure. Its must have the same grid as v but for the vertical dimension (ps.rank must be v.rank-1)
-
w [GPhys] : Grid-point values (at the same points as v) of the quantity used to represent the vertical coordinate. Its shape must be the same as that of v, as a matter of course.
-
wcoord [1D VArray] : Output vertical coordinate. It must have the same units as w.
-
vs [nil(default) or GPhys]: vs is not needed (neglected) when v has a sigma coordinate. It is an optional parameter to specify the surface values of v, when it is in the pressure coordinate. vs can be omitted (nil), even when v has a pressure coordinate; in that case, vs is set by interpolating v if ps is within the p range of v (e.g. when ps<=1000hPa), or it is naively extended (using the bottom values of v) if ps is out of the range (e.g. when ps>1000hPa). In other words, the current implementation assumes that v is available below the surface, as is customary for reanalysis data.
-
ws [nil(default) or GPhys]: same as vs but for the surface value of w.
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
# File 'lib/numru/ganalysis/met_z.rb', line 193 def mass_strm_any(v, ps, w, wcoord, vs=nil, ws=nil) pascal = Units["Pa"] grav = Met.g.to_f #< check > raise(ArgumentError,"v.shape != w.shape") if v.shape != w.shape raise(ArgumentError,"ps.rank != v.rank-1") if ps.rank != v.rank-1 raise(ArgumentError,"w.units !~wcoord.units") if w.units !~ wcoord.units #< preprare data > if zdim = Met.find_prs_d(v) # substitution, not comparison # has a pressure coordinate pcv = v.coord(zdim) # v's p coord pcv_val = pcv.val v_val = v.val # should be NArray or NArrayMiss v_val = v_val.to_na if v_val.is_a?(NArrayMiss) w_val = w.val # should be NArray or NArrayMiss w_val = w_val.to_na if w_val.is_a?(NArrayMiss) if pcv_val[0] > pcv_val[-1] # reverse the p coordinate to the increasing order pcv_val = pcv_val[-1..0] v_val = v_val[ *([true]*zdim + [-1..0,false]) ] w_val = w_val[ *([true]*zdim + [-1..0,false]) ] end pcv_val = pcv.units.convert2(pcv_val, pascal) if pcv.units!=pascal pcv_over_g = pcv_val / grav ps_val = ps.val ps_val = ps_val.to_na if ps_val.is_a?(NArrayMiss) ps_val = ps.units.convert2(ps_val, pascal) if ps.units!=pascal ps_over_g = ps_val / grav vs_val = vs && vs.val # nil (default) or vs.val (if vs is given) vs_val = vs_val.to_na if vs_val.is_a?(NArrayMiss) ws_val = ws && ws.val # nil (default) or ws.val (if ws is given) ws_val = ws_val.to_na if ws_val.is_a?(NArrayMiss) v_val, p_over_g, nzbound = GPhys.c_cap_by_boundary(v_val, zdim, pcv_over_g, true, ps_over_g, vs_val) w_val, p_over_g, nzbound = GPhys.c_cap_by_boundary(w_val, zdim, pcv_over_g, true, ps_over_g, ws_val) elsif zdim = SigmaCoord.find_sigma_d(v) # substitution, not comparison # has a sigma coordnate sig = v.coord(zdim) nz = sig.length nzbound = nil ps = ps.convert_units(pascal) if ps.units != pascal sig_val = sig.val v_val = v.val # should be NArray, not NArrayMiss (coz sigma) w_val = w.val p_over_g = SigmaCoord.sig_ps2p(ps.val/grav, sig_val, zdim) else raise ArgumentError, "v does not have a p or sigma coordinate." end #< cumulative vertical integration > wc_val = wcoord.val if wc_val[0] > wc_val[-1] # change it to the increasing order wc_val = wc_val[-1..0] wcoord = wcoord.copy.replace_val(wc_val) end rho_v_cum = GPhys.c_cum_integ_irreg(v_val, p_over_g, zdim, nzbound, wc_val, w_val) #< zonal mean & latitudinal factor > lam, phi, lond, latd = Planet.get_lambda_phi(v, false) if latd.nil? raise(ArgumentError, "v appears not having a latitudinal dimension") end if lond rho_v_cum = rho_v_cum.mean(lond) latd -= 1 if lond<latd end a_cos = NMath.cos(phi.val) * ( 2 * Math::PI * Planet.radius.to_f ) latd.times{a_cos.newdim!(0)} (rho_v_cum.rank - latd -1).times{a_cos.newdim!(-1)} mstrm_val = rho_v_cum * a_cos #< make a GPhys > axes = Array.new for d in 0...v.rank case d when lond # lost by zonal mean when zdim wax = Axis.new().set_pos(wcoord) axes.push(wax) else axes.push(v.axis(d).copy) # kept end end grid = Grid.new( *axes ) units = Units["kg.m-1"] # p/g*a : Pa / (m.s-2) * m = kg.m-1 units *= v.units mstrm_va = VArray.new(mstrm_val, {"long_name"=>"mass stream function", "units"=>units.to_s}, "mstrm") mstrm = GPhys.new(grid, mstrm_va) mstrm end |
.mass_strm_p(v, ps, pcoord = nil, vs = nil) ⇒ Object
Derive the mass stream function in the pressure coordinate
Applicable both to pressure- and sigma-coordinate input data (the output is always on the pressure coordinate).
ARGUMENTS
-
v [GPhys] : meridional wind with a vertical dimension (p or sigma) It must have a latitudinal dimension too. Longitudinal and time dimensions are optional. If it has a longitudinal dimension, zonal mean is taken. The order of the dimensions is not restricted.
-
ps [GPhys] : surface pressure. Its must have the same grid as v but for the vertical dimension (ps.rank must be v.rank-1)
-
pcoord [1D VArray](optional) : output vertical coordinate (set if nil)
-
vs [nil(default) or GPhys]: vs is not needed (neglected) when v has a sigma coordinate. It is an optional parameter to specify the surface values of v, when it is in the pressure coordinate. vs can be omitted (nil), even when v has a pressure coordinate; in that case, vs is set by interpolating v if ps is within the p range of v (e.g. when ps<=1000hPa), or it is naively extended (using the bottom values of v) if ps is out of the range (e.g. when ps>1000hPa). In other words, the current implementation assumes that v is available below the surface, as is customary for reanalysis data.
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# File 'lib/numru/ganalysis/met_z.rb', line 36 def mass_strm_p(v, ps, pcoord=nil, vs=nil) pascal = Units["Pa"] grav = Met.g.to_f #< consolidate the p or sigma coordinate input > if zdim = Met.find_prs_d(v) # substitution, not comparison # has a pressure coordinate pcv = v.coord(zdim) # pcv is v's p coord, not pcoord from outside. # This is used only to feed c_cap_by_boundary. pcoord = pcv.copy if pcoord.nil? # if not given from outside, use pcv pcv_val = pcv.val v_val = v.val # should be NArray or NArrayMiss if v_val.is_a?(NArrayMiss) misval = 9.9692099683868690e+36 v_val = v_val.to_na(misval) else misval = nil end if pcv_val[0] > pcv_val[-1] # reverse the p coordinate to the increasing order pcv_val = pcv_val[-1..0] v_val = v_val[ *([true]*zdim + [-1..0,false]) ] end pcv_val = pcv.units.convert2(pcv_val, pascal) if pcv.units!=pascal pcv_over_g = pcv_val / grav ps_val = ps.val ps_val = ps_val.to_na if ps_val.is_a?(NArrayMiss) ps_val = ps.units.convert2(ps_val, pascal) if ps.units!=pascal ps_over_g = ps_val / grav vs_val = vs && vs.val # nil (default) or vs.val (if vs is given) vs_val = vs_val.to_na if vs_val.is_a?(NArrayMiss) v_val, p_over_g, nzbound = GPhys.c_cap_by_boundary(v_val, zdim, pcv_over_g, true, ps_over_g, vs_val, misval) elsif zdim = SigmaCoord.find_sigma_d(v) # substitution, not comparison # has a sigma coordnate sig = v.coord(zdim) unless pcoord pcoord = sig * 1000 pcoord.units = "hPa" pcoord.name = "p" pcoord.long_name = "pressure" pcoord.put_att("standard_name","air_pressure") pcoord.put_att("positive","down") end nz = sig.length nzbound = nil ps = ps.convert_units(pascal) if ps.units != pascal sig_val = sig.val v_val = v.val # should be NArray, not NArrayMiss (coz sigma) if v_val.is_a?(NArrayMiss) v_val = v_val.to_na mask = v_val.get_mask else mask = nil end p_over_g = SigmaCoord.sig_ps2p(ps.val/grav, sig_val, zdim) else raise ArgumentError, "v does not have a p or sigma coordinate." end #< cumulative vertical integration > pc_val = pcoord.val if pc_val[0] > pc_val[-1] # change it to the increasing order pc_val = pc_val[-1..0] pcoord = pcoord.copy.replace_val(pc_val) end pc_val = pcoord.units.convert2(pc_val,pascal) pc_over_g = pc_val / grav rho_v_cum = GPhys.c_cum_integ_irreg(v_val, mask, p_over_g, zdim, nzbound, pc_over_g, nil) #< zonal mean & latitudinal factor > lam, phi, lond, latd = Planet.get_lambda_phi(v, false) if latd.nil? raise(ArgumentError, "v appears not having a latitudinal dimension") end if lond rho_v_cum = rho_v_cum.mean(lond) latd -= 1 if lond<latd end a_cos = NMath.cos(phi.val) * ( 2 * Math::PI * Planet.radius.to_f ) latd.times{a_cos.newdim!(0)} (rho_v_cum.rank - latd -1).times{a_cos.newdim!(-1)} mstrm_val = rho_v_cum * a_cos #< make a GPhys > axes = Array.new for d in 0...v.rank case d when lond # lost by zonal mean when zdim pax = Axis.new().set_pos(pcoord) axes.push(pax) else axes.push(v.axis(d).copy) # kept end end grid = Grid.new( *axes ) units = Units["kg.m-1"] # p/g*a : Pa / (m.s-2) * m = kg.m-1 units *= v.units mstrm_va = VArray.new(mstrm_val, {"long_name"=>"mass stream function", "units"=>units.to_s}, "mstrm") mstrm = GPhys.new(grid, mstrm_va) mstrm end |