Module: Algebra::MPolynomialFactorization
Defined Under Namespace
Modules: Q
Instance Method Summary
collapse
-
#_factorize(na = 0) ⇒ Object
-
#_hensel_lift(g0, f0, _char, height, where) ⇒ Object
def _hensel_lift(g0, f0, char, height).
-
#_sqfree ⇒ Object
-
#centorize(f, n) ⇒ Object
-
#each_point_int(n0, na) ⇒ Object
-
#each_point_zp(n0, na, char) ⇒ Object
-
#factorize_int(an = 0) ⇒ Object
include PolynomialFactorization::Q.
-
#factorize_modp(an = 0) ⇒ Object
include PolynomialFactorization::Z.
-
#gelfond_bound(char) ⇒ Object
-
#hensel_lift_int(g0, f0, char, height, where) ⇒ Object
def hensel_lift_int(g0, f0, char, height).
-
#hensel_lift_zp(g0, f0, char, height, where) ⇒ Object
def hensel_lift_zp(g0, f0, char, height).
-
#monic_int(na = 0) ⇒ Object
-
#pp(an) ⇒ Object
-
#sqfree ⇒ Object
-
#sqfree_zp ⇒ Object
-
#verschiebung ⇒ Object
Methods included from Q
#contQ, #factorize_rational, #ppQ
#divmod_ED, #hensel_lift, #lifting, #reduce_over_prime_field, #resolve_c, #resultant_by_elimination, #sqfree_over_integral, #try_e
#decompose_on_cofactors_modp, #decompose_on_cofactors_p_adic, #decompose_on_factors, #mk_cofacts
Instance Method Details
#_factorize(na = 0) ⇒ Object
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
|
# File 'lib/algebra/m-polynomial-factor.rb', line 41
def _factorize(na = 0)
pring = Algebra.Polynomial(ground, 'x')
f = self
f_one = nil
pb0 = nil
if ground == Integer
each_point_int(vars.size, na) do |pb0_dash|
pb0 = pb0_dash
f = move_const(pb0) if pb0.find { |x| !x.zero? }
f_one = f.reduce2onevar(pring, na)
break if f_one.psqfree?
end
fact_one, char = f_one._factorize
hensel = :hensel_lift_int
else
char = ground.char
each_point_zp(vars.size, na, char) do |pb0_dash|
pb0 = pb0_dash
f = move_const(pb0) if pb0.find { |x| !x.zero? }
f_one = f.reduce2onevar(pring, na)
break if f_one.sqfree?
end
fact_one = f_one.factorize_modp
hensel = :hensel_lift_zp
end
factors = Factors.new
if fact_one.fact_size <= 1
factors *= self
return factors
end
height = totdeg_away_from(0)
f1 = f
fact_one.each_product do |g0|
f1_one = f1.reduce2onevar(pring, na)
next if g0.deg > f1_one.deg
fact_q = f1.send(hensel, g0, f1_one, char, height, na)
next unless fact_q
f0, f1 = fact_q
factors.push [f0, 1]
break if f1.totdeg <= 0
true
end
factors.collect { |f3, i| [f3.move_const(pb0, -1), i] }
end
|
#_hensel_lift(g0, f0, _char, height, where) ⇒ Object
def _hensel_lift(g0, f0, char, height)
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
# File 'lib/algebra/m-polynomial-factor.rb', line 97
def _hensel_lift(g0, f0, _char, height, where)
ring = self.class
ring_one = g0.class
h0, r0 = f0.divmod g0
raise 'each_product does not work well' unless r0.zero?
ary = [g0, h0]
cofacts = mk_cofacts(ary)
fk = ary.collect { |fx| fx.value_on_one(ring, where) }
height.times do |k|
c = self - fk[0] * fk[1]
h = c.annihilate_away_from(where, k + 1)
h_alpha0 = h.collect_away_from(where, ring_one)
h_alpha = {}
h_alpha0.each do |ind, ha|
h_alpha[ind] = yield(ha, ary, cofacts)
end
hias = ary.collect { {} }
h_alpha.each do |ind, ha_i|
ha_i.each_with_index do |fx, i|
next if fx.zero?
hias[i][ind] = fx
end
end
hi = hias.collect do |hia|
e = ring.zero
hia.each do |ind, fx|
e += ring.monomial(ind) * fx.value_on_one(ring, where)
end
e
end
fk_new = []
hi.each_with_index do |fx, i|
fk_new.push fk[i] + fx
end
fk = fk_new
end
fk
end
|
147
148
149
150
151
152
153
154
155
156
|
# File 'lib/algebra/m-polynomial-factor.rb', line 147
def _sqfree
dvs = []
vars.each_with_index do |_v, i|
dv = derivate_at(i)
next if dv.zero?
dvs.push dv
end
g = gcd_all(*dvs)
self / g
end
|
#centorize(f, n) ⇒ Object
92
93
94
95
96
97
98
99
|
# File 'lib/algebra/m-polynomial-factor-int.rb', line 92
def centorize(f, n)
half = n / 2
f.project(f.class) do |c, _ind|
c = c % n
c > half ? c - n : c
end
end
|
#each_point_int(n0, na) ⇒ Object
17
18
19
20
21
22
23
24
25
26
27
28
29
|
# File 'lib/algebra/m-polynomial-factor.rb', line 17
def each_point_int(n0, na)
pblock = 7
m = 0
loop do
each_point_zp(n0, na, m + pblock) do |pb0|
next if (1...n0 - na).find { |k| pb0[na + k] < m }
yield pb0
end
m += pblock
$stderr.puts "warning (each_point_int): it's hard to find adequate zero point"
end
end
|
#each_point_zp(n0, na, char) ⇒ Object
31
32
33
34
35
36
37
38
39
|
# File 'lib/algebra/m-polynomial-factor.rb', line 31
def each_point_zp(n0, na, char)
avoid_indice = indice_of_constant
Combinatorial.power_cubic(char, n0 - na - 1) do |a|
pb0 = (0..na).collect { 0 } + a
next if avoid_indice.find { |i| !pb0[i].zero? }
yield(pb0)
end
raise 'each_point(limit over)'
end
|
#factorize_int(an = 0) ⇒ Object
include PolynomialFactorization::Q
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
# File 'lib/algebra/m-polynomial-factor-int.rb', line 21
def factorize_int(an = 0)
return Factors.new([[self, 1]]) if constant?
f = self
f = f.sqfree if an == 0
an += 1 while f.deg_at(an) <= 0
f = f.pp(an)
lc_of_f = f.lc_at(an)
f = f.monic_int(an)
facts = f._factorize(an)
facts = facts.map! do |f2|
f3 = f2.project(self.class) { |c, j| c * lc_of_f**j[an] }
f3.pp(an)
end
facts = facts.fact_all_u(self)
facts.mcorrect_lc!(self, an) do |fac|
fac.factorize_int(an + 1)
end
facts
end
|
#factorize_modp(an = 0) ⇒ Object
include PolynomialFactorization::Z
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
# File 'lib/algebra/m-polynomial-factor-zp.rb', line 19
def factorize_modp(an = 0)
f = self
f = f.sqfree_zp if an == 0
an += 1 while f.deg_at(an) <= 0
f = f.pp(an)
lc_of_f = f.lc_at(an)
f = f.monic_int(an)
facts = f._factorize(an)
facts = facts.map! do |f2|
f3 = f2.project(self.class) { |c, j| c * lc_of_f**j[an] }
f3.pp(an)
end
facts = facts.fact_all_u(self)
facts.mcorrect_lc!(self, an) do |fac|
fac.factorize_modp(an + 1)
end
facts
end
|
#gelfond_bound(char) ⇒ Object
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
# File 'lib/algebra/m-polynomial-factor-int.rb', line 45
def gelfond_bound(char)
n = vars.size
ds = (0...n).collect { 0 }
c0 = 0
each do |ind, c|
next if c.zero?
ind.each_with_index do |d0, i|
ds[i] = d0 if d0 > ds[i]
end
c0 = c.abs if c.abs > c0
end
tot = 0
ds.each do |x|
tot += x
end
b = Math::E**tot * c0
l = 0
s = 1
while s <= 2 * b
s *= char
l += 1
end
l
end
|
#hensel_lift_int(g0, f0, char, height, where) ⇒ Object
def hensel_lift_int(g0, f0, char, height)
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
# File 'lib/algebra/m-polynomial-factor-int.rb', line 71
def hensel_lift_int(g0, f0, char, height, where)
pheight = gelfond_bound(char)
fk = _hensel_lift(g0, f0, char, height, where) do |ha, ary, cofacts|
decompose_on_cofactors_p_adic(ha, ary, cofacts, char, pheight)
end
mod = char**pheight
g = centorize(fk[0], mod)
h = centorize(fk[1], mod)
r = self - g * h
return [g, h] if r.zero?
nil
end
|
#hensel_lift_zp(g0, f0, char, height, where) ⇒ Object
def hensel_lift_zp(g0, f0, char, height)
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
|
# File 'lib/algebra/m-polynomial-factor-zp.rb', line 59
def hensel_lift_zp(g0, f0, char, height, where)
fk = _hensel_lift(g0, f0, char, height, where) do |ha, ary, cofacts|
decompose_on_cofactors_modp(ha, ary, cofacts)
end
r = self - fk[0] * fk[1]
return fk if r.zero?
nil
end
|
#monic_int(na = 0) ⇒ Object
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
|
# File 'lib/algebra/m-polynomial-factor.rb', line 164
def monic_int(na = 0)
d = deg_at(na)
a = lc_at(na)
ary = self.class.vars
m = project0(self.class) do |c, ind|
n = ind[na]
if n == d
zero
elsif n < d
c * a**(d - n - 1) * index_eval(self.class, ary, ind)
elsif c.zero?
zero
else
raise 'fatal contradiction!'
end
end
index_eval(self.class, ary, MIndex.monomial(na, d)) + m
end
|
158
159
160
161
162
|
# File 'lib/algebra/m-polynomial-factor.rb', line 158
def pp(an)
x, *a = coeffs_at(an)
content = x.gcd_all(*a)
self / content
end
|
41
42
43
|
# File 'lib/algebra/m-polynomial-factor-int.rb', line 41
def sqfree
_sqfree
end
|
#sqfree_zp ⇒ Object
47
48
49
50
51
52
53
54
55
56
|
# File 'lib/algebra/m-polynomial-factor-zp.rb', line 47
def sqfree_zp
f = self
s = unity
until f.constant?
g = f._sqfree
s *= g
f = (f / g).verschiebung
end
s / s.lc
end
|
#verschiebung ⇒ Object
38
39
40
41
42
43
44
45
|
# File 'lib/algebra/m-polynomial-factor-zp.rb', line 38
def verschiebung
ary = vars
ch = ground.char
e = zero
project0 do |c, ind|
c * index_eval(self.class, ary, ind.collect { |i| i / ch })
end
end
|