Module: BigMath
- Defined in:
- lib/bigdecimal.rb,
lib/bigdecimal/math.rb
Overview
– Contents:
sqrt(x, prec)
cbrt(x, prec)
hypot(x, y, prec)
sin (x, prec)
cos (x, prec)
tan (x, prec)
asin(x, prec)
acos(x, prec)
atan(x, prec)
atan2(y, x, prec)
sinh (x, prec)
cosh (x, prec)
tanh (x, prec)
asinh(x, prec)
acosh(x, prec)
atanh(x, prec)
log2 (x, prec)
log10(x, prec)
log1p(x, prec)
expm1(x, prec)
erf (x, prec)
erfc(x, prec)
gamma(x, prec)
lgamma(x, prec)
frexp(x)
ldexp(x, exponent)
PI (prec)
E (prec) == exp(1.0,prec)
where:
x, y ... BigDecimal number to be computed.
prec ... Number of digits to be obtained.
++
Provides mathematical functions.
Example:
require "bigdecimal/math"
include BigMath
a = BigDecimal((PI(49)/2).to_s)
puts sin(a,100) # => 0.9999999999...9999999986e0
Class Method Summary collapse
-
.acos(x, prec) ⇒ Object
call-seq: acos(decimal, numeric) -> BigDecimal.
-
.acosh(x, prec) ⇒ Object
call-seq: acosh(decimal, numeric) -> BigDecimal.
-
.asin(x, prec) ⇒ Object
call-seq: asin(decimal, numeric) -> BigDecimal.
-
.asinh(x, prec) ⇒ Object
call-seq: asinh(decimal, numeric) -> BigDecimal.
-
.atan(x, prec) ⇒ Object
call-seq: atan(decimal, numeric) -> BigDecimal.
-
.atan2(y, x, prec) ⇒ Object
call-seq: atan2(decimal, decimal, numeric) -> BigDecimal.
-
.atanh(x, prec) ⇒ Object
call-seq: atanh(decimal, numeric) -> BigDecimal.
-
.cbrt(x, prec) ⇒ Object
call-seq: cbrt(decimal, numeric) -> BigDecimal.
-
.cos(x, prec) ⇒ Object
call-seq: cos(decimal, numeric) -> BigDecimal.
-
.cosh(x, prec) ⇒ Object
call-seq: cosh(decimal, numeric) -> BigDecimal.
-
.E(prec) ⇒ Object
call-seq: E(numeric) -> BigDecimal.
-
.erf(x, prec) ⇒ Object
erf(decimal, numeric) -> BigDecimal.
-
.erfc(x, prec) ⇒ Object
call-seq: erfc(decimal, numeric) -> BigDecimal.
-
.exp(x, prec) ⇒ Object
call-seq: BigMath.exp(decimal, numeric) -> BigDecimal.
-
.expm1(x, prec) ⇒ Object
call-seq: BigMath.expm1(decimal, numeric) -> BigDecimal.
-
.frexp(x) ⇒ Object
call-seq: frexp(x) -> [BigDecimal, Integer].
-
.gamma(x, prec) ⇒ Object
call-seq: BigMath.gamma(decimal, numeric) -> BigDecimal.
-
.hypot(x, y, prec) ⇒ Object
call-seq: hypot(x, y, numeric) -> BigDecimal.
-
.ldexp(x, exponent) ⇒ Object
call-seq: ldexp(fraction, exponent) -> BigDecimal.
-
.lgamma(x, prec) ⇒ Object
call-seq: BigMath.lgamma(decimal, numeric) -> [BigDecimal, Integer].
-
.log(x, prec) ⇒ Object
call-seq: BigMath.log(decimal, numeric) -> BigDecimal.
-
.log10(x, prec) ⇒ Object
call-seq: BigMath.log10(decimal, numeric) -> BigDecimal.
-
.log1p(x, prec) ⇒ Object
call-seq: BigMath.log1p(decimal, numeric) -> BigDecimal.
-
.log2(x, prec) ⇒ Object
call-seq: BigMath.log2(decimal, numeric) -> BigDecimal.
-
.PI(prec) ⇒ Object
call-seq: PI(numeric) -> BigDecimal.
-
.sin(x, prec) ⇒ Object
call-seq: sin(decimal, numeric) -> BigDecimal.
-
.sinh(x, prec) ⇒ Object
call-seq: sinh(decimal, numeric) -> BigDecimal.
-
.sqrt(x, prec) ⇒ Object
call-seq: sqrt(decimal, numeric) -> BigDecimal.
-
.tan(x, prec) ⇒ Object
call-seq: tan(decimal, numeric) -> BigDecimal.
-
.tanh(x, prec) ⇒ Object
call-seq: tanh(decimal, numeric) -> BigDecimal.
Class Method Details
.acos(x, prec) ⇒ Object
call-seq:
acos(decimal, numeric) -> BigDecimal
Computes the arccosine of decimal to the specified number of digits of precision, numeric.
If decimal is NaN, returns NaN.
BigMath.acos(BigDecimal('0.5'), 32).to_s
#=> "0.10471975511965977461542144610932e1"
256 257 258 259 260 261 262 263 264 265 266 267 268 |
# File 'lib/bigdecimal/math.rb', line 256 def acos(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :acos) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :acos) raise Math::DomainError, "Out of domain argument for acos" if x < -1 || x > 1 return BigDecimal::Internal.nan_computation_result if x.nan? prec2 = prec + BigDecimal.double_fig return (PI(prec2) / 2).sub(asin(x, prec2), prec) if x < 0 return PI(prec2).div(2, prec) if x.zero? sin = (1 - x**2).sqrt(prec2) atan(sin.div(x, prec2), prec) end |
.acosh(x, prec) ⇒ Object
call-seq:
acosh(decimal, numeric) -> BigDecimal
Computes the inverse hyperbolic cosine of decimal to the specified number of digits of precision, numeric.
If decimal is NaN, returns NaN.
BigMath.acosh(BigDecimal('2'), 32).to_s
#=> "0.1316957896924816708625046347308e1"
446 447 448 449 450 451 452 453 454 |
# File 'lib/bigdecimal/math.rb', line 446 def acosh(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :acosh) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :acosh) raise Math::DomainError, "Out of domain argument for acosh" if x < 1 return BigDecimal::Internal.infinity_computation_result if x.infinite? return BigDecimal::Internal.nan_computation_result if x.nan? log(x + sqrt(x**2 - 1, prec + BigDecimal.double_fig), prec) end |
.asin(x, prec) ⇒ Object
call-seq:
asin(decimal, numeric) -> BigDecimal
Computes the arcsine of decimal to the specified number of digits of precision, numeric.
If decimal is NaN, returns NaN.
BigMath.asin(BigDecimal('0.5'), 32).to_s
#=> "0.52359877559829887307710723054658e0"
230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# File 'lib/bigdecimal/math.rb', line 230 def asin(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :asin) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :asin) raise Math::DomainError, "Out of domain argument for asin" if x < -1 || x > 1 return BigDecimal::Internal.nan_computation_result if x.nan? prec2 = prec + BigDecimal.double_fig cos = (1 - x**2).sqrt(prec2) if cos.zero? PI(prec2).div(x > 0 ? 2 : -2, prec) else atan(x.div(cos, prec2), prec) end end |
.asinh(x, prec) ⇒ Object
call-seq:
asinh(decimal, numeric) -> BigDecimal
Computes the inverse hyperbolic sine of decimal to the specified number of digits of precision, numeric.
If decimal is NaN, returns NaN.
BigMath.asinh(BigDecimal('1'), 32).to_s
#=> "0.88137358701954302523260932497979e0"
424 425 426 427 428 429 430 431 432 433 |
# File 'lib/bigdecimal/math.rb', line 424 def asinh(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :asinh) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :asinh) return BigDecimal::Internal.nan_computation_result if x.nan? return BigDecimal::Internal.infinity_computation_result * x.infinite? if x.infinite? return -asinh(-x, prec) if x < 0 sqrt_prec = prec + [-x.exponent, 0].max + BigDecimal.double_fig log(x + sqrt(x**2 + 1, sqrt_prec), prec) end |
.atan(x, prec) ⇒ Object
call-seq:
atan(decimal, numeric) -> BigDecimal
Computes the arctangent of decimal to the specified number of digits of precision, numeric.
If decimal is NaN, returns NaN.
BigMath.atan(BigDecimal('-1'), 32).to_s
#=> "-0.78539816339744830961566084581988e0"
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
# File 'lib/bigdecimal/math.rb', line 281 def atan(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :atan) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :atan) return BigDecimal::Internal.nan_computation_result if x.nan? n = prec + BigDecimal.double_fig pi = PI(n) x = -x if neg = x < 0 return pi.div(neg ? -2 : 2, prec) if x.infinite? return pi.div(neg ? -4 : 4, prec) if x.round(n) == 1 x = BigDecimal("1").div(x, n) if inv = x > 1 x = (-1 + sqrt(1 + x.mult(x, n), n)).div(x, n) if dbl = x > 0.5 y = x d = y t = x r = BigDecimal("3") x2 = x.mult(x,n) while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0) m = BigDecimal.double_fig if m < BigDecimal.double_fig t = -t.mult(x2,n) d = t.div(r,m) y += d r += 2 end y *= 2 if dbl y = pi / 2 - y if inv y = -y if neg y.mult(1, prec) end |
.atan2(y, x, prec) ⇒ Object
call-seq:
atan2(decimal, decimal, numeric) -> BigDecimal
Computes the arctangent of y and x to the specified number of digits of precision, numeric.
BigMath.atan2(BigDecimal('-1'), BigDecimal('1'), 32).to_s
#=> "-0.78539816339744830961566084581988e0"
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
# File 'lib/bigdecimal/math.rb', line 319 def atan2(y, x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :atan2) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :atan2) y = BigDecimal::Internal.coerce_to_bigdecimal(y, prec, :atan2) return BigDecimal::Internal.nan_computation_result if x.nan? || y.nan? if x.infinite? || y.infinite? one = BigDecimal(1) zero = BigDecimal(0) x = x.infinite? ? (x > 0 ? one : -one) : zero y = y.infinite? ? (y > 0 ? one : -one) : y.sign * zero end return x.sign >= 0 ? BigDecimal(0) : y.sign * PI(prec) if y.zero? y = -y if neg = y < 0 xlarge = y.abs < x.abs prec2 = prec + BigDecimal.double_fig if x > 0 v = xlarge ? atan(y.div(x, prec2), prec) : PI(prec2) / 2 - atan(x.div(y, prec2), prec2) else v = xlarge ? PI(prec2) - atan(-y.div(x, prec2), prec2) : PI(prec2) / 2 + atan(x.div(-y, prec2), prec2) end v.mult(neg ? -1 : 1, prec) end |
.atanh(x, prec) ⇒ Object
call-seq:
atanh(decimal, numeric) -> BigDecimal
Computes the inverse hyperbolic tangent of decimal to the specified number of digits of precision, numeric.
If decimal is NaN, returns NaN.
BigMath.atanh(BigDecimal('0.5'), 32).to_s
#=> "0.54930614433405484569762261846126e0"
467 468 469 470 471 472 473 474 475 476 477 |
# File 'lib/bigdecimal/math.rb', line 467 def atanh(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :atanh) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :atanh) raise Math::DomainError, "Out of domain argument for atanh" if x < -1 || x > 1 return BigDecimal::Internal.nan_computation_result if x.nan? return BigDecimal::Internal.infinity_computation_result if x == 1 return -BigDecimal::Internal.infinity_computation_result if x == -1 prec2 = prec + BigDecimal.double_fig (log(x + 1, prec2) - log(1 - x, prec2)).div(2, prec) end |
.cbrt(x, prec) ⇒ Object
call-seq:
cbrt(decimal, numeric) -> BigDecimal
Computes the cube root of decimal to the specified number of digits of precision, numeric.
BigMath.cbrt(BigDecimal('2'), 32).to_s
#=> "0.12599210498948731647672106072782e1"
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
# File 'lib/bigdecimal/math.rb', line 106 def cbrt(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :cbrt) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :cbrt) return BigDecimal::Internal.nan_computation_result if x.nan? return BigDecimal::Internal.infinity_computation_result * x.infinite? if x.infinite? return BigDecimal(0) if x.zero? x = -x if neg = x < 0 ex = x.exponent / 3 x = x._decimal_shift(-3 * ex) y = BigDecimal(Math.cbrt(x.to_f), 0) precs = [prec + BigDecimal.double_fig] precs << 2 + precs.last / 2 while precs.last > BigDecimal.double_fig precs.reverse_each do |p| y = (2 * y + x.div(y, p).div(y, p)).div(3, p) end y._decimal_shift(ex).mult(neg ? -1 : 1, prec) end |
.cos(x, prec) ⇒ Object
call-seq:
cos(decimal, numeric) -> BigDecimal
Computes the cosine of decimal to the specified number of digits of precision, numeric.
If decimal is Infinity or NaN, returns NaN.
BigMath.cos(BigMath.PI(16), 32).to_s
#=> "-0.99999999999999999999999999999997e0"
192 193 194 195 196 197 198 |
# File 'lib/bigdecimal/math.rb', line 192 def cos(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :cos) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :cos) return BigDecimal::Internal.nan_computation_result if x.infinite? || x.nan? sign, x = _sin_periodic_reduction(x, prec + BigDecimal.double_fig, add_half_pi: true) sign * sin(x, prec) end |
.cosh(x, prec) ⇒ Object
call-seq:
cosh(decimal, numeric) -> BigDecimal
Computes the hyperbolic cosine of decimal to the specified number of digits of precision, numeric.
If decimal is NaN, returns NaN.
BigMath.cosh(BigDecimal('1'), 32).to_s
#=> "0.15430806348152437784779056207571e1"
379 380 381 382 383 384 385 386 387 388 |
# File 'lib/bigdecimal/math.rb', line 379 def cosh(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :cosh) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :cosh) return BigDecimal::Internal.nan_computation_result if x.nan? return BigDecimal::Internal.infinity_computation_result if x.infinite? prec2 = prec + BigDecimal.double_fig e = exp(x, prec2) (e + BigDecimal(1).div(e, prec2)).div(2, prec) end |
.E(prec) ⇒ Object
call-seq:
E(numeric) -> BigDecimal
Computes e (the base of natural logarithms) to the specified number of digits of precision, numeric.
BigMath.E(32).to_s
#=> "0.27182818284590452353602874713527e1"
944 945 946 947 |
# File 'lib/bigdecimal/math.rb', line 944 def E(prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :E) exp(1, prec) end |
.erf(x, prec) ⇒ Object
erf(decimal, numeric) -> BigDecimal
Computes the error function of decimal to the specified number of digits of precision, numeric.
If decimal is NaN, returns NaN.
BigMath.erf(BigDecimal('1'), 32).to_s
#=> "0.84270079294971486934122063508261e0"
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
# File 'lib/bigdecimal/math.rb', line 597 def erf(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :erf) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :erf) return BigDecimal::Internal.nan_computation_result if x.nan? return BigDecimal(x.infinite?) if x.infinite? return BigDecimal(0) if x == 0 return -erf(-x, prec) if x < 0 return BigDecimal(1) if x > 5000000000 # erf(5000000000) > 1 - 1e-10000000000000000000 if x > 8 xf = x.to_f log10_erfc = -xf ** 2 / Math.log(10) - Math.log10(xf * Math::PI ** 0.5) erfc_prec = [prec + log10_erfc.ceil, 1].max erfc = _erfc_asymptotic(x, erfc_prec) if erfc # Workaround for https://github.com/ruby/bigdecimal/issues/464 return BigDecimal(1) if erfc.exponent < -prec - BigDecimal.double_fig return BigDecimal(1).sub(erfc, prec) end end prec2 = prec + BigDecimal.double_fig x_smallprec = x.mult(1, Integer.sqrt(prec2) / 2) # Taylor series of x with small precision is fast erf1 = _erf_taylor(x_smallprec, BigDecimal(0), BigDecimal(0), prec2) # Taylor series converges quickly for small x _erf_taylor(x - x_smallprec, x_smallprec, erf1, prec2).mult(1, prec) end |
.erfc(x, prec) ⇒ Object
call-seq:
erfc(decimal, numeric) -> BigDecimal
Computes the complementary error function of decimal to the specified number of digits of precision, numeric.
If decimal is NaN, returns NaN.
BigMath.erfc(BigDecimal('10'), 32).to_s
#=> "0.20884875837625447570007862949578e-44"
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 |
# File 'lib/bigdecimal/math.rb', line 638 def erfc(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :erfc) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :erfc) return BigDecimal::Internal.nan_computation_result if x.nan? return BigDecimal(1 - x.infinite?) if x.infinite? return BigDecimal(1).sub(erf(x, prec + BigDecimal.double_fig), prec) if x < 0 return BigDecimal(0) if x > 5000000000 # erfc(5000000000) < 1e-10000000000000000000 (underflow) if x >= 8 y = _erfc_asymptotic(x, prec) return y.mult(1, prec) if y end # erfc(x) = 1 - erf(x) < exp(-x**2)/x/sqrt(pi) # Precision of erf(x) needs about log10(exp(-x**2)) extra digits log10 = 2.302585092994046 high_prec = prec + BigDecimal.double_fig + (x.ceil**2 / log10).ceil BigDecimal(1).sub(erf(x, high_prec), prec) end |
.exp(x, prec) ⇒ Object
call-seq:
BigMath.exp(decimal, numeric) -> BigDecimal
Computes the value of e (the base of natural logarithms) raised to the power of decimal, to the specified number of digits of precision.
If decimal is infinity, returns Infinity.
If decimal is NaN, returns NaN.
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
# File 'lib/bigdecimal.rb', line 332 def exp(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :exp) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :exp) return BigDecimal::Internal.nan_computation_result if x.nan? return x.positive? ? BigDecimal::Internal.infinity_computation_result : BigDecimal(0) if x.infinite? return BigDecimal(1) if x.zero? # exp(x * 10**cnt) = exp(x)**(10**cnt) cnt = x < -1 || x > 1 ? x.exponent : 0 prec2 = prec + BigDecimal.double_fig + cnt x = x._decimal_shift(-cnt) # Calculation of exp(small_prec) is fast because calculation of x**n is fast # Calculation of exp(small_abs) converges fast. # exp(x) = exp(small_prec_part + small_abs_part) = exp(small_prec_part) * exp(small_abs_part) x_small_prec = x.round(Integer.sqrt(prec2)) y = _exp_taylor(x_small_prec, prec2).mult(_exp_taylor(x.sub(x_small_prec, prec2), prec2), prec2) # calculate exp(x * 10**cnt) from exp(x) # exp(x * 10**k) = exp(x * 10**(k - 1)) ** 10 cnt.times do y2 = y.mult(y, prec2) y5 = y2.mult(y2, prec2).mult(y, prec2) y = y5.mult(y5, prec2) end y.mult(1, prec) end |
.expm1(x, prec) ⇒ Object
call-seq:
BigMath.expm1(decimal, numeric) -> BigDecimal
Computes exp(decimal) - 1 to the specified number of digits of precision, numeric.
BigMath.expm1(BigDecimal('0.1'), 32).to_s
#=> "0.10517091807564762481170782649025e0"
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
# File 'lib/bigdecimal/math.rb', line 559 def expm1(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :expm1) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :expm1) return BigDecimal(-1) if x.infinite? == -1 exp_prec = prec if x < -1 # log10(exp(x)) = x * log10(e) lg_e = 0.4342944819032518 exp_prec = prec + (lg_e * x).ceil + BigDecimal.double_fig elsif x < 1 exp_prec = prec - x.exponent + BigDecimal.double_fig else exp_prec = prec end return BigDecimal(-1) if exp_prec <= 0 exp = exp(x, exp_prec) if exp.exponent > prec + BigDecimal.double_fig # Workaroudn for https://github.com/ruby/bigdecimal/issues/464 exp else exp.sub(1, prec) end end |
.frexp(x) ⇒ Object
call-seq:
frexp(x) -> [BigDecimal, Integer]
Decomposes x into a normalized fraction and an integral power of ten.
BigMath.frexp(BigDecimal(123.456))
#=> [0.123456e0, 3]
868 869 870 871 872 873 874 |
# File 'lib/bigdecimal/math.rb', line 868 def frexp(x) x = BigDecimal::Internal.coerce_to_bigdecimal(x, 0, :frexp) return [x, 0] unless x.finite? exponent = x.exponent [x._decimal_shift(-exponent), exponent] end |
.gamma(x, prec) ⇒ Object
call-seq:
BigMath.gamma(decimal, numeric) -> BigDecimal
Computes the gamma function of decimal to the specified number of digits of precision, numeric.
BigMath.gamma(BigDecimal('0.5'), 32).to_s
#=> "0.17724538509055160272981674833411e1"
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 |
# File 'lib/bigdecimal/math.rb', line 729 def gamma(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :gamma) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :gamma) prec2 = prec + BigDecimal.double_fig if x < 0.5 raise Math::DomainError, 'Numerical argument is out of domain - gamma' if x.frac.zero? # Euler's reflection formula: gamma(z) * gamma(1-z) = pi/sin(pi*z) pi = PI(prec2) sin = _sinpix(x, pi, prec2) return pi.div(gamma(1 - x, prec2).mult(sin, prec2), prec) elsif x.frac.zero? && x < 1000 * prec return _gamma_positive_integer(x, prec2).mult(1, prec) end a, sum = _gamma_spouge_sum_part(x, prec2) (x + (a - 1)).power(x - 0.5, prec2).mult(BigMath.exp(1 - x, prec2), prec2).mult(sum, prec) end |
.hypot(x, y, prec) ⇒ Object
call-seq:
hypot(x, y, numeric) -> BigDecimal
Returns sqrt(x**2 + y**2) to the specified number of digits of precision, numeric.
BigMath.hypot(BigDecimal('1'), BigDecimal('2'), 32).to_s
#=> "0.22360679774997896964091736687313e1"
134 135 136 137 138 139 140 141 142 |
# File 'lib/bigdecimal/math.rb', line 134 def hypot(x, y, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :hypot) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :hypot) y = BigDecimal::Internal.coerce_to_bigdecimal(y, prec, :hypot) return BigDecimal::Internal.nan_computation_result if x.nan? || y.nan? return BigDecimal::Internal.infinity_computation_result if x.infinite? || y.infinite? prec2 = prec + BigDecimal.double_fig sqrt(x.mult(x, prec2) + y.mult(y, prec2), prec) end |
.ldexp(x, exponent) ⇒ Object
call-seq:
ldexp(fraction, exponent) -> BigDecimal
Inverse of frexp. Returns the value of fraction * 10**exponent.
BigMath.ldexp(BigDecimal("0.123456e0"), 3)
#=> 0.123456e3
885 886 887 888 |
# File 'lib/bigdecimal/math.rb', line 885 def ldexp(x, exponent) x = BigDecimal::Internal.coerce_to_bigdecimal(x, 0, :ldexp) x.finite? ? x._decimal_shift(exponent) : x end |
.lgamma(x, prec) ⇒ Object
call-seq:
BigMath.lgamma(decimal, numeric) -> [BigDecimal, Integer]
Computes the natural logarithm of the absolute value of the gamma function of decimal to the specified number of digits of precision, numeric and its sign.
BigMath.lgamma(BigDecimal('0.5'), 32)
#=> [0.57236494292470008707171367567653e0, 1]
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 |
# File 'lib/bigdecimal/math.rb', line 757 def lgamma(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :lgamma) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :lgamma) prec2 = prec + BigDecimal.double_fig if x < 0.5 return [BigDecimal::INFINITY, 1] if x.frac.zero? loop do # Euler's reflection formula: gamma(z) * gamma(1-z) = pi/sin(pi*z) pi = PI(prec2) sin = _sinpix(x, pi, prec2) log_gamma = BigMath.log(pi, prec2).sub(lgamma(1 - x, prec2).first + BigMath.log(sin.abs, prec2), prec) return [log_gamma, sin > 0 ? 1 : -1] if prec2 + log_gamma.exponent > prec + BigDecimal.double_fig # Retry with higher precision if loss of significance is too large prec2 = prec2 * 3 / 2 end elsif x.frac.zero? && x < 1000 * prec log_gamma = BigMath.log(_gamma_positive_integer(x, prec2), prec) [log_gamma, 1] else # if x is close to 1 or 2, increase precision to reduce loss of significance diff1_exponent = (x - 1).exponent diff2_exponent = (x - 2).exponent extremely_near_one = diff1_exponent < -prec2 extremely_near_two = diff2_exponent < -prec2 if extremely_near_one || extremely_near_two # If x is extreamely close to base = 1 or 2, linear interpolation is accurate enough. # Taylor expansion at x = base is: (x - base) * digamma(base) + (x - base) ** 2 * trigamma(base) / 2 + ... # And we can ignore (x - base) ** 2 and higher order terms. base = extremely_near_one ? 1 : 2 d = BigDecimal(1)._decimal_shift(1 - prec2) log_gamma_d, sign = lgamma(base + d, prec2) return [log_gamma_d.mult(x - base, prec2).div(d, prec), sign] end prec2 += [-diff1_exponent, -diff2_exponent, 0].max a, sum = _gamma_spouge_sum_part(x, prec2) log_gamma = BigMath.log(sum, prec2).add((x - 0.5).mult(BigMath.log(x.add(a - 1, prec2), prec2), prec2) + 1 - x, prec) [log_gamma, 1] end end |
.log(x, prec) ⇒ Object
call-seq:
BigMath.log(decimal, numeric) -> BigDecimal
Computes the natural logarithm of decimal to the specified number of digits of precision, numeric.
If decimal is zero or negative, raises Math::DomainError.
If decimal is positive infinity, returns Infinity.
If decimal is NaN, returns NaN.
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
# File 'lib/bigdecimal.rb', line 255 def log(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :log) raise Math::DomainError, 'Complex argument for BigMath.log' if Complex === x x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :log) return BigDecimal::Internal.nan_computation_result if x.nan? raise Math::DomainError, 'Negative argument for log' if x < 0 return -BigDecimal::Internal.infinity_computation_result if x.zero? return BigDecimal::Internal.infinity_computation_result if x.infinite? return BigDecimal(0) if x == 1 prec2 = prec + BigDecimal.double_fig BigDecimal.save_limit do BigDecimal.limit(0) if x > 10 || x < 0.1 log10 = log(BigDecimal(10), prec2) exponent = x.exponent x = x._decimal_shift(-exponent) if x < 0.3 x *= 10 exponent -= 1 end return (log10 * exponent).add(log(x, prec2), prec) end x_minus_one_exponent = (x - 1).exponent # log(x) = log(sqrt(sqrt(sqrt(sqrt(x))))) * 2**sqrt_steps sqrt_steps = [Integer.sqrt(prec2) + 3 * x_minus_one_exponent, 0].max lg2 = 0.3010299956639812 sqrt_prec = prec2 + [-x_minus_one_exponent, 0].max + (sqrt_steps * lg2).ceil sqrt_steps.times do x = x.sqrt(sqrt_prec) end # Taylor series for log(x) around 1 # log(x) = -log((1 + X) / (1 - X)) where X = (x - 1) / (x + 1) # log(x) = 2 * (X + X**3 / 3 + X**5 / 5 + X**7 / 7 + ...) x = (x - 1).div(x + 1, sqrt_prec) y = x x2 = x.mult(x, prec2) 1.step do |i| n = prec2 + x.exponent - y.exponent + x2.exponent break if n <= 0 || x.zero? x = x.mult(x2.round(n - x2.exponent), n) y = y.add(x.div(2 * i + 1, n), prec2) end y.mult(2 ** (sqrt_steps + 1), prec) end end |
.log10(x, prec) ⇒ Object
call-seq:
BigMath.log10(decimal, numeric) -> BigDecimal
Computes the base 10 logarithm of decimal to the specified number of digits of precision, numeric.
If decimal is zero or negative, raises Math::DomainError.
If decimal is positive infinity, returns Infinity.
If decimal is NaN, returns NaN.
BigMath.log10(BigDecimal('3'), 32).to_s
#=> "0.47712125471966243729502790325512e0"
522 523 524 525 526 527 528 529 530 531 532 533 |
# File 'lib/bigdecimal/math.rb', line 522 def log10(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :log10) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :log10) return BigDecimal::Internal.nan_computation_result if x.nan? return BigDecimal::Internal.infinity_computation_result if x.infinite? == 1 prec2 = prec + BigDecimal.double_fig * 3 / 2 v = log(x, prec2).div(log(BigDecimal(10), prec2), prec2) # Perform half-up rounding to calculate log10(10**n)==n correctly in every rounding mode v = v.round(prec + BigDecimal.double_fig - (v.exponent < 0 ? v.exponent : 0), BigDecimal::ROUND_HALF_UP) v.mult(1, prec) end |
.log1p(x, prec) ⇒ Object
call-seq:
BigMath.log1p(decimal, numeric) -> BigDecimal
Computes log(1 + decimal) to the specified number of digits of precision, numeric.
BigMath.log1p(BigDecimal('0.1'), 32).to_s
#=> "0.95310179804324860043952123280765e-1"
543 544 545 546 547 548 549 |
# File 'lib/bigdecimal/math.rb', line 543 def log1p(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :log1p) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :log1p) raise Math::DomainError, 'Out of domain argument for log1p' if x < -1 return log(x + 1, prec) end |
.log2(x, prec) ⇒ Object
call-seq:
BigMath.log2(decimal, numeric) -> BigDecimal
Computes the base 2 logarithm of decimal to the specified number of digits of precision, numeric.
If decimal is zero or negative, raises Math::DomainError.
If decimal is positive infinity, returns Infinity.
If decimal is NaN, returns NaN.
BigMath.log2(BigDecimal('3'), 32).to_s
#=> "0.15849625007211561814537389439478e1"
494 495 496 497 498 499 500 501 502 503 504 505 |
# File 'lib/bigdecimal/math.rb', line 494 def log2(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :log2) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :log2) return BigDecimal::Internal.nan_computation_result if x.nan? return BigDecimal::Internal.infinity_computation_result if x.infinite? == 1 prec2 = prec + BigDecimal.double_fig * 3 / 2 v = log(x, prec2).div(log(BigDecimal(2), prec2), prec2) # Perform half-up rounding to calculate log2(2**n)==n correctly in every rounding mode v = v.round(prec + BigDecimal.double_fig - (v.exponent < 0 ? v.exponent : 0), BigDecimal::ROUND_HALF_UP) v.mult(1, prec) end |
.PI(prec) ⇒ Object
call-seq:
PI(numeric) -> BigDecimal
Computes the value of pi to the specified number of digits of precision, numeric.
BigMath.PI(32).to_s
#=> "0.31415926535897932384626433832795e1"
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 |
# File 'lib/bigdecimal/math.rb', line 899 def PI(prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :PI) n = prec + BigDecimal.double_fig zero = BigDecimal("0") one = BigDecimal("1") two = BigDecimal("2") m25 = BigDecimal("-0.04") m57121 = BigDecimal("-57121") pi = zero d = one k = one t = BigDecimal("-80") while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0) m = BigDecimal.double_fig if m < BigDecimal.double_fig t = t*m25 d = t.div(k,m) k = k+two pi = pi + d end d = one k = one t = BigDecimal("956") while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0) m = BigDecimal.double_fig if m < BigDecimal.double_fig t = t.div(m57121,n) d = t.div(k,m) pi = pi + d k = k+two end pi.mult(1, prec) end |
.sin(x, prec) ⇒ Object
call-seq:
sin(decimal, numeric) -> BigDecimal
Computes the sine of decimal to the specified number of digits of precision, numeric.
If decimal is Infinity or NaN, returns NaN.
BigMath.sin(BigMath.PI(5)/4, 32).to_s
#=> "0.70710807985947359435812921837984e0"
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# File 'lib/bigdecimal/math.rb', line 155 def sin(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :sin) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :sin) return BigDecimal::Internal.nan_computation_result if x.infinite? || x.nan? n = prec + BigDecimal.double_fig one = BigDecimal("1") two = BigDecimal("2") sign, x = _sin_periodic_reduction(x, n) x1 = x x2 = x.mult(x,n) y = x d = y i = one z = one while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0) m = BigDecimal.double_fig if m < BigDecimal.double_fig x1 = -x2.mult(x1,n) i += two z *= (i-one) * i d = x1.div(z,m) y += d end y = BigDecimal("1") if y > 1 y.mult(sign, prec) end |
.sinh(x, prec) ⇒ Object
call-seq:
sinh(decimal, numeric) -> BigDecimal
Computes the hyperbolic sine of decimal to the specified number of digits of precision, numeric.
If decimal is NaN, returns NaN.
BigMath.sinh(BigDecimal('1'), 32).to_s
#=> "0.11752011936438014568823818505956e1"
356 357 358 359 360 361 362 363 364 365 366 |
# File 'lib/bigdecimal/math.rb', line 356 def sinh(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :sinh) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :sinh) return BigDecimal::Internal.nan_computation_result if x.nan? return BigDecimal::Internal.infinity_computation_result * x.infinite? if x.infinite? prec2 = prec + BigDecimal.double_fig prec2 -= x.exponent if x.exponent < 0 e = exp(x, prec2) (e - BigDecimal(1).div(e, prec2)).div(2, prec) end |
.sqrt(x, prec) ⇒ Object
call-seq:
sqrt(decimal, numeric) -> BigDecimal
Computes the square root of decimal to the specified number of digits of precision, numeric.
BigMath.sqrt(BigDecimal('2'), 32).to_s
#=> "0.14142135623730950488016887242097e1"
64 65 66 67 68 |
# File 'lib/bigdecimal/math.rb', line 64 def sqrt(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :sqrt) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :sqrt) x.sqrt(prec) end |
.tan(x, prec) ⇒ Object
call-seq:
tan(decimal, numeric) -> BigDecimal
Computes the tangent of decimal to the specified number of digits of precision, numeric.
If decimal is Infinity or NaN, returns NaN.
BigMath.tan(BigDecimal("0.0"), 4).to_s
#=> "0.0"
BigMath.tan(BigMath.PI(24) / 4, 32).to_s
#=> "0.99999999999999999999999830836025e0"
214 215 216 217 |
# File 'lib/bigdecimal/math.rb', line 214 def tan(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :tan) sin(x, prec + BigDecimal.double_fig).div(cos(x, prec + BigDecimal.double_fig), prec) end |
.tanh(x, prec) ⇒ Object
call-seq:
tanh(decimal, numeric) -> BigDecimal
Computes the hyperbolic tangent of decimal to the specified number of digits of precision, numeric.
If decimal is NaN, returns NaN.
BigMath.tanh(BigDecimal('1'), 32).to_s
#=> "0.76159415595576488811945828260479e0"
401 402 403 404 405 406 407 408 409 410 411 |
# File 'lib/bigdecimal/math.rb', line 401 def tanh(x, prec) prec = BigDecimal::Internal.coerce_validate_prec(prec, :tanh) x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :tanh) return BigDecimal::Internal.nan_computation_result if x.nan? return BigDecimal(x.infinite?) if x.infinite? prec2 = prec + BigDecimal.double_fig + [-x.exponent, 0].max e = exp(x, prec2) einv = BigDecimal(1).div(e, prec2) (e - einv).div(e + einv, prec) end |