Module: Algebra::PolynomialFactorization::Z
- Included in:
- MPolynomialFactorization, Algebra::PolynomialFactorization
- Defined in:
- lib/algebra/polynomial-factor-int.rb
Instance Method Summary collapse
- #_factorize ⇒ Object
- #centorize(f, n) ⇒ Object
-
#divmod_ED(o) ⇒ Object
divmod in the ring over Euclidian Domain.
- #factorize_int ⇒ Object
- #hensel_lift(g0) ⇒ Object
- #lifting(f, ring) ⇒ Object
- #reduce_over_prime_field(f) ⇒ Object
-
#resolve_c(g, h, c) ⇒ Object
find [a, b] s.t.
-
#resultant_by_elimination(o) ⇒ Object
ground ring must be a field.
- #sqfree_over_integral ⇒ Object
- #try_e(g, u) ⇒ Object
Instance Method Details
#_factorize ⇒ Object
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# File 'lib/algebra/polynomial-factor-int.rb', line 135 def _factorize if constant? return Algebra::Factors.new([[self, 1]]), 0 end f = sqfree_over_integral flc = f.lc f = f.monic_int(flc) f0 = reduce_over_prime_field(f) fa = f0.factorize_modp f1 = f factors = Algebra::Factors.new # fa.each_product0 do |g0| fa.each_product do |g0| next if g0.deg > f1.deg # if fact_q = f1.hensel_lift(g0, f0.class) if fact_q = f1.hensel_lift(g0) fact, f1 = fact_q factors.push [fact, 1] break if f1.deg <= 0 true end end factors.map!{|f2| f2.project(self.class){|c, j| c*flc**j}.pp } facts = factors.fact_all(self) [facts.correct_lc!(self), f0.ground.char] end |
#centorize(f, n) ⇒ Object
25 26 27 28 |
# File 'lib/algebra/polynomial-factor-int.rb', line 25 def centorize(f, n) half = n / 2 f.class.new(*f.collect{|c| c > half ? c - n : c }) end |
#divmod_ED(o) ⇒ Object
divmod in the ring over Euclidian Domain
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
# File 'lib/algebra/polynomial-factor-int.rb', line 51 def divmod_ED(o) # divmod in the ring over Euclidian Domain raise ZeroDivisionError, "divisor is zero" if o.zero? d0, d1 = deg, o.deg if d1 <= 0 a = collect{|c| q, r = (ground.field? ? [ground.zero, c/o.lc] : c.divmond(o.lc)) if r.zero? [q, zero] else return [zero, self] end } [self.class.new(*a), zero] elsif d0 < d1 [zero, self] else q, r = (ground.field? ? [lc/o.lc, ground.zero] : lc.divmod(o.lc)) if r.zero? tk = monomial(d0 - d1) * q e = rt - o.rt * tk q, r = e.divmod_ED(o) [q + tk, r] else [zero, self] end end end |
#factorize_int ⇒ Object
165 166 167 |
# File 'lib/algebra/polynomial-factor-int.rb', line 165 def factorize_int _factorize.first end |
#hensel_lift(g0) ⇒ Object
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
# File 'lib/algebra/polynomial-factor-int.rb', line 101 def hensel_lift(g0) ring, pf, char = self.class, g0.class, g0.class.ground.char f0 = pf.reduce(self) h0, r0 = f0.divmod g0 unless r0.zero? raise "each_product does not work well" #return nil end g = lifting(g0, ring) h = lifting(h0, ring) a, b = 0, 0 0.upto try_e(g, char) do |e| mod = char ** e mod1 = mod * char g = centorize(g + b * mod, mod1) h = centorize(h + a * mod, mod1) q, r = divmod(g) if r.zero? return [g, q] end c = (self - g * h) / mod1 g0, h0, c0 = pf.reduce(g), pf.reduce(h), pf.reduce(c) a0, b0 = resolve_c(g0, h0, c0) a, b = lifting(a0, ring), lifting(b0, ring) end return nil end |
#lifting(f, ring) ⇒ Object
97 98 99 |
# File 'lib/algebra/polynomial-factor-int.rb', line 97 def lifting(f, ring) f.project(ring){|c, i| c.lift} end |
#reduce_over_prime_field(f) ⇒ Object
84 85 86 87 88 89 90 91 92 93 94 95 |
# File 'lib/algebra/polynomial-factor-int.rb', line 84 def reduce_over_prime_field(f) Primes.new.each do |prime| if prime > 10 pf = Algebra::Polynomial.reduction(Integer, prime, "x") f0 = pf.reduce(f) r = f0.resultant_by_elimination(f0.derivate) unless r.zero? return f0 end end end end |
#resolve_c(g, h, c) ⇒ Object
find [a, b] s.t. a * g + b * h == c
13 14 15 16 17 18 19 20 21 22 23 |
# File 'lib/algebra/polynomial-factor-int.rb', line 13 def resolve_c(g, h, c) # find [a, b] s.t. a * g + b * h == c d, a, b = g.gcd_coeff(h) q, r = c.divmod(d) raise "#{c} is not devided by (#{g}, #{h})" unless r.zero? a = a * q b = b * q q, r = a.divmod(h) a = r #= a - q * h b = b + q * g [a, b] end |
#resultant_by_elimination(o) ⇒ Object
ground ring must be a field
80 81 82 |
# File 'lib/algebra/polynomial-factor-int.rb', line 80 def resultant_by_elimination(o) #ground ring must be a field sylvester_matrix(o).determinant_by_elimination end |
#sqfree_over_integral ⇒ Object
44 45 46 47 48 49 |
# File 'lib/algebra/polynomial-factor-int.rb', line 44 def sqfree_over_integral f = pp g = f.derivate.pp h = f.pgcd(g) f / h.pp end |
#try_e(g, u) ⇒ Object
30 31 32 33 34 35 36 37 38 39 40 41 42 |
# File 'lib/algebra/polynomial-factor-int.rb', line 30 def try_e(g, u) m = g.deg c = 1.0 n = (m/2).to_i 0.upto n - 1 do |i| c *= (m - i) / (n - i) end s = 0 each do |c| s += c**2 end (Math.log(c * Math.sqrt(s))/Math.log(u)).to_i + 1 end |