Class: BigDecimal
- Inherits:
-
Numeric
- Object
- Numeric
- BigDecimal
- Defined in:
- ext/bigdecimal/bigdecimal.c,
lib/bigdecimal.rb,
lib/bigdecimal.rb,
lib/bigdecimal/util.rb,
ext/bigdecimal/bigdecimal.c
Overview
BigDecimal provides arbitrary-precision floating point decimal arithmetic.
Introduction
Ruby provides built-in support for arbitrary precision integer arithmetic.
For example:
42**13 #=> 1265437718438866624512
BigDecimal provides similar support for very large or very accurate floating point numbers.
Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2.
For example, try:
sum = 0
10_000.times do
sum = sum + 0.0001
end
print sum #=> 0.9999999999999062
and contrast with the output from:
require 'bigdecimal'
sum = BigDecimal("0")
10_000.times do
sum = sum + BigDecimal("0.0001")
end
print sum #=> 0.1E1
Similarly:
(BigDecimal(“1.2”) - BigDecimal(“1.0”)) == BigDecimal(“0.2”) #=> true
(1.2 - 1.0) == 0.2 #=> false
A Note About Precision
For a calculation using a BigDecimal and another value, the precision of the result depends on the type of value:
-
If
valueis a Float, the precision is Float::DIG + 1. -
If
valueis a Rational, the precision is larger than Float::DIG + 1. -
If
valueis a BigDecimal, the precision isvalue‘s precision in the internal representation, which is platform-dependent. -
If
valueis other object, the precision is determined by the result of BigDecimal(value).
Special features of accurate decimal arithmetic
Because BigDecimal is more accurate than normal binary floating point arithmetic, it requires some special values.
Infinity
BigDecimal sometimes needs to return infinity, for example if you divide a value by zero.
BigDecimal(“1.0”) / BigDecimal(“0.0”) #=> Infinity BigDecimal(“-1.0”) / BigDecimal(“0.0”) #=> -Infinity
You can represent infinite numbers to BigDecimal using the strings 'Infinity', '+Infinity' and '-Infinity' (case-sensitive)
Not a Number
When a computation results in an undefined value, the special value NaN (for ‘not a number’) is returned.
Example:
BigDecimal(“0.0”) / BigDecimal(“0.0”) #=> NaN
You can also create undefined values.
NaN is never considered to be the same as any other value, even NaN itself:
n = BigDecimal(‘NaN’) n == 0.0 #=> false n == n #=> false
Positive and negative zero
If a computation results in a value which is too small to be represented as a BigDecimal within the currently specified limits of precision, zero must be returned.
If the value which is too small to be represented is negative, a BigDecimal value of negative zero is returned.
BigDecimal(“1.0”) / BigDecimal(“-Infinity”) #=> -0.0
If the value is positive, a value of positive zero is returned.
BigDecimal(“1.0”) / BigDecimal(“Infinity”) #=> 0.0
(See BigDecimal.mode for how to specify limits of precision.)
Note that -0.0 and 0.0 are considered to be the same for the purposes of comparison.
Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.
bigdecimal/util
When you require bigdecimal/util, the #to_d method will be available on BigDecimal and the native Integer, Float, Rational, String, Complex, and NilClass classes:
require ‘bigdecimal/util’
42.to_d # => 0.42e2
0.5.to_d # => 0.5e0
(2/3r).to_d(3) # => 0.667e0
"0.5".to_d # => 0.5e0
Complex(0.1234567, 0).to_d(4) # => 0.1235e0
nil.to_d # => 0.0
Methods for Working with JSON
-
::json_create: Returns a new BigDecimal object constructed from the given object.
-
#as_json: Returns a 2-element hash representing
self. -
#to_json: Returns a JSON string representing
self.
These methods are provided by the JSON gem. To make these methods available:
require 'json/add/bigdecimal'
-
License
Copyright © 2002 by Shigeo Kobayashi <[email protected]>.
BigDecimal is released under the Ruby and 2-clause BSD licenses. See LICENSE.txt for details.
Maintained by mrkn <[email protected]> and ruby-core members.
Documented by zzak <[email protected]>, mathew <[email protected]>, and many other contributors.
Defined Under Namespace
Modules: Internal
Constant Summary collapse
- VERSION =
The version of bigdecimal library
rb_str_new2(BIGDECIMAL_VERSION)
- BASE =
Base value used in internal calculations. On a 32 bit system, BASE is 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn’t fit in 32 bits, so you couldn’t guarantee that two groups could always be multiplied together without overflow.)
INT2FIX((SIGNED_VALUE)BASE)
- EXCEPTION_ALL =
Determines whether overflow, underflow or zero divide result in an exception being thrown. See BigDecimal.mode.
0xff- EXCEPTION_NaN =
Determines what happens when the result of a computation is not a number (NaN). See BigDecimal.mode.
0x02- EXCEPTION_INFINITY =
Determines what happens when the result of a computation is infinity. See BigDecimal.mode.
0x01- EXCEPTION_UNDERFLOW =
Determines what happens when the result of a computation is an underflow (a result too small to be represented). See BigDecimal.mode.
0x04- EXCEPTION_OVERFLOW =
Determines what happens when the result of a computation is an overflow (a result too large to be represented). See BigDecimal.mode.
0x01- EXCEPTION_ZERODIVIDE =
Determines what happens when a division by zero is performed. See BigDecimal.mode.
0x10- ROUND_MODE =
Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See BigDecimal.mode.
0x100- ROUND_UP =
Indicates that values should be rounded away from zero. See BigDecimal.mode.
1- ROUND_DOWN =
Indicates that values should be rounded towards zero. See BigDecimal.mode.
2- ROUND_HALF_UP =
Indicates that digits >= 5 should be rounded up, others rounded down. See BigDecimal.mode.
3- ROUND_HALF_DOWN =
Indicates that digits >= 6 should be rounded up, others rounded down. See BigDecimal.mode.
4- ROUND_CEILING =
Round towards +Infinity. See BigDecimal.mode.
5- ROUND_FLOOR =
Round towards -Infinity. See BigDecimal.mode.
6- ROUND_HALF_EVEN =
Round towards the even neighbor. See BigDecimal.mode.
7- SIGN_NaN =
Indicates that a value is not a number. See BigDecimal.sign.
0- SIGN_POSITIVE_ZERO =
Indicates that a value is +0. See BigDecimal.sign.
1- SIGN_NEGATIVE_ZERO =
Indicates that a value is -0. See BigDecimal.sign.
-1
- SIGN_POSITIVE_FINITE =
Indicates that a value is positive and finite. See BigDecimal.sign.
2- SIGN_NEGATIVE_FINITE =
Indicates that a value is negative and finite. See BigDecimal.sign.
-2
- SIGN_POSITIVE_INFINITE =
Indicates that a value is positive and infinite. See BigDecimal.sign.
3- SIGN_NEGATIVE_INFINITE =
Indicates that a value is negative and infinite. See BigDecimal.sign.
-3
- INFINITY =
BigDecimal@Infinity] value.
Positive infinity[rdoc-ref
- NAN =
BigDecimal@Not+a+Number]‘ value.
'{Not a Number}[rdoc-ref
Class Method Summary collapse
-
._load(str) ⇒ Object
Internal method used to provide marshalling support.
- .double_fig ⇒ Object
-
.interpret_loosely(string) ⇒ Object
Returns the
BigDecimalconverted loosely fromstring. -
.limit(digits) ⇒ Object
Limit the number of significant digits in newly created BigDecimal numbers to the specified value.
-
.mode(mode, setting = nil) ⇒ Integer
Returns an integer representing the mode settings for exception handling and rounding.
-
.save_exception_mode { ... } ⇒ Object
Execute the provided block, but preserve the exception mode.
-
.save_limit { ... } ⇒ Object
Execute the provided block, but preserve the precision limit.
-
.save_rounding_mode { ... } ⇒ Object
Execute the provided block, but preserve the rounding mode.
Instance Method Summary collapse
-
#% ⇒ Object
%: a%b = a - (a.to_f/b).floor * b.
-
#*(b) ⇒ Object
Multiply by the specified value.
-
#**(y) ⇒ Object
call-seq: self ** other -> bigdecimal.
-
#+(value) ⇒ Object
Returns the BigDecimal sum of
selfandvalue:. -
#+ ⇒ self
Returns
self:. -
#-(value) ⇒ Object
Returns the BigDecimal difference of
selfandvalue:. -
#- ⇒ Object
Returns the BigDecimal negation of self:.
-
#/ ⇒ Object
For c = self/r: with round operation.
-
#<(other) ⇒ Boolean
Returns
trueifselfis less thanother,falseotherwise:. -
#<=(other) ⇒ Boolean
Returns
trueifselfis less or equal to thanother,falseotherwise:. -
#<=>(r) ⇒ Object
The comparison operator.
-
#==(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
-
#===(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
-
#>(other) ⇒ Boolean
Returns
trueifselfis greater thanother,falseotherwise:. -
#>=(other) ⇒ Boolean
Returns
trueifselfis greater than or equal toother,falseotherwise:. -
#_decimal_shift(v) ⇒ Object
Returns self * 10**v without changing the precision.
-
#_dump ⇒ String
Returns a string representing the marshalling of
self. -
#abs ⇒ Object
Returns the BigDecimal absolute value of
self:. -
#add(value, ndigits) ⇒ Object
Returns the BigDecimal sum of
selfandvaluewith a precision ofndigitsdecimal digits. -
#ceil(n) ⇒ Object
Return the smallest integer greater than or equal to the value, as a BigDecimal.
-
#clone ⇒ Object
:nodoc:.
-
#coerce(other) ⇒ Object
The coerce method provides support for Ruby type coercion.
-
#div(*args) ⇒ Object
call-seq: div(value) -> integer div(value, digits) -> bigdecimal or integer.
-
#divmod(value) ⇒ Object
Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers.
-
#dup ⇒ Object
:nodoc:.
-
#eql?(r) ⇒ Boolean
Tests for value equality; returns true if the values are equal.
-
#exponent ⇒ Object
Returns the exponent of the BigDecimal number, as an Integer.
-
#finite? ⇒ Boolean
Returns True if the value is finite (not NaN or infinite).
-
#fix ⇒ Object
Return the integer part of the number, as a BigDecimal.
-
#floor(n) ⇒ Object
Return the largest integer less than or equal to the value, as a BigDecimal.
-
#frac ⇒ Object
Return the fractional part of the number, as a BigDecimal.
-
#hash ⇒ Integer
Returns the integer hash value for
self. -
#infinite? ⇒ Boolean
Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.
-
#inspect ⇒ Object
Returns a string representation of self.
-
#modulo ⇒ Object
%: a%b = a - (a.to_f/b).floor * b.
-
#mult(other, ndigits) ⇒ Object
Returns the BigDecimal product of
selfandvaluewith a precision ofndigitsdecimal digits. -
#n_significant_digits ⇒ Integer
Returns the number of decimal significant digits in
self. -
#nan? ⇒ Boolean
Returns True if the value is Not a Number.
-
#nonzero? ⇒ Boolean
Returns self if the value is non-zero, nil otherwise.
-
#power(y, prec = 0) ⇒ Object
call-seq: power(n) power(n, prec).
-
#precision ⇒ Integer
Returns the number of decimal digits in
self:. -
#precision_scale ⇒ Array
Returns a 2-length array; the first item is the result of BigDecimal#precision and the second one is of BigDecimal#scale.
-
#quo(*args) ⇒ Object
Divide by the specified value.
-
#remainder ⇒ Object
remainder.
-
#round(n, mode) ⇒ Object
Round to the nearest integer (by default), returning the result as a BigDecimal if n is specified and positive, or as an Integer if it isn’t.
-
#scale ⇒ Integer
Returns the number of decimal digits following the decimal digits in
self. -
#sign ⇒ Object
Returns the sign of the value.
-
#split ⇒ Object
Splits a BigDecimal number into four parts, returned as an array of values.
-
#sqrt(prec) ⇒ Object
Returns the square root of the value.
-
#sub(value, digits) ⇒ Object
Subtract the specified value.
-
#to_d ⇒ Object
call-seq: a.to_d -> bigdecimal.
-
#to_digits ⇒ Object
call-seq: a.to_digits -> string.
-
#to_f ⇒ Object
Returns a new Float object having approximately the same value as the BigDecimal number.
-
#to_i ⇒ Object
Returns the value as an Integer.
-
#to_int ⇒ Object
Returns the value as an Integer.
-
#to_r ⇒ Object
Converts a BigDecimal to a Rational.
-
#to_s(s) ⇒ Object
Converts the value to a string.
-
#truncate(n) ⇒ Object
Truncate to the nearest integer (by default), returning the result as a BigDecimal.
- #vpdivd(r, cprec) ⇒ Object
- #vpmult(v) ⇒ Object
-
#zero? ⇒ Boolean
Returns True if the value is zero.
Class Method Details
._load(str) ⇒ Object
Internal method used to provide marshalling support. See the Marshal module.
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 |
# File 'ext/bigdecimal/bigdecimal.c', line 691
static VALUE
BigDecimal_load(VALUE self, VALUE str)
{
BDVALUE v;
unsigned char *pch;
unsigned char ch;
pch = (unsigned char *)StringValueCStr(str);
/* First skip max prec. Don't trust the value. */
while((*pch) != (unsigned char)'\0' && (ch = *pch++) != (unsigned char)':') {
if(!ISDIGIT(ch)) {
rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string");
}
}
v = bdvalue_nonnullable(CreateFromString((char *)pch, self, true, true));
return CheckGetValue(v);
}
|
.double_fig ⇒ Object
.interpret_loosely(string) ⇒ Object
Returns the BigDecimal converted loosely from string.
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 |
# File 'ext/bigdecimal/bigdecimal.c', line 3030
static VALUE
BigDecimal_s_interpret_loosely(VALUE klass, VALUE str)
{
char const *c_str = StringValueCStr(str);
NULLABLE_BDVALUE v = CreateFromString(c_str, klass, false, true);
if (v.bigdecimal_or_nil == Qnil)
return Qnil;
else
return CheckGetValue(bdvalue_nonnullable(v));
}
|
.limit(digits) ⇒ Object
Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by BigDecimal.mode.
A limit of 0, the default, means no upper limit.
The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 |
# File 'ext/bigdecimal/bigdecimal.c', line 3054
static VALUE
BigDecimal_limit(int argc, VALUE *argv, VALUE self)
{
VALUE nFig;
VALUE nCur = SIZET2NUM(VpGetPrecLimit());
if (rb_scan_args(argc, argv, "01", &nFig) == 1) {
int nf;
if (NIL_P(nFig)) return nCur;
nf = NUM2INT(nFig);
if (nf < 0) {
rb_raise(rb_eArgError, "argument must be positive");
}
VpSetPrecLimit(nf);
}
return nCur;
}
|
.mode(mode, setting = nil) ⇒ Integer
Returns an integer representing the mode settings for exception handling and rounding.
These modes control exception handling:
-
BigDecimal::EXCEPTION_NaN.
-
BigDecimal::EXCEPTION_INFINITY.
-
BigDecimal::EXCEPTION_UNDERFLOW.
-
BigDecimal::EXCEPTION_OVERFLOW.
-
BigDecimal::EXCEPTION_ZERODIVIDE.
-
BigDecimal::EXCEPTION_ALL.
Values for setting for exception handling:
-
true: sets the givenmodetotrue. -
false: sets the givenmodetofalse. -
nil: does not modify the mode settings.
You can use method BigDecimal.save_exception_mode to temporarily change, and then automatically restore, exception modes.
For clarity, some examples below begin by setting all exception modes to false.
This mode controls the way rounding is to be performed:
-
BigDecimal::ROUND_MODE
You can use method BigDecimal.save_rounding_mode to temporarily change, and then automatically restore, the rounding mode.
NaNs
Mode BigDecimal::EXCEPTION_NaN controls behavior when a BigDecimal NaN is created.
Settings:
-
false(default): ReturnsBigDecimal('NaN'). -
true: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
BigDecimal('NaN') # => NaN
BigDecimal.mode(BigDecimal::EXCEPTION_NaN, true) # => 2
BigDecimal('NaN') # Raises FloatDomainError
Infinities
Mode BigDecimal::EXCEPTION_INFINITY controls behavior when a BigDecimal Infinity or -Infinity is created. Settings:
-
false(default): ReturnsBigDecimal('Infinity')orBigDecimal('-Infinity'). -
true: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
BigDecimal('Infinity') # => Infinity
BigDecimal('-Infinity') # => -Infinity
BigDecimal.mode(BigDecimal::EXCEPTION_INFINITY, true) # => 1
BigDecimal('Infinity') # Raises FloatDomainError
BigDecimal('-Infinity') # Raises FloatDomainError
Underflow
Mode BigDecimal::EXCEPTION_UNDERFLOW controls behavior when a BigDecimal underflow occurs. Settings:
-
false(default): ReturnsBigDecimal('0')orBigDecimal('-Infinity'). -
true: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
def flow_under
x = BigDecimal('0.1')
100.times { x *= x }
end
flow_under # => 100
BigDecimal.mode(BigDecimal::EXCEPTION_UNDERFLOW, true) # => 4
flow_under # Raises FloatDomainError
Overflow
Mode BigDecimal::EXCEPTION_OVERFLOW controls behavior when a BigDecimal overflow occurs. Settings:
-
false(default): ReturnsBigDecimal('Infinity')orBigDecimal('-Infinity'). -
true: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
def flow_over
x = BigDecimal('10')
100.times { x *= x }
end
flow_over # => 100
BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, true) # => 1
flow_over # Raises FloatDomainError
Zero Division
Mode BigDecimal::EXCEPTION_ZERODIVIDE controls behavior when a zero-division occurs. Settings:
-
false(default): ReturnsBigDecimal('Infinity')orBigDecimal('-Infinity'). -
true: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
one = BigDecimal('1')
zero = BigDecimal('0')
one / zero # => Infinity
BigDecimal.mode(BigDecimal::EXCEPTION_ZERODIVIDE, true) # => 16
one / zero # Raises FloatDomainError
All Exceptions
Mode BigDecimal::EXCEPTION_ALL controls all of the above:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, true) # => 23
Rounding
Mode BigDecimal::ROUND_MODE controls the way rounding is to be performed; its setting values are:
-
ROUND_UP: Round away from zero. Aliased as:up. -
ROUND_DOWN: Round toward zero. Aliased as:downand:truncate. -
ROUND_HALF_UP: Round toward the nearest neighbor; if the neighbors are equidistant, round away from zero. Aliased as:half_upand:default. -
ROUND_HALF_DOWN: Round toward the nearest neighbor; if the neighbors are equidistant, round toward zero. Aliased as:half_down. -
ROUND_HALF_EVEN(Banker’s rounding): Round toward the nearest neighbor; if the neighbors are equidistant, round toward the even neighbor. Aliased as:half_evenand:banker. -
ROUND_CEILING: Round toward positive infinity. Aliased as:ceilingand:ceil. -
ROUND_FLOOR: Round toward negative infinity. Aliased as:floor:.
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 |
# File 'ext/bigdecimal/bigdecimal.c', line 943
static VALUE
BigDecimal_mode(int argc, VALUE *argv, VALUE self)
{
VALUE which;
VALUE val;
unsigned long f,fo;
rb_scan_args(argc, argv, "11", &which, &val);
f = (unsigned long)NUM2INT(which);
if (f & VP_EXCEPTION_ALL) {
/* Exception mode setting */
fo = VpGetException();
if (val == Qnil) return INT2FIX(fo);
if (val != Qfalse && val!=Qtrue) {
rb_raise(rb_eArgError, "second argument must be true or false");
return Qnil; /* Not reached */
}
if (f & VP_EXCEPTION_INFINITY) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_INFINITY) :
(fo & (~VP_EXCEPTION_INFINITY))));
}
fo = VpGetException();
if (f & VP_EXCEPTION_NaN) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_NaN) :
(fo & (~VP_EXCEPTION_NaN))));
}
fo = VpGetException();
if (f & VP_EXCEPTION_UNDERFLOW) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_UNDERFLOW) :
(fo & (~VP_EXCEPTION_UNDERFLOW))));
}
fo = VpGetException();
if(f & VP_EXCEPTION_ZERODIVIDE) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_ZERODIVIDE) :
(fo & (~VP_EXCEPTION_ZERODIVIDE))));
}
fo = VpGetException();
return INT2FIX(fo);
}
if (VP_ROUND_MODE == f) {
/* Rounding mode setting */
unsigned short sw;
fo = VpGetRoundMode();
if (NIL_P(val)) return INT2FIX(fo);
sw = check_rounding_mode(val);
fo = VpSetRoundMode(sw);
return INT2FIX(fo);
}
rb_raise(rb_eTypeError, "first argument for BigDecimal.mode invalid");
return Qnil;
}
|
.save_exception_mode { ... } ⇒ Object
Execute the provided block, but preserve the exception mode
BigDecimal.save_exception_mode do
BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)
BigDecimal(BigDecimal('Infinity'))
BigDecimal(BigDecimal('-Infinity'))
BigDecimal(BigDecimal('NaN'))
end
For use with the BigDecimal::EXCEPTION_*
See BigDecimal.mode
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 |
# File 'ext/bigdecimal/bigdecimal.c', line 3115
static VALUE
BigDecimal_save_exception_mode(VALUE self)
{
unsigned short const exception_mode = VpGetException();
int state;
VALUE ret = rb_protect(rb_yield, Qnil, &state);
VpSetException(exception_mode);
if (state) rb_jump_tag(state);
return ret;
}
|
.save_limit { ... } ⇒ Object
Execute the provided block, but preserve the precision limit
BigDecimal.limit(100)
puts BigDecimal.limit
BigDecimal.save_limit do
BigDecimal.limit(200)
puts BigDecimal.limit
end
puts BigDecimal.limit
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 |
# File 'ext/bigdecimal/bigdecimal.c', line 3165
static VALUE
BigDecimal_save_limit(VALUE self)
{
size_t const limit = VpGetPrecLimit();
int state;
VALUE ret = rb_protect(rb_yield, Qnil, &state);
VpSetPrecLimit(limit);
if (state) rb_jump_tag(state);
return ret;
}
|
.save_rounding_mode { ... } ⇒ Object
Execute the provided block, but preserve the rounding mode
BigDecimal.save_rounding_mode do
BigDecimal.mode(BigDecimal::ROUND_MODE, :up)
puts BigDecimal.mode(BigDecimal::ROUND_MODE)
end
For use with the BigDecimal::ROUND_*
See BigDecimal.mode
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 |
# File 'ext/bigdecimal/bigdecimal.c', line 3140
static VALUE
BigDecimal_save_rounding_mode(VALUE self)
{
unsigned short const round_mode = VpGetRoundMode();
int state;
VALUE ret = rb_protect(rb_yield, Qnil, &state);
VpSetRoundMode(round_mode);
if (state) rb_jump_tag(state);
return ret;
}
|
Instance Method Details
#% ⇒ Object
%: a%b = a - (a.to_f/b).floor * b
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 |
# File 'ext/bigdecimal/bigdecimal.c', line 1782
static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
NULLABLE_BDVALUE div, mod;
if (BigDecimal_DoDivmod(self, r, &div, &mod, false)) {
return CheckGetValue(bdvalue_nonnullable(mod));
}
return DoSomeOne(self, r, '%');
}
|
#*(b) ⇒ Object
Multiply by the specified value.
The result precision will be the precision of the sum of each precision.
See BigDecimal#mult.
1576 1577 1578 1579 1580 1581 |
# File 'ext/bigdecimal/bigdecimal.c', line 1576
static VALUE
BigDecimal_mult(VALUE self, VALUE r)
{
if (!is_coerceable_to_BigDecimal(r)) return DoSomeOne(self, r, '*');
return BigDecimal_mult_with_coerce(self, r, 0);
}
|
#**(y) ⇒ Object
call-seq:
self ** other -> bigdecimal
Returns the \BigDecimal value of +self+ raised to power +other+:
b = BigDecimal('3.14')
b ** 2 # => 0.98596e1
b ** 2.0 # => 0.98596e1
b ** Rational(2, 1) # => 0.98596e1
Related: BigDecimal#power.
77 78 79 80 81 82 83 84 85 86 87 |
# File 'lib/bigdecimal.rb', line 77 def **(y) case y when BigDecimal, Integer, Float, Rational power(y) when nil raise TypeError, 'wrong argument type NilClass' else x, y = y.coerce(self) x**y end end |
#+(value) ⇒ Object
Returns the BigDecimal sum of self and value:
b = BigDecimal('111111.111') # => 0.111111111e6
b + 2 # => 0.111113111e6
b + 2.0 # => 0.111113111e6
b + Rational(2, 1) # => 0.111113111e6
b + Complex(2, 0) # => (0.111113111e6+0i)
See the Note About Precision.
1284 1285 1286 1287 1288 1289 |
# File 'ext/bigdecimal/bigdecimal.c', line 1284
static VALUE
BigDecimal_add(VALUE self, VALUE r)
{
if (!is_coerceable_to_BigDecimal(r)) return DoSomeOne(self, r, '+');
return BigDecimal_addsub_with_coerce(self, r, 0, +1);
}
|
#+ ⇒ self
Returns self:
+BigDecimal(5) # => 0.5e1
+BigDecimal(-5) # => -0.5e1
1253 1254 1255 1256 1257 |
# File 'ext/bigdecimal/bigdecimal.c', line 1253
static VALUE
BigDecimal_uplus(VALUE self)
{
return self;
}
|
#-(value) ⇒ Object
Returns the BigDecimal difference of self and value:
b = BigDecimal('333333.333') # => 0.333333333e6
b - 2 # => 0.333331333e6
b - 2.0 # => 0.333331333e6
b - Rational(2, 1) # => 0.333331333e6
b - Complex(2, 0) # => (0.333331333e6+0i)
See the Note About Precision.
1338 1339 1340 1341 1342 1343 |
# File 'ext/bigdecimal/bigdecimal.c', line 1338
static VALUE
BigDecimal_sub(VALUE self, VALUE r)
{
if (!is_coerceable_to_BigDecimal(r)) return DoSomeOne(self, r, '-');
return BigDecimal_addsub_with_coerce(self, r, 0, -1);
}
|
#- ⇒ Object
Returns the BigDecimal negation of self:
b0 = BigDecimal('1.5')
b1 = -b0 # => -0.15e1
b2 = -b1 # => 0.15e1
1556 1557 1558 1559 1560 1561 1562 1563 1564 |
# File 'ext/bigdecimal/bigdecimal.c', line 1556
static VALUE
BigDecimal_neg(VALUE self)
{
BDVALUE a = GetBDValueMust(self);
BDVALUE c = NewZeroWrap(1, a.real->Prec * BASE_FIG);
VpAsgn(c.real, a.real, -10);
RB_GC_GUARD(a.bigdecimal);
return CheckGetValue(c);
}
|
#/ ⇒ Object
For c = self/r: with round operation
1618 1619 1620 1621 1622 1623 1624 |
# File 'ext/bigdecimal/bigdecimal.c', line 1618
static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
if (!is_coerceable_to_BigDecimal(r)) return DoSomeOne(self, r, '/');
return BigDecimal_div2(self, r, INT2FIX(0));
}
|
#<(other) ⇒ Boolean
Returns true if self is less than other, false otherwise:
b = BigDecimal('1.5') # => 0.15e1
b < 2 # => true
b < 2.0 # => true
b < Rational(2, 1) # => true
b < 1.5 # => false
Raises an exception if the comparison cannot be made.
1476 1477 1478 1479 1480 |
# File 'ext/bigdecimal/bigdecimal.c', line 1476
static VALUE
BigDecimal_lt(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '<');
}
|
#<=(other) ⇒ Boolean
Returns true if self is less or equal to than other, false otherwise:
b = BigDecimal('1.5') # => 0.15e1
b <= 2 # => true
b <= 2.0 # => true
b <= Rational(2, 1) # => true
b <= 1.5 # => true
b < 1 # => false
Raises an exception if the comparison cannot be made.
1497 1498 1499 1500 1501 |
# File 'ext/bigdecimal/bigdecimal.c', line 1497
static VALUE
BigDecimal_le(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, 'L');
}
|
#<=>(r) ⇒ Object
The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.
1440 1441 1442 1443 1444 |
# File 'ext/bigdecimal/bigdecimal.c', line 1440
static VALUE
BigDecimal_comp(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '*');
}
|
#==(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal('1.0') == 1.0 #=> true
1456 1457 1458 1459 1460 |
# File 'ext/bigdecimal/bigdecimal.c', line 1456
static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '=');
}
|
#===(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal('1.0') == 1.0 #=> true
1456 1457 1458 1459 1460 |
# File 'ext/bigdecimal/bigdecimal.c', line 1456
static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '=');
}
|
#>(other) ⇒ Boolean
Returns true if self is greater than other, false otherwise:
b = BigDecimal('1.5')
b > 1 # => true
b > 1.0 # => true
b > Rational(1, 1) # => true
b > 2 # => false
Raises an exception if the comparison cannot be made.
1517 1518 1519 1520 1521 |
# File 'ext/bigdecimal/bigdecimal.c', line 1517
static VALUE
BigDecimal_gt(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '>');
}
|
#>=(other) ⇒ Boolean
Returns true if self is greater than or equal to other, false otherwise:
b = BigDecimal('1.5')
b >= 1 # => true
b >= 1.0 # => true
b >= Rational(1, 1) # => true
b >= 1.5 # => true
b > 2 # => false
Raises an exception if the comparison cannot be made.
1538 1539 1540 1541 1542 |
# File 'ext/bigdecimal/bigdecimal.c', line 1538
static VALUE
BigDecimal_ge(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, 'G');
}
|
#_decimal_shift(v) ⇒ Object
Returns self * 10**v without changing the precision.
This method is currently for internal use.
BigDecimal("0.123e10")._decimal_shift(20) #=> "0.123e30"
BigDecimal("0.123e10")._decimal_shift(-20) #=> "0.123e-10"
5 6 7 |
# File 'lib/bigdecimal.rb', line 5 def _decimal_shift(i) # :nodoc: to_java.move_point_right(i).to_d end |
#_dump ⇒ String
Returns a string representing the marshalling of self. See module Marshal.
inf = BigDecimal('Infinity') # => Infinity
dumped = inf._dump # => "9:Infinity"
BigDecimal._load(dumped) # => Infinity
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
# File 'ext/bigdecimal/bigdecimal.c', line 666
static VALUE
BigDecimal_dump(int argc, VALUE *argv, VALUE self)
{
BDVALUE v;
char *psz;
VALUE dummy;
volatile VALUE dump;
size_t len;
rb_scan_args(argc, argv, "01", &dummy);
v = GetBDValueMust(self);
dump = rb_str_new(0, VpNumOfChars(v.real, "E")+50);
psz = RSTRING_PTR(dump);
snprintf(psz, RSTRING_LEN(dump), "%"PRIuSIZE":", v.real->Prec*VpBaseFig());
len = strlen(psz);
VpToString(v.real, psz+len, RSTRING_LEN(dump)-len, 0, 0);
rb_str_resize(dump, strlen(psz));
RB_GC_GUARD(v.bigdecimal);
return dump;
}
|
#abs ⇒ Object
Returns the BigDecimal absolute value of self:
BigDecimal('5').abs # => 0.5e1
BigDecimal('-3').abs # => 0.3e1
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 |
# File 'ext/bigdecimal/bigdecimal.c', line 2039
static VALUE
BigDecimal_abs(VALUE self)
{
BDVALUE a = GetBDValueMust(self);
BDVALUE c = NewZeroWrap(1, a.real->Prec * BASE_FIG);
VpAsgn(c.real, a.real, 10);
VpChangeSign(c.real, 1);
RB_GC_GUARD(a.bigdecimal);
return CheckGetValue(c);
}
|
#add(value, ndigits) ⇒ Object
Returns the BigDecimal sum of self and value with a precision of ndigits decimal digits.
When ndigits is less than the number of significant digits in the sum, the sum is rounded to that number of digits, according to the current rounding mode; see BigDecimal.mode.
Examples:
# Set the rounding mode.
BigDecimal.mode(BigDecimal::ROUND_MODE, :half_up)
b = BigDecimal('111111.111')
b.add(1, 0) # => 0.111112111e6
b.add(1, 3) # => 0.111e6
b.add(1, 6) # => 0.111112e6
b.add(1, 15) # => 0.111112111e6
b.add(1.0, 15) # => 0.111112111e6
b.add(Rational(1, 1), 15) # => 0.111112111e6
1971 1972 1973 1974 1975 |
# File 'ext/bigdecimal/bigdecimal.c', line 1971
static VALUE
BigDecimal_add2(VALUE self, VALUE b, VALUE n)
{
return BigDecimal_addsub_with_coerce(self, b, check_int_precision(n), +1);
}
|
#ceil(n) ⇒ Object
Return the smallest integer greater than or equal to the value, as a BigDecimal.
BigDecimal(‘3.14159’).ceil #=> 4 BigDecimal(‘-9.1’).ceil #=> -9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).ceil(3) #=> 3.142 BigDecimal(‘13345.234’).ceil(-2) #=> 13400.0
2246 2247 2248 2249 2250 |
# File 'ext/bigdecimal/bigdecimal.c', line 2246
static VALUE
BigDecimal_ceil(int argc, VALUE *argv, VALUE self)
{
return BigDecimal_truncate_floor_ceil(argc, argv, self, VP_ROUND_CEIL);
}
|
#clone ⇒ Object
:nodoc:
2530 2531 2532 2533 2534 |
# File 'ext/bigdecimal/bigdecimal.c', line 2530
static VALUE
BigDecimal_clone(VALUE self)
{
return self;
}
|
#coerce(other) ⇒ Object
The coerce method provides support for Ruby type coercion. It is not enabled by default.
This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.
e.g.
a = BigDecimal("1.0")
b = a / 2.0 #=> 0.5
Note that coercing a String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.
1234 1235 1236 1237 1238 1239 1240 |
# File 'ext/bigdecimal/bigdecimal.c', line 1234
static VALUE
BigDecimal_coerce(VALUE self, VALUE other)
{
Real* pv = DATA_PTR(self);
BDVALUE b = GetBDValueWithPrecMust(other, GetCoercePrec(pv, 0));
return rb_assoc_new(CheckGetValue(b), self);
}
|
#div(*args) ⇒ Object
call-seq:
div(value) -> integer
div(value, digits) -> bigdecimal or integer
Divide by the specified value.
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
If digits is 0, the result is the same as for the / operator or #quo.
If digits is not specified, the result is an integer, by analogy with Float#div; see also BigDecimal#divmod.
See BigDecimal#/. See BigDecimal#quo.
Examples:
a = BigDecimal("4")
b = BigDecimal("3")
a.div(b, 3) # => 0.133e1
a.div(b, 0) # => 0.1333333333333333333e1
a / b # => 0.1333333333333333333e1
a.quo(b) # => 0.1333333333333333333e1
a.div(b) # => 1
1936 1937 1938 1939 1940 1941 1942 1943 1944 |
# File 'ext/bigdecimal/bigdecimal.c', line 1936
static VALUE
BigDecimal_div3(int argc, VALUE *argv, VALUE self)
{
VALUE b,n;
rb_scan_args(argc, argv, "11", &b, &n);
return BigDecimal_div2(self, b, n);
}
|
#divmod(value) ⇒ Object
Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.
For example:
require 'bigdecimal'
a = BigDecimal("42")
b = BigDecimal("9")
q, m = a.divmod(b)
c = q * b + m
a == c #=> true
The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 |
# File 'ext/bigdecimal/bigdecimal.c', line 1833
static VALUE
BigDecimal_divmod(VALUE self, VALUE r)
{
NULLABLE_BDVALUE div, mod;
if (BigDecimal_DoDivmod(self, r, &div, &mod, false)) {
return rb_assoc_new(BigDecimal_to_i(CheckGetValue(bdvalue_nonnullable(div))), CheckGetValue(bdvalue_nonnullable(mod)));
}
return DoSomeOne(self,r,rb_intern("divmod"));
}
|
#dup ⇒ Object
:nodoc:
2530 2531 2532 2533 2534 |
# File 'ext/bigdecimal/bigdecimal.c', line 2530
static VALUE
BigDecimal_clone(VALUE self)
{
return self;
}
|
#eql?(r) ⇒ Boolean
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal('1.0') == 1.0 #=> true
1456 1457 1458 1459 1460 |
# File 'ext/bigdecimal/bigdecimal.c', line 1456
static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '=');
}
|
#exponent ⇒ Object
Returns the exponent of the BigDecimal number, as an Integer.
If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.
2419 2420 2421 2422 2423 2424 |
# File 'ext/bigdecimal/bigdecimal.c', line 2419
static VALUE
BigDecimal_exponent(VALUE self)
{
ssize_t e = VpExponent10(GetSelfVpValue(self));
return SSIZET2NUM(e);
}
|
#finite? ⇒ Boolean
Returns True if the value is finite (not NaN or infinite).
1069 1070 1071 1072 1073 1074 1075 1076 |
# File 'ext/bigdecimal/bigdecimal.c', line 1069
static VALUE
BigDecimal_IsFinite(VALUE self)
{
Real *p = GetSelfVpValue(self);
if (VpIsNaN(p)) return Qfalse;
if (VpIsInf(p)) return Qfalse;
return Qtrue;
}
|
#fix ⇒ Object
Return the integer part of the number, as a BigDecimal.
2052 2053 2054 2055 2056 2057 2058 2059 2060 |
# File 'ext/bigdecimal/bigdecimal.c', line 2052
static VALUE
BigDecimal_fix(VALUE self)
{
BDVALUE a = GetBDValueMust(self);
BDVALUE c = NewZeroWrap(1, (a.real->Prec + 1) * BASE_FIG);
VpActiveRound(c.real, a.real, VP_ROUND_DOWN, 0); /* 0: round off */
RB_GC_GUARD(a.bigdecimal);
return CheckGetValue(c);
}
|
#floor(n) ⇒ Object
Return the largest integer less than or equal to the value, as a BigDecimal.
BigDecimal(‘3.14159’).floor #=> 3 BigDecimal(‘-9.1’).floor #=> -10
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).floor(3) #=> 3.141 BigDecimal(‘13345.234’).floor(-2) #=> 13300.0
2223 2224 2225 2226 2227 |
# File 'ext/bigdecimal/bigdecimal.c', line 2223
static VALUE
BigDecimal_floor(int argc, VALUE *argv, VALUE self)
{
return BigDecimal_truncate_floor_ceil(argc, argv, self, VP_ROUND_FLOOR);
}
|
#frac ⇒ Object
Return the fractional part of the number, as a BigDecimal.
2196 2197 2198 2199 2200 2201 2202 2203 2204 |
# File 'ext/bigdecimal/bigdecimal.c', line 2196
static VALUE
BigDecimal_frac(VALUE self)
{
BDVALUE a = GetBDValueMust(self);
BDVALUE c = NewZeroWrap(1, (a.real->Prec + 1) * BASE_FIG);
VpFrac(c.real, a.real);
RB_GC_GUARD(a.bigdecimal);
return CheckGetValue(c);
}
|
#hash ⇒ Integer
Returns the integer hash value for self.
Two instances of BigDecimal have the same hash value if and only if they have equal:
-
Sign.
-
Fractional part.
-
Exponent.
640 641 642 643 644 645 646 647 648 649 650 651 652 |
# File 'ext/bigdecimal/bigdecimal.c', line 640
static VALUE
BigDecimal_hash(VALUE self)
{
BDVALUE v = GetBDValueMust(self);
st_index_t hash = (st_index_t)v.real->sign;
/* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */
if(hash == 2 || hash == (st_index_t)-2) {
hash ^= rb_memhash(v.real->frac, sizeof(DECDIG)*v.real->Prec);
hash += v.real->exponent;
}
RB_GC_GUARD(v.bigdecimal);
return ST2FIX(hash);
}
|
#infinite? ⇒ Boolean
Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.
1059 1060 1061 1062 1063 1064 1065 1066 |
# File 'ext/bigdecimal/bigdecimal.c', line 1059
static VALUE
BigDecimal_IsInfinite(VALUE self)
{
Real *p = GetSelfVpValue(self);
if (VpIsPosInf(p)) return INT2FIX(1);
if (VpIsNegInf(p)) return INT2FIX(-1);
return Qnil;
}
|
#inspect ⇒ Object
Returns a string representation of self.
BigDecimal("1234.5678").inspect
#=> "0.12345678e4"
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 |
# File 'ext/bigdecimal/bigdecimal.c', line 2431
static VALUE
BigDecimal_inspect(VALUE self)
{
BDVALUE v;
volatile VALUE str;
size_t nc;
v = GetBDValueMust(self);
nc = VpNumOfChars(v.real, "E");
str = rb_str_new(0, nc);
VpToString(v.real, RSTRING_PTR(str), RSTRING_LEN(str), 0, 0);
rb_str_resize(str, strlen(RSTRING_PTR(str)));
RB_GC_GUARD(v.bigdecimal);
return str;
}
|
#modulo ⇒ Object
%: a%b = a - (a.to_f/b).floor * b
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 |
# File 'ext/bigdecimal/bigdecimal.c', line 1782
static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
NULLABLE_BDVALUE div, mod;
if (BigDecimal_DoDivmod(self, r, &div, &mod, false)) {
return CheckGetValue(bdvalue_nonnullable(mod));
}
return DoSomeOne(self, r, '%');
}
|
#mult(other, ndigits) ⇒ Object
Returns the BigDecimal product of self and value with a precision of ndigits decimal digits.
When ndigits is less than the number of significant digits in the sum, the sum is rounded to that number of digits, according to the current rounding mode; see BigDecimal.mode.
Examples:
# Set the rounding mode.
BigDecimal.mode(BigDecimal::ROUND_MODE, :half_up)
b = BigDecimal('555555.555')
b.mult(3, 0) # => 0.1666666665e7
b.mult(3, 3) # => 0.167e7
b.mult(3, 6) # => 0.166667e7
b.mult(3, 15) # => 0.1666666665e7
b.mult(3.0, 0) # => 0.1666666665e7
b.mult(Rational(3, 1), 0) # => 0.1666666665e7
b.mult(Complex(3, 0), 0) # => (0.1666666665e7+0.0i)
2022 2023 2024 2025 2026 |
# File 'ext/bigdecimal/bigdecimal.c', line 2022
static VALUE
BigDecimal_mult2(VALUE self, VALUE b, VALUE n)
{
return BigDecimal_mult_with_coerce(self, b, check_int_precision(n));
}
|
#n_significant_digits ⇒ Integer
Returns the number of decimal significant digits in self.
BigDecimal("0").n_significant_digits # => 0
BigDecimal("1").n_significant_digits # => 1
BigDecimal("1.1").n_significant_digits # => 2
BigDecimal("3.1415").n_significant_digits # => 5
BigDecimal("-1e20").n_significant_digits # => 1
BigDecimal("1e-20").n_significant_digits # => 1
BigDecimal("Infinity").n_significant_digits # => 0
BigDecimal("-Infinity").n_significant_digits # => 0
BigDecimal("NaN").n_significant_digits # => 0
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 |
# File 'ext/bigdecimal/bigdecimal.c', line 602
static VALUE
BigDecimal_n_significant_digits(VALUE self)
{
BDVALUE v = GetBDValueMust(self);
if (VpIsZero(v.real) || !VpIsDef(v.real)) {
return INT2FIX(0);
}
ssize_t n = v.real->Prec; /* The length of frac without trailing zeros. */
for (n = v.real->Prec; n > 0 && v.real->frac[n-1] == 0; --n);
if (n == 0) return INT2FIX(0);
DECDIG x;
int nlz = BASE_FIG;
for (x = v.real->frac[0]; x > 0; x /= 10) --nlz;
int ntz = 0;
for (x = v.real->frac[n-1]; x > 0 && x % 10 == 0; x /= 10) ++ntz;
RB_GC_GUARD(v.bigdecimal);
ssize_t n_significant_digits = BASE_FIG*n - nlz - ntz;
return SSIZET2NUM(n_significant_digits);
}
|
#nan? ⇒ Boolean
Returns True if the value is Not a Number.
1048 1049 1050 1051 1052 1053 1054 |
# File 'ext/bigdecimal/bigdecimal.c', line 1048
static VALUE
BigDecimal_IsNaN(VALUE self)
{
Real *p = GetSelfVpValue(self);
if (VpIsNaN(p)) return Qtrue;
return Qfalse;
}
|
#nonzero? ⇒ Boolean
Returns self if the value is non-zero, nil otherwise.
1430 1431 1432 1433 1434 1435 |
# File 'ext/bigdecimal/bigdecimal.c', line 1430
static VALUE
BigDecimal_nonzero(VALUE self)
{
Real *a = GetSelfVpValue(self);
return VpIsZero(a) ? Qnil : self;
}
|
#power(y, prec = 0) ⇒ Object
call-seq:
power(n)
power(n, prec)
Returns the value raised to the power of n.
Also available as the operator **.
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# File 'lib/bigdecimal.rb', line 97 def power(y, prec = 0) prec = Internal.coerce_validate_prec(prec, :power, accept_zero: true) x = self y = Internal.coerce_to_bigdecimal(y, prec.nonzero? || n_significant_digits, :power) return Internal.nan_computation_result if x.nan? || y.nan? return BigDecimal(1) if y.zero? if y.infinite? if x < 0 return BigDecimal(0) if x < -1 && y.negative? return BigDecimal(0) if x > -1 && y.positive? raise Math::DomainError, 'Result undefined for negative base raised to infinite power' elsif x < 1 return y.positive? ? BigDecimal(0) : BigDecimal::Internal.infinity_computation_result elsif x == 1 return BigDecimal(1) else return y.positive? ? BigDecimal::Internal.infinity_computation_result : BigDecimal(0) end end if x.infinite? && y < 0 # Computation result will be +0 or -0. Avoid overflow. neg = x < 0 && y.frac.zero? && y % 2 == 1 return neg ? -BigDecimal(0) : BigDecimal(0) end if x.zero? return BigDecimal(1) if y.zero? return BigDecimal(0) if y > 0 if y.frac.zero? && y % 2 == 1 && x.sign == -1 return -BigDecimal::Internal.infinity_computation_result else return BigDecimal::Internal.infinity_computation_result end elsif x < 0 if y.frac.zero? if y % 2 == 0 return (-x).power(y, prec) else return -(-x).power(y, prec) end else raise Math::DomainError, 'Computation results in complex number' end elsif x == 1 return BigDecimal(1) end limit = BigDecimal.limit frac_part = y.frac if frac_part.zero? && prec.zero? && limit.zero? # Infinite precision calculation for `x ** int` and `x.power(int)` int_part = y.fix.to_i int_part = -int_part if (neg = int_part < 0) ans = BigDecimal(1) n = 1 xn = x while true ans *= xn if int_part.allbits?(n) n <<= 1 break if n > int_part xn *= xn # Detect overflow/underflow before consuming infinite memory if (xn.exponent.abs - 1) * int_part / n >= 0x7FFFFFFFFFFFFFFF return ((xn.exponent > 0) ^ neg ? BigDecimal::Internal.infinity_computation_result : BigDecimal(0)) * (int_part.even? || x > 0 ? 1 : -1) end end return neg ? BigDecimal(1) / ans : ans end result_prec = prec.nonzero? || [x.n_significant_digits, y.n_significant_digits, BigDecimal.double_fig].max + BigDecimal.double_fig result_prec = [result_prec, limit].min if prec.zero? && limit.nonzero? prec2 = result_prec + BigDecimal.double_fig if y < 0 inv = x.power(-y, prec2) return BigDecimal(0) if inv.infinite? return BigDecimal::Internal.infinity_computation_result if inv.zero? return BigDecimal(1).div(inv, result_prec) end if frac_part.zero? && y.exponent < Math.log(result_prec) * 5 + 20 # Use exponentiation by squaring if y is an integer and not too large pow_prec = prec2 + y.exponent n = 1 xn = x ans = BigDecimal(1) int_part = y.fix.to_i while true ans = ans.mult(xn, pow_prec) if int_part.allbits?(n) n <<= 1 break if n > int_part xn = xn.mult(xn, pow_prec) end ans.mult(1, result_prec) else if x > 1 && x.finite? # To calculate exp(z, prec), z needs prec+max(z.exponent, 0) precision if z > 0. # Estimate (y*log(x)).exponent logx_exponent = x < 2 ? (x - 1).exponent : Math.log10(x.exponent).round ylogx_exponent = y.exponent + logx_exponent prec2 += [ylogx_exponent, 0].max end BigMath.exp(BigMath.log(x, prec2).mult(y, prec2), result_prec) end end |
#precision ⇒ Integer
Returns the number of decimal digits in self:
BigDecimal("0").precision # => 0
BigDecimal("1").precision # => 1
BigDecimal("1.1").precision # => 2
BigDecimal("3.1415").precision # => 5
BigDecimal("-1e20").precision # => 21
BigDecimal("1e-20").precision # => 20
BigDecimal("Infinity").precision # => 0
BigDecimal("-Infinity").precision # => 0
BigDecimal("NaN").precision # => 0
536 537 538 539 540 541 542 |
# File 'ext/bigdecimal/bigdecimal.c', line 536
static VALUE
BigDecimal_precision(VALUE self)
{
ssize_t precision;
BigDecimal_count_precision_and_scale(self, &precision, NULL);
return SSIZET2NUM(precision);
}
|
#precision_scale ⇒ Array
Returns a 2-length array; the first item is the result of BigDecimal#precision and the second one is of BigDecimal#scale.
See BigDecimal#precision. See BigDecimal#scale.
578 579 580 581 582 583 584 |
# File 'ext/bigdecimal/bigdecimal.c', line 578
static VALUE
BigDecimal_precision_scale(VALUE self)
{
ssize_t precision, scale;
BigDecimal_count_precision_and_scale(self, &precision, &scale);
return rb_assoc_new(SSIZET2NUM(precision), SSIZET2NUM(scale));
}
|
#quo(value) ⇒ Object #quo(value, digits) ⇒ Object
Divide by the specified value.
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to the given number of digits, according to the rounding mode indicated by BigDecimal.mode.
If digits is 0 or omitted, the result is the same as for the / operator.
See BigDecimal#/. See BigDecimal#div.
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 |
# File 'ext/bigdecimal/bigdecimal.c', line 1644
static VALUE
BigDecimal_quo(int argc, VALUE *argv, VALUE self)
{
VALUE value, digits, result;
SIGNED_VALUE n = -1;
argc = rb_scan_args(argc, argv, "11", &value, &digits);
if (argc > 1) {
n = check_int_precision(digits);
}
if (n > 0) {
result = BigDecimal_div2(self, value, digits);
}
else {
result = BigDecimal_div(self, value);
}
return result;
}
|
#remainder ⇒ Object
remainder
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 |
# File 'ext/bigdecimal/bigdecimal.c', line 1800
static VALUE
BigDecimal_remainder(VALUE self, VALUE r) /* remainder */
{
NULLABLE_BDVALUE div, mod = { Qnil, NULL };
if (BigDecimal_DoDivmod(self, r, &div, &mod, true)) {
return CheckGetValue(bdvalue_nonnullable(mod));
}
return DoSomeOne(self, r, rb_intern("remainder"));
}
|
#round(n, mode) ⇒ Object
Round to the nearest integer (by default), returning the result as a BigDecimal if n is specified and positive, or as an Integer if it isn’t.
BigDecimal(‘3.14159’).round #=> 3 BigDecimal(‘8.7’).round #=> 9 BigDecimal(‘-9.9’).round #=> -10
BigDecimal(‘3.14159’).round(2).class.name #=> “BigDecimal” BigDecimal(‘3.14159’).round.class.name #=> “Integer” BigDecimal(‘3.14159’).round(0).class.name #=> “Integer”
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result, and return value will be an Integer.
BigDecimal(‘3.14159’).round(3) #=> 3.142 BigDecimal(‘13345.234’).round(-2) #=> 13300
The value of the optional mode argument can be used to determine how rounding is performed; see BigDecimal.mode.
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 |
# File 'ext/bigdecimal/bigdecimal.c', line 2088
static VALUE
BigDecimal_round(int argc, VALUE *argv, VALUE self)
{
BDVALUE c, a;
int iLoc = 0;
VALUE vLoc;
VALUE vRound;
int round_to_int = 0;
size_t mx;
unsigned short sw = VpGetRoundMode();
switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) {
case 0:
iLoc = 0;
round_to_int = 1;
break;
case 1:
if (RB_TYPE_P(vLoc, T_HASH)) {
sw = check_rounding_mode_option(vLoc);
}
else {
iLoc = NUM2INT(vLoc);
if (iLoc < 1) round_to_int = 1;
}
break;
case 2:
iLoc = NUM2INT(vLoc);
if (RB_TYPE_P(vRound, T_HASH)) {
sw = check_rounding_mode_option(vRound);
}
else {
sw = check_rounding_mode(vRound);
}
break;
default:
break;
}
a = GetBDValueMust(self);
mx = (a.real->Prec + 1) * BASE_FIG;
c = NewZeroWrap(1, mx);
VpActiveRound(c.real, a.real, sw, iLoc);
RB_GC_GUARD(a.bigdecimal);
if (round_to_int) {
return BigDecimal_to_i(CheckGetValue(c));
}
return CheckGetValue(c);
}
|
#scale ⇒ Integer
Returns the number of decimal digits following the decimal digits in self.
BigDecimal("0").scale # => 0
BigDecimal("1").scale # => 0
BigDecimal("1.1").scale # => 1
BigDecimal("3.1415").scale # => 4
BigDecimal("-1e20").scale # => 0
BigDecimal("1e-20").scale # => 20
BigDecimal("Infinity").scale # => 0
BigDecimal("-Infinity").scale # => 0
BigDecimal("NaN").scale # => 0
560 561 562 563 564 565 566 |
# File 'ext/bigdecimal/bigdecimal.c', line 560
static VALUE
BigDecimal_scale(VALUE self)
{
ssize_t scale;
BigDecimal_count_precision_and_scale(self, NULL, &scale);
return SSIZET2NUM(scale);
}
|
#sign ⇒ Object
Returns the sign of the value.
Returns a positive value if > 0, a negative value if < 0. It behaves the same with zeros - it returns a positive value for a positive zero (BigDecimal(‘0’)) and a negative value for a negative zero (BigDecimal(‘-0’)).
The specific value returned indicates the type and sign of the BigDecimal, as follows:
- BigDecimal::SIGN_NaN
-
value is Not a Number
- BigDecimal::SIGN_POSITIVE_ZERO
-
value is +0
- BigDecimal::SIGN_NEGATIVE_ZERO
-
value is -0
- BigDecimal::SIGN_POSITIVE_INFINITE
-
value is +Infinity
- BigDecimal::SIGN_NEGATIVE_INFINITE
-
value is -Infinity
- BigDecimal::SIGN_POSITIVE_FINITE
-
value is positive
- BigDecimal::SIGN_NEGATIVE_FINITE
-
value is negative
3090 3091 3092 3093 3094 3095 |
# File 'ext/bigdecimal/bigdecimal.c', line 3090
static VALUE
BigDecimal_sign(VALUE self)
{ /* sign */
int s = GetSelfVpValue(self)->sign;
return INT2FIX(s);
}
|
#split ⇒ Object
Splits a BigDecimal number into four parts, returned as an array of values.
The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.
The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.
The third value is the base used for arithmetic (currently always 10) as an Integer.
The fourth value is an Integer exponent.
If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.
From these values, you can translate a BigDecimal to a float as follows:
sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)
(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a Float.)
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 |
# File 'ext/bigdecimal/bigdecimal.c', line 2381
static VALUE
BigDecimal_split(VALUE self)
{
BDVALUE v;
VALUE obj,str;
ssize_t e, s;
char *psz1;
v = GetBDValueMust(self);
str = rb_str_new(0, VpNumOfChars(v.real, "E"));
psz1 = RSTRING_PTR(str);
VpSzMantissa(v.real, psz1, RSTRING_LEN(str));
s = 1;
if(psz1[0] == '-') {
size_t len = strlen(psz1 + 1);
memmove(psz1, psz1 + 1, len);
psz1[len] = '\0';
s = -1;
}
if (psz1[0] == 'N') s = 0; /* NaN */
e = VpExponent10(v.real);
obj = rb_ary_new2(4);
rb_ary_push(obj, INT2FIX(s));
rb_ary_push(obj, str);
rb_str_resize(str, strlen(psz1));
rb_ary_push(obj, INT2FIX(10));
rb_ary_push(obj, SSIZET2NUM(e));
RB_GC_GUARD(v.bigdecimal);
return obj;
}
|
#sqrt(prec) ⇒ Object
Returns the square root of the value.
Result has at least prec significant digits.
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# File 'lib/bigdecimal.rb', line 212 def sqrt(prec) prec = Internal.coerce_validate_prec(prec, :sqrt, accept_zero: true) return Internal.infinity_computation_result if infinite? == 1 raise FloatDomainError, 'sqrt of negative value' if self < 0 raise FloatDomainError, "sqrt of 'NaN'(Not a Number)" if nan? return self if zero? if prec == 0 limit = BigDecimal.limit prec = n_significant_digits + BigDecimal.double_fig prec = [limit, prec].min if limit.nonzero? end ex = exponent / 2 x = _decimal_shift(-2 * ex) y = BigDecimal(Math.sqrt(x.to_f), 0) precs = [prec + BigDecimal.double_fig] precs << 2 + precs.last / 2 while precs.last > BigDecimal.double_fig precs.reverse_each do |p| y = y.add(x.div(y, p), p).div(2, p) end y._decimal_shift(ex).mult(1, prec) end |
#sub(value, digits) ⇒ Object
Subtract the specified value.
e.g.
c = a.sub(b,n)
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
1990 1991 1992 1993 1994 |
# File 'ext/bigdecimal/bigdecimal.c', line 1990
static VALUE
BigDecimal_sub2(VALUE self, VALUE b, VALUE n)
{
return BigDecimal_addsub_with_coerce(self, b, check_int_precision(n), -1);
}
|
#to_d ⇒ Object
call-seq:
a.to_d -> bigdecimal
Returns self.
require 'bigdecimal/util'
d = BigDecimal("3.14")
d.to_d # => 0.314e1
110 111 112 |
# File 'lib/bigdecimal/util.rb', line 110 def to_d self end |
#to_digits ⇒ Object
call-seq:
a.to_digits -> string
Converts a BigDecimal to a String of the form “nnnnnn.mmm”. This method is deprecated; use BigDecimal#to_s(“F”) instead.
require 'bigdecimal/util'
d = BigDecimal("3.14")
d.to_digits # => "3.14"
90 91 92 93 94 95 96 97 98 |
# File 'lib/bigdecimal/util.rb', line 90 def to_digits if self.nan? || self.infinite? || self.zero? self.to_s else i = self.to_i.to_s _,f,_,z = self.frac.split i + "." + ("0"*(-z)) + f end end |
#to_f ⇒ Object
Returns a new Float object having approximately the same value as the BigDecimal number. Normal accuracy limits and built-in errors of binary Float arithmetic apply.
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 |
# File 'ext/bigdecimal/bigdecimal.c', line 1130
static VALUE
BigDecimal_to_f(VALUE self)
{
double d;
SIGNED_VALUE e;
char *buf;
volatile VALUE str;
BDVALUE v = GetBDValueMust(self);
bool negative = BIGDECIMAL_NEGATIVE_P(v.real);
if (VpVtoD(&d, &e, v.real) != 1)
return rb_float_new(d);
if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG))
goto overflow;
if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-DBL_DIG))
goto underflow;
str = rb_str_new(0, VpNumOfChars(v.real, "E"));
buf = RSTRING_PTR(str);
VpToString(v.real, buf, RSTRING_LEN(str), 0, 0);
RB_GC_GUARD(v.bigdecimal);
errno = 0;
d = strtod(buf, 0);
if (errno == ERANGE) {
if (d == 0.0) goto underflow;
if (fabs(d) >= HUGE_VAL) goto overflow;
}
return rb_float_new(d);
overflow:
VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0);
if (negative)
return rb_float_new(VpGetDoubleNegInf());
else
return rb_float_new(VpGetDoublePosInf());
underflow:
VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0);
if (negative)
return rb_float_new(-0.0);
else
return rb_float_new(0.0);
}
|
#to_i ⇒ Object
Returns the value as an Integer.
If the BigDecimal is infinity or NaN, raises FloatDomainError.
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 |
# File 'ext/bigdecimal/bigdecimal.c', line 1091
static VALUE
BigDecimal_to_i(VALUE self)
{
BDVALUE v;
VALUE ret;
v = GetBDValueMust(self);
BigDecimal_check_num(v.real);
if (v.real->exponent <= 0) return INT2FIX(0);
if (v.real->exponent == 1) {
ret = LONG2NUM((long)(VpGetSign(v.real) * (DECDIG_DBL_SIGNED)v.real->frac[0]));
}
else {
VALUE fix = (ssize_t)v.real->Prec > v.real->exponent ? BigDecimal_fix(self) : self;
VALUE digits = RARRAY_AREF(BigDecimal_split(fix), 1);
ssize_t dpower = VpExponent10(v.real) - (ssize_t)RSTRING_LEN(digits);
ret = rb_funcall(digits, rb_intern("to_i"), 0);
if (BIGDECIMAL_NEGATIVE_P(v.real)) {
ret = rb_funcall(ret, '*', 1, INT2FIX(-1));
}
if (dpower) {
VALUE pow10 = rb_funcall(INT2FIX(10), rb_intern("**"), 1, SSIZET2NUM(dpower));
// In Ruby < 3.4, int**int may return Float::INFINITY
if (RB_TYPE_P(pow10, T_FLOAT)) rb_raise(rb_eFloatDomainError, "Infinity");
ret = rb_funcall(ret, '*', 1, pow10);
}
}
RB_GC_GUARD(v.bigdecimal);
return ret;
}
|
#to_int ⇒ Object
Returns the value as an Integer.
If the BigDecimal is infinity or NaN, raises FloatDomainError.
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 |
# File 'ext/bigdecimal/bigdecimal.c', line 1091
static VALUE
BigDecimal_to_i(VALUE self)
{
BDVALUE v;
VALUE ret;
v = GetBDValueMust(self);
BigDecimal_check_num(v.real);
if (v.real->exponent <= 0) return INT2FIX(0);
if (v.real->exponent == 1) {
ret = LONG2NUM((long)(VpGetSign(v.real) * (DECDIG_DBL_SIGNED)v.real->frac[0]));
}
else {
VALUE fix = (ssize_t)v.real->Prec > v.real->exponent ? BigDecimal_fix(self) : self;
VALUE digits = RARRAY_AREF(BigDecimal_split(fix), 1);
ssize_t dpower = VpExponent10(v.real) - (ssize_t)RSTRING_LEN(digits);
ret = rb_funcall(digits, rb_intern("to_i"), 0);
if (BIGDECIMAL_NEGATIVE_P(v.real)) {
ret = rb_funcall(ret, '*', 1, INT2FIX(-1));
}
if (dpower) {
VALUE pow10 = rb_funcall(INT2FIX(10), rb_intern("**"), 1, SSIZET2NUM(dpower));
// In Ruby < 3.4, int**int may return Float::INFINITY
if (RB_TYPE_P(pow10, T_FLOAT)) rb_raise(rb_eFloatDomainError, "Infinity");
ret = rb_funcall(ret, '*', 1, pow10);
}
}
RB_GC_GUARD(v.bigdecimal);
return ret;
}
|
#to_r ⇒ Object
Converts a BigDecimal to a Rational.
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 |
# File 'ext/bigdecimal/bigdecimal.c', line 1179
static VALUE
BigDecimal_to_r(VALUE self)
{
BDVALUE v;
ssize_t sign, power, denomi_power;
VALUE a, digits, numerator;
v = GetBDValueMust(self);
BigDecimal_check_num(v.real);
sign = VpGetSign(v.real);
power = VpExponent10(v.real);
RB_GC_GUARD(v.bigdecimal);
a = BigDecimal_split(self);
digits = RARRAY_AREF(a, 1);
denomi_power = power - RSTRING_LEN(digits);
numerator = rb_funcall(digits, rb_intern("to_i"), 0);
if (sign < 0) {
numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
}
if (denomi_power < 0) {
return rb_Rational(numerator,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(-denomi_power)));
}
else {
return rb_Rational1(rb_funcall(numerator, '*', 1,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(denomi_power))));
}
}
|
#to_s(s) ⇒ Object
Converts the value to a string.
The default format looks like 0.xxxxEnn.
The optional parameter s consists of either an integer; or an optional ‘+’ or ‘ ’, followed by an optional number, followed by an optional ‘E’ or ‘F’.
If there is a ‘+’ at the start of s, positive values are returned with a leading ‘+’.
A space at the start of s returns positive values with a leading space.
If s contains a number, a space is inserted after each group of that many digits, starting from ‘.’ and counting outwards.
If s ends with an ‘E’, scientific notation (0.xxxxEnn) is used.
If s ends with an ‘F’, conventional floating point notation is used.
Examples:
BigDecimal('-1234567890123.45678901234567890').to_s('5F')
#=> '-123 45678 90123.45678 90123 45678 9'
BigDecimal('1234567890123.45678901234567890').to_s('+8F')
#=> '+12345 67890123.45678901 23456789'
BigDecimal('1234567890123.45678901234567890').to_s(' F')
#=> ' 1234567890123.4567890123456789'
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 |
# File 'ext/bigdecimal/bigdecimal.c', line 2285
static VALUE
BigDecimal_to_s(int argc, VALUE *argv, VALUE self)
{
int fmt = 0; /* 0: E format, 1: F format */
int fPlus = 0; /* 0: default, 1: set ' ' before digits, 2: set '+' before digits. */
BDVALUE v;
volatile VALUE str;
char *psz;
char ch;
size_t nc, mc = 0;
SIGNED_VALUE m;
VALUE f;
v = GetBDValueMust(self);
if (rb_scan_args(argc, argv, "01", &f) == 1) {
if (RB_TYPE_P(f, T_STRING)) {
psz = StringValueCStr(f);
if (*psz == ' ') {
fPlus = 1;
psz++;
}
else if (*psz == '+') {
fPlus = 2;
psz++;
}
while ((ch = *psz++) != 0) {
if (ISSPACE(ch)) {
continue;
}
if (!ISDIGIT(ch)) {
if (ch == 'F' || ch == 'f') {
fmt = 1; /* F format */
}
break;
}
mc = mc*10 + ch - '0';
}
}
else {
m = NUM2INT(f);
if (m <= 0) {
rb_raise(rb_eArgError, "argument must be positive");
}
mc = (size_t)m;
}
}
if (fmt) {
nc = VpNumOfChars(v.real, "F");
}
else {
nc = VpNumOfChars(v.real, "E");
}
if (mc > 0) {
nc += (nc + mc - 1) / mc + 1;
}
str = rb_usascii_str_new(0, nc);
psz = RSTRING_PTR(str);
if (fmt) {
VpToFString(v.real, psz, RSTRING_LEN(str), mc, fPlus);
}
else {
VpToString (v.real, psz, RSTRING_LEN(str), mc, fPlus);
}
rb_str_resize(str, strlen(psz));
RB_GC_GUARD(v.bigdecimal);
return str;
}
|
#truncate(n) ⇒ Object
Truncate to the nearest integer (by default), returning the result as a BigDecimal.
BigDecimal(‘3.14159’).truncate #=> 3 BigDecimal(‘8.7’).truncate #=> 8 BigDecimal(‘-9.9’).truncate #=> -9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).truncate(3) #=> 3.141 BigDecimal(‘13345.234’).truncate(-2) #=> 13300.0
2188 2189 2190 2191 2192 |
# File 'ext/bigdecimal/bigdecimal.c', line 2188
static VALUE
BigDecimal_truncate(int argc, VALUE *argv, VALUE self)
{
return BigDecimal_truncate_floor_ceil(argc, argv, self, VP_ROUND_DOWN);
}
|
#vpdivd(r, cprec) ⇒ Object
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 |
# File 'ext/bigdecimal/bigdecimal.c', line 3228
VALUE
BigDecimal_vpdivd(VALUE self, VALUE r, VALUE cprec) {
BDVALUE a,b,c,d;
size_t cn = NUM2INT(cprec);
a = GetBDValueMust(self);
b = GetBDValueMust(r);
c = NewZeroWrap(1, cn * BASE_FIG);
d = NewZeroWrap(1, VPDIVD_REM_PREC(a.real, b.real, c.real) * BASE_FIG);
VpDivd(c.real, d.real, a.real, b.real);
RB_GC_GUARD(a.bigdecimal);
RB_GC_GUARD(b.bigdecimal);
return rb_assoc_new(c.bigdecimal, d.bigdecimal);
}
|
#vpmult(v) ⇒ Object
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 |
# File 'ext/bigdecimal/bigdecimal.c', line 3242
VALUE
BigDecimal_vpmult(VALUE self, VALUE v) {
BDVALUE a,b,c;
a = GetBDValueMust(self);
b = GetBDValueMust(v);
c = NewZeroWrap(1, VPMULT_RESULT_PREC(a.real, b.real) * BASE_FIG);
VpMult(c.real, a.real, b.real);
RB_GC_GUARD(a.bigdecimal);
RB_GC_GUARD(b.bigdecimal);
return c.bigdecimal;
}
|
#zero? ⇒ Boolean
Returns True if the value is zero.
1422 1423 1424 1425 1426 1427 |
# File 'ext/bigdecimal/bigdecimal.c', line 1422
static VALUE
BigDecimal_zero(VALUE self)
{
Real *a = GetSelfVpValue(self);
return VpIsZero(a) ? Qtrue : Qfalse;
}
|