Class: Socket

Inherits:
BasicSocket show all
Defined in:
socket.c,
socket.c,
lib/socket.rb

Overview

Class Socket provides access to the underlying operating system socket implementations. It can be used to provide more operating system specific functionality than the protocol-specific socket classes.

The constants defined under Socket::Constants are also defined under Socket. For example, Socket::AF_INET is usable as well as Socket::Constants::AF_INET. See Socket::Constants for the list of constants.

What’s a socket?

Sockets are endpoints of a bidirectionnal communication channel. Sockets can communicate within a process, between processes on the same machine or between different machines. There are many types of socket: TCPSocket, UDPSocket or UNIXSocket for example.

Sockets have their own vocabulary:

domain: The family of protocols:

  • Socket::PF_INET

  • Socket::PF_INET6

  • Socket::PF_UNIX

  • etc.

type: The type of communications between the two endpoints, typically

  • Socket::SOCK_STREAM

  • Socket::SOCK_DGRAM.

protocol: Typically zero. This may be used to identify a variant of a protocol.

hostname: The identifier of a network interface:

  • a string (hostname, IPv4 or IPv6 adress or broadcast

which specifies a broadcast address)
  • a zero-length string which specifies INADDR_ANY

  • an integer (interpreted as binary address in host byte order).

Quick start

Many of the classes, such as TCPSocket, UDPSocket or UNIXSocket, ease the use of sockets comparatively to the equivalent C programming interface.

Let’s create an internet socket using the IPv4 protocol in a C-like manner:

s = Socket.new Socket::AF_INET, Socket::SOCK_STREAM
s.connect Socket.pack_sockaddr_in(80, 'example.com')

You could also use the TCPSocket class:

s = TCPSocket.new 'example.com', 80

A simple server might look like this:

require 'socket'

server = TCPServer.new 2000 # Server bound to port 2000

loop do
  client = server.accept    # Wait for a client to connect
  client.puts "Hello !"
  client.puts "Time is #{Time.now}"
  client.close
end

A simple client may look like this:

require 'socket'

s = TCPSocket.new 'localhost', 2000

while line = s.gets # Read lines from socket
  puts line         # and print them
end

s.close             # close socket when done

Exception Handling

Ruby’s Socket implementation raises exceptions based on the error generated by the system dependent implementation. This is why the methods are documented in a way that isolate Unix-based system exceptions from Windows based exceptions. If more information on a particular exception is needed, please refer to the Unix manual pages or the Windows WinSock reference.

Convenience methods

Although the general way to create socket is Socket.new, there are several methods of socket creation for most cases.

TCP client socket

Socket.tcp, TCPSocket.open

TCP server socket

Socket.tcp_server_loop, TCPServer.open

UNIX client socket

Socket.unix, UNIXSocket.open

UNIX server socket

Socket.unix_server_loop, UNIXServer.open

Documentation by

  • Zach Dennis

  • Sam Roberts

  • Programming Ruby from The Pragmatic Bookshelf.

Much material in this documentation is taken with permission from Programming Ruby from The Pragmatic Bookshelf.

Defined Under Namespace

Classes: AncillaryData, Option, UDPSource

Class Method Summary collapse

Instance Method Summary collapse

Methods inherited from BasicSocket

#close_read, #close_write, #connect_address, do_not_reverse_lookup, #do_not_reverse_lookup, do_not_reverse_lookup=, #do_not_reverse_lookup=, for_fd, #getpeereid, #getpeername, #getsockname, #getsockopt, #local_address, #recv, #recv_nonblock, #recvmsg, #recvmsg_nonblock, #remote_address, #send, #sendmsg, #sendmsg_nonblock, #setsockopt, #shutdown

Constructor Details

#new(domain, socktype[, protocol]) ⇒ Object

Creates a new socket object.

domain should be a communications domain such as: :INET, :INET6, :UNIX, etc.

socktype should be a socket type such as: :STREAM, :DGRAM, :RAW, etc.

protocol is optional and should be a protocol defined in the domain. If protocol is not given, 0 is used internally.

Socket.new(:INET, :STREAM) # TCP socket
Socket.new(:INET, :DGRAM)  # UDP socket
Socket.new(:UNIX, :STREAM) # UNIX stream socket
Socket.new(:UNIX, :DGRAM)  # UNIX datagram socket


38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# File 'socket.c', line 38

static VALUE
sock_initialize(int argc, VALUE *argv, VALUE sock)
{
    VALUE domain, type, protocol;
    int fd;
    int d, t;

    rb_scan_args(argc, argv, "21", &domain, &type, &protocol);
    if (NIL_P(protocol))
        protocol = INT2FIX(0);

    rb_secure(3);
    setup_domain_and_type(domain, &d, type, &t);
    fd = rsock_socket(d, t, NUM2INT(protocol));
    if (fd < 0) rb_sys_fail("socket(2)");

    return rsock_init_sock(sock, fd);
}

Class Method Details

.accept_loop(*sockets) ⇒ Object

yield socket and client address for each a connection accepted via given sockets.

The arguments are a list of sockets. The individual argument should be a socket or an array of sockets.

This method yields the block sequentially. It means that the next connection is not accepted until the block returns. So concurrent mechanism, thread for example, should be used to service multiple clients at a time.



482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# File 'lib/socket.rb', line 482

def self.accept_loop(*sockets) # :yield: socket, client_addrinfo
  sockets.flatten!(1)
  if sockets.empty?
    raise ArgumentError, "no sockets"
  end
  loop {
    readable, _, _ = IO.select(sockets)
    readable.each {|r|
      begin
        sock, addr = r.accept_nonblock
      rescue IO::WaitReadable
        next
      end
      yield sock, addr
    }
  }
end

.getaddrinfo(nodename, servname[, family[, socktype[, protocol[, flags[, reverse_lookup]]]]]) ⇒ Array

Obtains address information for nodename:servname.

family should be an address family such as: :INET, :INET6, :UNIX, etc.

socktype should be a socket type such as: :STREAM, :DGRAM, :RAW, etc.

protocol should be a protocol defined in the family, and defaults to 0 for the family.

flags should be bitwise OR of Socket::AI_* constants.

Socket.getaddrinfo("www.ruby-lang.org", "http", nil, :STREAM)
#=> [["AF_INET", 80, "carbon.ruby-lang.org", "221.186.184.68", 2, 1, 6]] # PF_INET/SOCK_STREAM/IPPROTO_TCP

Socket.getaddrinfo("localhost", nil)
#=> [["AF_INET", 0, "localhost", "127.0.0.1", 2, 1, 6],  # PF_INET/SOCK_STREAM/IPPROTO_TCP
#    ["AF_INET", 0, "localhost", "127.0.0.1", 2, 2, 17], # PF_INET/SOCK_DGRAM/IPPROTO_UDP
#    ["AF_INET", 0, "localhost", "127.0.0.1", 2, 3, 0]]  # PF_INET/SOCK_RAW/IPPROTO_IP

reverse_lookup directs the form of the third element, and has to be one of below. If reverse_lookup is omitted, the default value is nil.

+true+, +:hostname+:  hostname is obtained from numeric address using reverse lookup, which may take a time.
+false+, +:numeric+:  hostname is same as numeric address.
+nil+:              obey to the current +do_not_reverse_lookup+ flag.

If Addrinfo object is preferred, use Addrinfo.getaddrinfo.

Returns:

  • (Array)


1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
# File 'socket.c', line 1158

static VALUE
sock_s_getaddrinfo(int argc, VALUE *argv)
{
    VALUE host, port, family, socktype, protocol, flags, ret, revlookup;
    struct addrinfo hints, *res;
    int norevlookup;

    rb_scan_args(argc, argv, "25", &host, &port, &family, &socktype, &protocol, &flags, &revlookup);

    MEMZERO(&hints, struct addrinfo, 1);
    hints.ai_family = NIL_P(family) ? PF_UNSPEC : rsock_family_arg(family);

    if (!NIL_P(socktype)) {
	hints.ai_socktype = rsock_socktype_arg(socktype);
    }
    if (!NIL_P(protocol)) {
	hints.ai_protocol = NUM2INT(protocol);
    }
    if (!NIL_P(flags)) {
	hints.ai_flags = NUM2INT(flags);
    }
    if (NIL_P(revlookup) || !rsock_revlookup_flag(revlookup, &norevlookup)) {
	norevlookup = rsock_do_not_reverse_lookup;
    }
    res = rsock_getaddrinfo(host, port, &hints, 0);

    ret = make_addrinfo(res, norevlookup);
    freeaddrinfo(res);
    return ret;
}

.gethostbyaddr(address_string[, address_family]) ⇒ Object

Obtains the host information for address.

p Socket.gethostbyaddr([221,186,184,68].pack("CCCC"))
#=> ["carbon.ruby-lang.org", [], 2, "\xDD\xBA\xB8D"]


1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
# File 'socket.c', line 1000

static VALUE
sock_s_gethostbyaddr(int argc, VALUE *argv)
{
    VALUE addr, family;
    struct hostent *h;
    char **pch;
    VALUE ary, names;
    int t = AF_INET;

    rb_scan_args(argc, argv, "11", &addr, &family);
    StringValue(addr);
    if (!NIL_P(family)) {
	t = rsock_family_arg(family);
    }
#ifdef AF_INET6
    else if (RSTRING_LEN(addr) == 16) {
	t = AF_INET6;
    }
#endif
    h = gethostbyaddr(RSTRING_PTR(addr), RSTRING_LENINT(addr), t);
    if (h == NULL) {
#ifdef HAVE_HSTRERROR
	extern int h_errno;
	rb_raise(rb_eSocket, "%s", (char*)hstrerror(h_errno));
#else
	rb_raise(rb_eSocket, "host not found");
#endif
    }
    ary = rb_ary_new();
    rb_ary_push(ary, rb_str_new2(h->h_name));
    names = rb_ary_new();
    rb_ary_push(ary, names);
    if (h->h_aliases != NULL) {
	for (pch = h->h_aliases; *pch; pch++) {
	    rb_ary_push(names, rb_str_new2(*pch));
	}
    }
    rb_ary_push(ary, INT2NUM(h->h_addrtype));
#ifdef h_addr
    for (pch = h->h_addr_list; *pch; pch++) {
	rb_ary_push(ary, rb_str_new(*pch, h->h_length));
    }
#else
    rb_ary_push(ary, rb_str_new(h->h_addr, h->h_length));
#endif

    return ary;
}

.gethostbyname(hostname) ⇒ Array

Obtains the host information for hostname.

p Socket.gethostbyname("hal") #=> ["localhost", ["hal"], 2, "\x7F\x00\x00\x01"]

Returns:

  • (Array)


984
985
986
987
988
989
# File 'socket.c', line 984

static VALUE
sock_s_gethostbyname(VALUE obj, VALUE host)
{
    rb_secure(3);
    return rsock_make_hostent(host, rsock_addrinfo(host, Qnil, SOCK_STREAM, AI_CANONNAME), sock_sockaddr);
}

.gethostnameObject



915
916
917
918
919
920
921
922
923
# File 'socket.c', line 915

static VALUE
sock_gethostname(VALUE obj)
{
    struct utsname un;

    rb_secure(3);
    uname(&un);
    return rb_str_new2(un.nodename);
}

.getnameinfo(sockaddr[, flags]) ⇒ Array

Obtains name information for sockaddr.

sockaddr should be one of follows.

  • packed sockaddr string such as Socket.sockaddr_in(80, “127.0.0.1”)

  • 3-elements array such as [“AF_INET”, 80, “127.0.0.1”]

  • 4-elements array such as [“AF_INET”, 80, ignored, “127.0.0.1”]

flags should be bitwise OR of Socket::NI_* constants.

Note: The last form is compatible with IPSocket#addr and IPSocket#peeraddr.

Socket.getnameinfo(Socket.sockaddr_in(80, "127.0.0.1"))       #=> ["localhost", "www"]
Socket.getnameinfo(["AF_INET", 80, "127.0.0.1"])              #=> ["localhost", "www"]
Socket.getnameinfo(["AF_INET", 80, "localhost", "127.0.0.1"]) #=> ["localhost", "www"]

If Addrinfo object is preferred, use Addrinfo#getnameinfo.

Returns:

  • (Array)


1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
# File 'socket.c', line 1211

static VALUE
sock_s_getnameinfo(int argc, VALUE *argv)
{
    VALUE sa, af = Qnil, host = Qnil, port = Qnil, flags, tmp;
    char *hptr, *pptr;
    char hbuf[1024], pbuf[1024];
    int fl;
    struct addrinfo hints, *res = NULL, *r;
    int error;
    struct sockaddr_storage ss;
    struct sockaddr *sap;

    sa = flags = Qnil;
    rb_scan_args(argc, argv, "11", &sa, &flags);

    fl = 0;
    if (!NIL_P(flags)) {
	fl = NUM2INT(flags);
    }
    tmp = rb_check_sockaddr_string_type(sa);
    if (!NIL_P(tmp)) {
	sa = tmp;
	if (sizeof(ss) < (size_t)RSTRING_LEN(sa)) {
	    rb_raise(rb_eTypeError, "sockaddr length too big");
	}
	memcpy(&ss, RSTRING_PTR(sa), RSTRING_LEN(sa));
	if ((size_t)RSTRING_LEN(sa) != SS_LEN(&ss)) {
	    rb_raise(rb_eTypeError, "sockaddr size differs - should not happen");
	}
	sap = (struct sockaddr*)&ss;
	goto call_nameinfo;
    }
    tmp = rb_check_array_type(sa);
    if (!NIL_P(tmp)) {
	sa = tmp;
	MEMZERO(&hints, struct addrinfo, 1);
	if (RARRAY_LEN(sa) == 3) {
	    af = RARRAY_PTR(sa)[0];
	    port = RARRAY_PTR(sa)[1];
	    host = RARRAY_PTR(sa)[2];
	}
	else if (RARRAY_LEN(sa) >= 4) {
	    af = RARRAY_PTR(sa)[0];
	    port = RARRAY_PTR(sa)[1];
	    host = RARRAY_PTR(sa)[3];
	    if (NIL_P(host)) {
		host = RARRAY_PTR(sa)[2];
	    }
	    else {
		/*
		 * 4th element holds numeric form, don't resolve.
		 * see rsock_ipaddr().
		 */
#ifdef AI_NUMERICHOST /* AIX 4.3.3 doesn't have AI_NUMERICHOST. */
		hints.ai_flags |= AI_NUMERICHOST;
#endif
	    }
	}
	else {
	    rb_raise(rb_eArgError, "array size should be 3 or 4, %ld given",
		     RARRAY_LEN(sa));
	}
	/* host */
	if (NIL_P(host)) {
	    hptr = NULL;
	}
	else {
	    strncpy(hbuf, StringValuePtr(host), sizeof(hbuf));
	    hbuf[sizeof(hbuf) - 1] = '\0';
	    hptr = hbuf;
	}
	/* port */
	if (NIL_P(port)) {
	    strcpy(pbuf, "0");
	    pptr = NULL;
	}
	else if (FIXNUM_P(port)) {
	    snprintf(pbuf, sizeof(pbuf), "%ld", NUM2LONG(port));
	    pptr = pbuf;
	}
	else {
	    strncpy(pbuf, StringValuePtr(port), sizeof(pbuf));
	    pbuf[sizeof(pbuf) - 1] = '\0';
	    pptr = pbuf;
	}
	hints.ai_socktype = (fl & NI_DGRAM) ? SOCK_DGRAM : SOCK_STREAM;
	/* af */
        hints.ai_family = NIL_P(af) ? PF_UNSPEC : rsock_family_arg(af);
	error = rb_getaddrinfo(hptr, pptr, &hints, &res);
	if (error) goto error_exit_addr;
	sap = res->ai_addr;
    }
    else {
	rb_raise(rb_eTypeError, "expecting String or Array");
    }

  call_nameinfo:
    error = rb_getnameinfo(sap, SA_LEN(sap), hbuf, sizeof(hbuf),
			   pbuf, sizeof(pbuf), fl);
    if (error) goto error_exit_name;
    if (res) {
	for (r = res->ai_next; r; r = r->ai_next) {
	    char hbuf2[1024], pbuf2[1024];

	    sap = r->ai_addr;
	    error = rb_getnameinfo(sap, SA_LEN(sap), hbuf2, sizeof(hbuf2),
				   pbuf2, sizeof(pbuf2), fl);
	    if (error) goto error_exit_name;
	    if (strcmp(hbuf, hbuf2) != 0|| strcmp(pbuf, pbuf2) != 0) {
		freeaddrinfo(res);
		rb_raise(rb_eSocket, "sockaddr resolved to multiple nodename");
	    }
	}
	freeaddrinfo(res);
    }
    return rb_assoc_new(rb_str_new2(hbuf), rb_str_new2(pbuf));

  error_exit_addr:
    if (res) freeaddrinfo(res);
    rsock_raise_socket_error("getaddrinfo", error);

  error_exit_name:
    if (res) freeaddrinfo(res);
    rsock_raise_socket_error("getnameinfo", error);

    UNREACHABLE;
}

.getservbyname(service_name) ⇒ Object .getservbyname(service_name, protocol_name) ⇒ Object

Obtains the port number for service_name.

If protocol_name is not given, “tcp” is assumed.

Socket.getservbyname("smtp")          #=> 25
Socket.getservbyname("shell")         #=> 514
Socket.getservbyname("syslog", "udp") #=> 514


1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
# File 'socket.c', line 1062

static VALUE
sock_s_getservbyname(int argc, VALUE *argv)
{
    VALUE service, proto;
    struct servent *sp;
    long port;
    const char *servicename, *protoname = "tcp";

    rb_scan_args(argc, argv, "11", &service, &proto);
    StringValue(service);
    if (!NIL_P(proto)) StringValue(proto);
    servicename = StringValueCStr(service);
    if (!NIL_P(proto)) protoname = StringValueCStr(proto);
    sp = getservbyname(servicename, protoname);
    if (sp) {
	port = ntohs(sp->s_port);
    }
    else {
	char *end;

	port = STRTOUL(servicename, &end, 0);
	if (*end != '\0') {
	    rb_raise(rb_eSocket, "no such service %s/%s", servicename, protoname);
	}
    }
    return INT2FIX(port);
}

.getservbyport(port[, protocol_name]) ⇒ Object

Obtains the port number for port.

If protocol_name is not given, “tcp” is assumed.

Socket.getservbyport(80)         #=> "www"
Socket.getservbyport(514, "tcp") #=> "shell"
Socket.getservbyport(514, "udp") #=> "syslog"


1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
# File 'socket.c', line 1103

static VALUE
sock_s_getservbyport(int argc, VALUE *argv)
{
    VALUE port, proto;
    struct servent *sp;
    long portnum;
    const char *protoname = "tcp";

    rb_scan_args(argc, argv, "11", &port, &proto);
    portnum = NUM2LONG(port);
    if (portnum != (uint16_t)portnum) {
	const char *s = portnum > 0 ? "big" : "small";
	rb_raise(rb_eRangeError, "integer %ld too %s to convert into `int16_t'", portnum, s);
    }
    if (!NIL_P(proto)) protoname = StringValueCStr(proto);

    sp = getservbyport((int)htons((uint16_t)portnum), protoname);
    if (!sp) {
	rb_raise(rb_eSocket, "no such service for port %d/%s", (int)portnum, protoname);
    }
    return rb_tainted_str_new2(sp->s_name);
}

.ip_address_listArray

Returns local IP addresses as an array.

The array contains Addrinfo objects.

pp Socket.ip_address_list
#=> [#<Addrinfo: 127.0.0.1>,
     #<Addrinfo: 192.168.0.128>,
     #<Addrinfo: ::1>,
     ...]

Returns:

  • (Array)


1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
# File 'socket.c', line 1548

static VALUE
socket_s_ip_address_list(VALUE self)
{
#if defined(HAVE_GETIFADDRS)
    struct ifaddrs *ifp = NULL;
    struct ifaddrs *p;
    int ret;
    VALUE list;

    ret = getifaddrs(&ifp);
    if (ret == -1) {
        rb_sys_fail("getifaddrs");
    }

    list = rb_ary_new();
    for (p = ifp; p; p = p->ifa_next) {
        if (p->ifa_addr != NULL && IS_IP_FAMILY(p->ifa_addr->sa_family)) {
            rb_ary_push(list, sockaddr_obj(p->ifa_addr));
        }
    }

    freeifaddrs(ifp);

    return list;
#elif defined(SIOCGLIFCONF) && defined(SIOCGLIFNUM) && !defined(__hpux)
    /* Solaris if_tcp(7P) */
    /* HP-UX has SIOCGLIFCONF too.  But it uses different struct */
    int fd = -1;
    int ret;
    struct lifnum ln;
    struct lifconf lc;
    char *reason = NULL;
    int save_errno;
    int i;
    VALUE list = Qnil;

    lc.lifc_buf = NULL;

    fd = socket(AF_INET, SOCK_DGRAM, 0);
    if (fd == -1)
        rb_sys_fail("socket");

    memset(&ln, 0, sizeof(ln));
    ln.lifn_family = AF_UNSPEC;

    ret = ioctl(fd, SIOCGLIFNUM, &ln);
    if (ret == -1) {
	reason = "SIOCGLIFNUM";
	goto finish;
    }

    memset(&lc, 0, sizeof(lc));
    lc.lifc_family = AF_UNSPEC;
    lc.lifc_flags = 0;
    lc.lifc_len = sizeof(struct lifreq) * ln.lifn_count;
    lc.lifc_req = xmalloc(lc.lifc_len);

    ret = ioctl(fd, SIOCGLIFCONF, &lc);
    if (ret == -1) {
	reason = "SIOCGLIFCONF";
	goto finish;
    }

    list = rb_ary_new();
    for (i = 0; i < ln.lifn_count; i++) {
	struct lifreq *req = &lc.lifc_req[i];
        if (IS_IP_FAMILY(req->lifr_addr.ss_family)) {
            if (req->lifr_addr.ss_family == AF_INET6 &&
                IN6_IS_ADDR_LINKLOCAL(&((struct sockaddr_in6 *)(&req->lifr_addr))->sin6_addr) &&
                ((struct sockaddr_in6 *)(&req->lifr_addr))->sin6_scope_id == 0) {
                struct lifreq req2;
                memcpy(req2.lifr_name, req->lifr_name, LIFNAMSIZ);
                ret = ioctl(fd, SIOCGLIFINDEX, &req2);
                if (ret == -1) {
                    reason = "SIOCGLIFINDEX";
                    goto finish;
                }
                ((struct sockaddr_in6 *)(&req->lifr_addr))->sin6_scope_id = req2.lifr_index;
            }
            rb_ary_push(list, sockaddr_obj((struct sockaddr *)&req->lifr_addr));
        }
    }

  finish:
    save_errno = errno;
    if (lc.lifc_buf != NULL)
	xfree(lc.lifc_req);
    if (fd != -1)
	close(fd);
    errno = save_errno;

    if (reason)
	rb_sys_fail(reason);
    return list;

#elif defined(SIOCGIFCONF)
    int fd = -1;
    int ret;
#define EXTRA_SPACE (sizeof(struct ifconf) + sizeof(struct sockaddr_storage))
    char initbuf[4096+EXTRA_SPACE];
    char *buf = initbuf;
    int bufsize;
    struct ifconf conf;
    struct ifreq *req;
    VALUE list = Qnil;
    const char *reason = NULL;
    int save_errno;

    fd = socket(AF_INET, SOCK_DGRAM, 0);
    if (fd == -1)
        rb_sys_fail("socket");

    bufsize = sizeof(initbuf);
    buf = initbuf;

  retry:
    conf.ifc_len = bufsize;
    conf.ifc_req = (struct ifreq *)buf;

    /* fprintf(stderr, "bufsize: %d\n", bufsize); */

    ret = ioctl(fd, SIOCGIFCONF, &conf);
    if (ret == -1) {
        reason = "SIOCGIFCONF";
        goto finish;
    }

    /* fprintf(stderr, "conf.ifc_len: %d\n", conf.ifc_len); */

    if (bufsize - EXTRA_SPACE < conf.ifc_len) {
	if (bufsize < conf.ifc_len) {
	    /* NetBSD returns required size for all interfaces. */
	    bufsize = conf.ifc_len + EXTRA_SPACE;
	}
	else {
	    bufsize = bufsize << 1;
	}
	if (buf == initbuf)
	    buf = NULL;
	buf = xrealloc(buf, bufsize);
	goto retry;
    }

    close(fd);
    fd = -1;

    list = rb_ary_new();
    req = conf.ifc_req;
    while ((char*)req < (char*)conf.ifc_req + conf.ifc_len) {
	struct sockaddr *addr = &req->ifr_addr;
        if (IS_IP_FAMILY(addr->sa_family)) {
	    rb_ary_push(list, sockaddr_obj(addr));
	}
#ifdef HAVE_SA_LEN
# ifndef _SIZEOF_ADDR_IFREQ
#  define _SIZEOF_ADDR_IFREQ(r) \
          (sizeof(struct ifreq) + \
           (sizeof(struct sockaddr) < (r).ifr_addr.sa_len ? \
            (r).ifr_addr.sa_len - sizeof(struct sockaddr) : \
            0))
# endif
	req = (struct ifreq *)((char*)req + _SIZEOF_ADDR_IFREQ(*req));
#else
	req = (struct ifreq *)((char*)req + sizeof(struct ifreq));
#endif
    }

  finish:

    save_errno = errno;
    if (buf != initbuf)
        xfree(buf);
    if (fd != -1)
	close(fd);
    errno = save_errno;

    if (reason)
	rb_sys_fail(reason);
    return list;

#undef EXTRA_SPACE
#elif defined(_WIN32)
    typedef struct ip_adapter_unicast_address_st {
	unsigned LONG_LONG dummy0;
	struct ip_adapter_unicast_address_st *Next;
	struct {
	    struct sockaddr *lpSockaddr;
	    int iSockaddrLength;
	} Address;
	int dummy1;
	int dummy2;
	int dummy3;
	long dummy4;
	long dummy5;
	long dummy6;
    } ip_adapter_unicast_address_t;
    typedef struct ip_adapter_anycast_address_st {
	unsigned LONG_LONG dummy0;
	struct ip_adapter_anycast_address_st *Next;
	struct {
	    struct sockaddr *lpSockaddr;
	    int iSockaddrLength;
	} Address;
    } ip_adapter_anycast_address_t;
    typedef struct ip_adapter_addresses_st {
	unsigned LONG_LONG dummy0;
	struct ip_adapter_addresses_st *Next;
	void *dummy1;
	ip_adapter_unicast_address_t *FirstUnicastAddress;
	ip_adapter_anycast_address_t *FirstAnycastAddress;
	void *dummy2;
	void *dummy3;
	void *dummy4;
	void *dummy5;
	void *dummy6;
	BYTE dummy7[8];
	DWORD dummy8;
	DWORD dummy9;
	DWORD dummy10;
	DWORD IfType;
	int OperStatus;
	DWORD dummy12;
	DWORD dummy13[16];
	void *dummy14;
    } ip_adapter_addresses_t;
    typedef ULONG (WINAPI *GetAdaptersAddresses_t)(ULONG, ULONG, PVOID, ip_adapter_addresses_t *, PULONG);
    HMODULE h;
    GetAdaptersAddresses_t pGetAdaptersAddresses;
    ULONG len;
    DWORD ret;
    ip_adapter_addresses_t *adapters;
    VALUE list;

    h = LoadLibrary("iphlpapi.dll");
    if (!h)
	rb_notimplement();
    pGetAdaptersAddresses = (GetAdaptersAddresses_t)GetProcAddress(h, "GetAdaptersAddresses");
    if (!pGetAdaptersAddresses) {
	FreeLibrary(h);
	rb_notimplement();
    }

    ret = pGetAdaptersAddresses(AF_UNSPEC, 0, NULL, NULL, &len);
    if (ret != ERROR_SUCCESS && ret != ERROR_BUFFER_OVERFLOW) {
	errno = rb_w32_map_errno(ret);
	FreeLibrary(h);
	rb_sys_fail("GetAdaptersAddresses");
    }
    adapters = (ip_adapter_addresses_t *)ALLOCA_N(BYTE, len);
    ret = pGetAdaptersAddresses(AF_UNSPEC, 0, NULL, adapters, &len);
    if (ret != ERROR_SUCCESS) {
	errno = rb_w32_map_errno(ret);
	FreeLibrary(h);
	rb_sys_fail("GetAdaptersAddresses");
    }

    list = rb_ary_new();
    for (; adapters; adapters = adapters->Next) {
	ip_adapter_unicast_address_t *uni;
	ip_adapter_anycast_address_t *any;
	if (adapters->OperStatus != 1)	/* 1 means IfOperStatusUp */
	    continue;
	for (uni = adapters->FirstUnicastAddress; uni; uni = uni->Next) {
#ifndef INET6
	    if (uni->Address.lpSockaddr->sa_family == AF_INET)
#else
	    if (IS_IP_FAMILY(uni->Address.lpSockaddr->sa_family))
#endif
		rb_ary_push(list, sockaddr_obj(uni->Address.lpSockaddr));
	}
	for (any = adapters->FirstAnycastAddress; any; any = any->Next) {
#ifndef INET6
	    if (any->Address.lpSockaddr->sa_family == AF_INET)
#else
	    if (IS_IP_FAMILY(any->Address.lpSockaddr->sa_family))
#endif
		rb_ary_push(list, sockaddr_obj(any->Address.lpSockaddr));
	}
    }

    FreeLibrary(h);
    return list;
#endif
}

.sockaddr_in(port, host) ⇒ Object .pack_sockaddr_in(port, host) ⇒ Object

Packs port and host as an AF_INET/AF_INET6 sockaddr string.

Socket.sockaddr_in(80, "127.0.0.1")
#=> "\x02\x00\x00P\x7F\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"

Socket.sockaddr_in(80, "::1")
#=> "\n\x00\x00P\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00"


1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
# File 'socket.c', line 1353

static VALUE
sock_s_pack_sockaddr_in(VALUE self, VALUE port, VALUE host)
{
    struct addrinfo *res = rsock_addrinfo(host, port, 0, 0);
    VALUE addr = rb_str_new((char*)res->ai_addr, res->ai_addrlen);

    freeaddrinfo(res);
    OBJ_INFECT(addr, port);
    OBJ_INFECT(addr, host);

    return addr;
}

.sockaddr_un(path) ⇒ Object .pack_sockaddr_un(path) ⇒ Object

Packs path as an AF_UNIX sockaddr string.

Socket.sockaddr_un("/tmp/sock") #=> "\x01\x00/tmp/sock\x00\x00..."


1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
# File 'socket.c', line 1419

static VALUE
sock_s_pack_sockaddr_un(VALUE self, VALUE path)
{
    struct sockaddr_un sockaddr;
    VALUE addr;

    StringValue(path);
    MEMZERO(&sockaddr, struct sockaddr_un, 1);
    sockaddr.sun_family = AF_UNIX;
    if (sizeof(sockaddr.sun_path) < (size_t)RSTRING_LEN(path)) {
        rb_raise(rb_eArgError, "too long unix socket path (%"PRIuSIZE" bytes given but %"PRIuSIZE" bytes max)",
            (size_t)RSTRING_LEN(path), sizeof(sockaddr.sun_path));
    }
    memcpy(sockaddr.sun_path, RSTRING_PTR(path), RSTRING_LEN(path));
    addr = rb_str_new((char*)&sockaddr, rsock_unix_sockaddr_len(path));
    OBJ_INFECT(addr, path);

    return addr;
}

.pair(domain, type, protocol) ⇒ Array .socketpair(domain, type, protocol) ⇒ Array

Creates a pair of sockets connected each other.

domain should be a communications domain such as: :INET, :INET6, :UNIX, etc.

socktype should be a socket type such as: :STREAM, :DGRAM, :RAW, etc.

protocol should be a protocol defined in the domain, defaults to 0 for the domain.

s1, s2 = Socket.pair(:UNIX, :DGRAM, 0)
s1.send "a", 0
s1.send "b", 0
p s2.recv(10) #=> "a"
p s2.recv(10) #=> "b"

Overloads:

  • .pair(domain, type, protocol) ⇒ Array

    Returns:

    • (Array)
  • .socketpair(domain, type, protocol) ⇒ Array

    Returns:

    • (Array)


152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# File 'socket.c', line 152

VALUE
rsock_sock_s_socketpair(int argc, VALUE *argv, VALUE klass)
{
    VALUE domain, type, protocol;
    int d, t, p, sp[2];
    int ret;
    VALUE s1, s2, r;

    rb_scan_args(argc, argv, "21", &domain, &type, &protocol);
    if (NIL_P(protocol))
        protocol = INT2FIX(0);

    setup_domain_and_type(domain, &d, type, &t);
    p = NUM2INT(protocol);
    ret = rsock_socketpair(d, t, p, sp);
    if (ret < 0) {
	rb_sys_fail("socketpair(2)");
    }
    rb_fd_fix_cloexec(sp[0]);
    rb_fd_fix_cloexec(sp[1]);

    s1 = rsock_init_sock(rb_obj_alloc(klass), sp[0]);
    s2 = rsock_init_sock(rb_obj_alloc(klass), sp[1]);
    r = rb_assoc_new(s1, s2);
    if (rb_block_given_p()) {
        return rb_ensure(pair_yield, r, io_close, s1);
    }
    return r;
}

.sockaddr_in(port, host) ⇒ Object .pack_sockaddr_in(port, host) ⇒ Object

Packs port and host as an AF_INET/AF_INET6 sockaddr string.

Socket.sockaddr_in(80, "127.0.0.1")
#=> "\x02\x00\x00P\x7F\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"

Socket.sockaddr_in(80, "::1")
#=> "\n\x00\x00P\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00"


1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
# File 'socket.c', line 1353

static VALUE
sock_s_pack_sockaddr_in(VALUE self, VALUE port, VALUE host)
{
    struct addrinfo *res = rsock_addrinfo(host, port, 0, 0);
    VALUE addr = rb_str_new((char*)res->ai_addr, res->ai_addrlen);

    freeaddrinfo(res);
    OBJ_INFECT(addr, port);
    OBJ_INFECT(addr, host);

    return addr;
}

.sockaddr_un(path) ⇒ Object .pack_sockaddr_un(path) ⇒ Object

Packs path as an AF_UNIX sockaddr string.

Socket.sockaddr_un("/tmp/sock") #=> "\x01\x00/tmp/sock\x00\x00..."


1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
# File 'socket.c', line 1419

static VALUE
sock_s_pack_sockaddr_un(VALUE self, VALUE path)
{
    struct sockaddr_un sockaddr;
    VALUE addr;

    StringValue(path);
    MEMZERO(&sockaddr, struct sockaddr_un, 1);
    sockaddr.sun_family = AF_UNIX;
    if (sizeof(sockaddr.sun_path) < (size_t)RSTRING_LEN(path)) {
        rb_raise(rb_eArgError, "too long unix socket path (%"PRIuSIZE" bytes given but %"PRIuSIZE" bytes max)",
            (size_t)RSTRING_LEN(path), sizeof(sockaddr.sun_path));
    }
    memcpy(sockaddr.sun_path, RSTRING_PTR(path), RSTRING_LEN(path));
    addr = rb_str_new((char*)&sockaddr, rsock_unix_sockaddr_len(path));
    OBJ_INFECT(addr, path);

    return addr;
}

.pair(domain, type, protocol) ⇒ Array .socketpair(domain, type, protocol) ⇒ Array

Creates a pair of sockets connected each other.

domain should be a communications domain such as: :INET, :INET6, :UNIX, etc.

socktype should be a socket type such as: :STREAM, :DGRAM, :RAW, etc.

protocol should be a protocol defined in the domain, defaults to 0 for the domain.

s1, s2 = Socket.pair(:UNIX, :DGRAM, 0)
s1.send "a", 0
s1.send "b", 0
p s2.recv(10) #=> "a"
p s2.recv(10) #=> "b"

Overloads:

  • .pair(domain, type, protocol) ⇒ Array

    Returns:

    • (Array)
  • .socketpair(domain, type, protocol) ⇒ Array

    Returns:

    • (Array)


152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# File 'socket.c', line 152

VALUE
rsock_sock_s_socketpair(int argc, VALUE *argv, VALUE klass)
{
    VALUE domain, type, protocol;
    int d, t, p, sp[2];
    int ret;
    VALUE s1, s2, r;

    rb_scan_args(argc, argv, "21", &domain, &type, &protocol);
    if (NIL_P(protocol))
        protocol = INT2FIX(0);

    setup_domain_and_type(domain, &d, type, &t);
    p = NUM2INT(protocol);
    ret = rsock_socketpair(d, t, p, sp);
    if (ret < 0) {
	rb_sys_fail("socketpair(2)");
    }
    rb_fd_fix_cloexec(sp[0]);
    rb_fd_fix_cloexec(sp[1]);

    s1 = rsock_init_sock(rb_obj_alloc(klass), sp[0]);
    s2 = rsock_init_sock(rb_obj_alloc(klass), sp[1]);
    r = rb_assoc_new(s1, s2);
    if (rb_block_given_p()) {
        return rb_ensure(pair_yield, r, io_close, s1);
    }
    return r;
}

.tcp(host, port, *rest) ⇒ Object

:call-seq:

Socket.tcp(host, port, local_host=nil, local_port=nil, [opts]) {|socket| ... }
Socket.tcp(host, port, local_host=nil, local_port=nil, [opts])

creates a new socket object connected to host:port using TCP/IP.

If local_host:local_port is given, the socket is bound to it.

The optional last argument opts is options represented by a hash. opts may have following options:

:connect_timeout

specify the timeout in seconds.

If a block is given, the block is called with the socket. The value of the block is returned. The socket is closed when this method returns.

The optional last argument opts is options represented by a hash. opts may have following options:

:timeout

specify the timeout in seconds.

If no block is given, the socket is returned.

Socket.tcp("www.ruby-lang.org", 80) {|sock|
  sock.print "GET / HTTP/1.0\r\nHost: www.ruby-lang.org\r\n\r\n"
  sock.close_write
  puts sock.read
}

Raises:

  • (ArgumentError)


304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# File 'lib/socket.rb', line 304

def self.tcp(host, port, *rest) # :yield: socket
  opts = Hash === rest.last ? rest.pop : {}
  raise ArgumentError, "wrong number of arguments (#{rest.length} for 2)" if 2 < rest.length
  local_host, local_port = rest
  last_error = nil
  ret = nil

  connect_timeout = opts[:connect_timeout]

  local_addr_list = nil
  if local_host != nil || local_port != nil
    local_addr_list = Addrinfo.getaddrinfo(local_host, local_port, nil, :STREAM, nil)
  end

  Addrinfo.foreach(host, port, nil, :STREAM) {|ai|
    if local_addr_list
      local_addr = local_addr_list.find {|local_ai| local_ai.afamily == ai.afamily }
      next if !local_addr
    else
      local_addr = nil
    end
    begin
      sock = local_addr ?
        ai.connect_from(local_addr, :timeout => connect_timeout) :
        ai.connect(:timeout => connect_timeout)
    rescue SystemCallError
      last_error = $!
      next
    end
    ret = sock
    break
  }
  if !ret
    if last_error
      raise last_error
    else
      raise SocketError, "no appropriate local address"
    end
  end
  if block_given?
    begin
      yield ret
    ensure
      ret.close if !ret.closed?
    end
  else
    ret
  end
end

.tcp_server_loop(host = nil, port, &b) ⇒ Object

creates a TCP/IP server on port and calls the block for each connection accepted. The block is called with a socket and a client_address as an Addrinfo object.

If host is specified, it is used with port to determine the server addresses.

The socket is not closed when the block returns. So application should close it explicitly.

This method calls the block sequentially. It means that the next connection is not accepted until the block returns. So concurrent mechanism, thread for example, should be used to service multiple clients at a time.

Note that Addrinfo.getaddrinfo is used to determine the server socket addresses. When Addrinfo.getaddrinfo returns two or more addresses, IPv4 and IPv6 address for example, all of them are used. Socket.tcp_server_loop succeeds if one socket can be used at least.

# Sequential echo server.
# It services only one client at a time.
Socket.tcp_server_loop(16807) {|sock, client_addrinfo|
  begin
    IO.copy_stream(sock, sock)
  ensure
    sock.close
  end
}

# Threaded echo server
# It services multiple clients at a time.
# Note that it may accept connections too much.
Socket.tcp_server_loop(16807) {|sock, client_addrinfo|
  Thread.new {
    begin
      IO.copy_stream(sock, sock)
    ensure
      sock.close
    end
  }
}


541
542
543
544
545
# File 'lib/socket.rb', line 541

def self.tcp_server_loop(host=nil, port, &b) # :yield: socket, client_addrinfo
  tcp_server_sockets(host, port) {|sockets|
    accept_loop(sockets, &b)
  }
end

.tcp_server_sockets(host = nil, port) ⇒ Object

creates TCP/IP server sockets for host and port. host is optional.

If no block given, it returns an array of listening sockets.

If a block is given, the block is called with the sockets. The value of the block is returned. The socket is closed when this method returns.

If port is 0, actual port number is choosen dynamically. However all sockets in the result has same port number.

# tcp_server_sockets returns two sockets.
sockets = Socket.tcp_server_sockets(1296)
p sockets #=> [#<Socket:fd 3>, #<Socket:fd 4>]

# The sockets contains IPv6 and IPv4 sockets.
sockets.each {|s| p s.local_address }
#=> #<Addrinfo: [::]:1296 TCP>
#   #<Addrinfo: 0.0.0.0:1296 TCP>

# IPv6 and IPv4 socket has same port number, 53114, even if it is choosen dynamically.
sockets = Socket.tcp_server_sockets(0)
sockets.each {|s| p s.local_address }
#=> #<Addrinfo: [::]:53114 TCP>
#   #<Addrinfo: 0.0.0.0:53114 TCP>

# The block is called with the sockets.
Socket.tcp_server_sockets(0) {|sockets|
  p sockets #=> [#<Socket:fd 3>, #<Socket:fd 4>]
}


439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# File 'lib/socket.rb', line 439

def self.tcp_server_sockets(host=nil, port)
  if port == 0
    sockets = tcp_server_sockets_port0(host)
  else
    begin
      last_error = nil
      sockets = []
      Addrinfo.foreach(host, port, nil, :STREAM, nil, Socket::AI_PASSIVE) {|ai|
        begin
          s = ai.listen
        rescue SystemCallError
          last_error = $!
          next
        end
        sockets << s
      }
      if sockets.empty?
        raise last_error
      end
    ensure
      sockets.each {|s| s.close if !s.closed? } if $!
    end
  end
  if block_given?
    begin
      yield sockets
    ensure
      sockets.each {|s| s.close if !s.closed? }
    end
  else
    sockets
  end
end

.udp_server_loop(host = nil, port, &b) ⇒ Object

:call-seq:

Socket.udp_server_loop(port) {|msg, msg_src| ... }
Socket.udp_server_loop(host, port) {|msg, msg_src| ... }

creates a UDP/IP server on port and calls the block for each message arrived. The block is called with the message and its source information.

This method allocates sockets internally using port. If host is specified, it is used conjunction with port to determine the server addresses.

The msg is a string.

The msg_src is a Socket::UDPSource object. It is used for reply.

# UDP/IP echo server.
Socket.udp_server_loop(9261) {|msg, msg_src|
  msg_src.reply msg
}


713
714
715
716
717
# File 'lib/socket.rb', line 713

def self.udp_server_loop(host=nil, port, &b) # :yield: message, message_source
  udp_server_sockets(host, port) {|sockets|
    udp_server_loop_on(sockets, &b)
  }
end

.udp_server_loop_on(sockets, &b) ⇒ Object

:call-seq:

Socket.udp_server_loop_on(sockets) {|msg, msg_src| ... }

Run UDP/IP server loop on the given sockets.

The return value of Socket.udp_server_sockets is appropriate for the argument.

It calls the block for each message received.



686
687
688
689
690
691
# File 'lib/socket.rb', line 686

def self.udp_server_loop_on(sockets, &b) # :yield: msg, msg_src
  loop {
    readable, _, _ = IO.select(sockets)
    udp_server_recv(readable, &b)
  }
end

.udp_server_recv(sockets) ⇒ Object

:call-seq:

Socket.udp_server_recv(sockets) {|msg, msg_src| ... }

Receive UDP/IP packets from the given sockets. For each packet received, the block is called.

The block receives msg and msg_src. msg is a string which is the payload of the received packet. msg_src is a Socket::UDPSource object which is used for reply.

Socket.udp_server_loop can be implemented using this method as follows.

udp_server_sockets(host, port) {|sockets|
  loop {
    readable, _, _ = IO.select(sockets)
    udp_server_recv(readable) {|msg, msg_src| ... }
  }
}


656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
# File 'lib/socket.rb', line 656

def self.udp_server_recv(sockets)
  sockets.each {|r|
    begin
      msg, sender_addrinfo, _, *controls = r.recvmsg_nonblock
    rescue IO::WaitReadable
      next
    end
    ai = r.local_address
    if ai.ipv6? and pktinfo = controls.find {|c| c.cmsg_is?(:IPV6, :PKTINFO) }
      ai = Addrinfo.udp(pktinfo.ipv6_pktinfo_addr.ip_address, ai.ip_port)
      yield msg, UDPSource.new(sender_addrinfo, ai) {|reply_msg|
        r.sendmsg reply_msg, 0, sender_addrinfo, pktinfo
      }
    else
      yield msg, UDPSource.new(sender_addrinfo, ai) {|reply_msg|
        r.send reply_msg, 0, sender_addrinfo
      }
    end
  }
end

.udp_server_sockets(host = nil, port) ⇒ Object

:call-seq:

Socket.udp_server_sockets([host, ] port)

Creates UDP/IP sockets for a UDP server.

If no block given, it returns an array of sockets.

If a block is given, the block is called with the sockets. The value of the block is returned. The sockets are closed when this method returns.

If port is zero, some port is choosen. But the choosen port is used for the all sockets.

# UDP/IP echo server
Socket.udp_server_sockets(0) {|sockets|
  p sockets.first.local_address.ip_port     #=> 32963
  Socket.udp_server_loop_on(sockets) {|msg, msg_src|
    msg_src.reply msg
  }
}


569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
# File 'lib/socket.rb', line 569

def self.udp_server_sockets(host=nil, port)
  last_error = nil
  sockets = []

  ipv6_recvpktinfo = nil
  if defined? Socket::AncillaryData
    if defined? Socket::IPV6_RECVPKTINFO # RFC 3542
      ipv6_recvpktinfo = Socket::IPV6_RECVPKTINFO
    elsif defined? Socket::IPV6_PKTINFO # RFC 2292
      ipv6_recvpktinfo = Socket::IPV6_PKTINFO
    end
  end

  local_addrs = Socket.ip_address_list

  ip_list = []
  Addrinfo.foreach(host, port, nil, :DGRAM, nil, Socket::AI_PASSIVE) {|ai|
    if ai.ipv4? && ai.ip_address == "0.0.0.0"
      local_addrs.each {|a|
        next if !a.ipv4?
        ip_list << Addrinfo.new(a.to_sockaddr, :INET, :DGRAM, 0);
      }
    elsif ai.ipv6? && ai.ip_address == "::" && !ipv6_recvpktinfo
      local_addrs.each {|a|
        next if !a.ipv6?
        ip_list << Addrinfo.new(a.to_sockaddr, :INET6, :DGRAM, 0);
      }
    else
      ip_list << ai
    end
  }

  if port == 0
    sockets = ip_sockets_port0(ip_list, false)
  else
    ip_list.each {|ip|
      ai = Addrinfo.udp(ip.ip_address, port)
      begin
        s = ai.bind
      rescue SystemCallError
        last_error = $!
        next
      end
      sockets << s
    }
    if sockets.empty?
      raise last_error
    end
  end

  sockets.each {|s|
    ai = s.local_address
    if ipv6_recvpktinfo && ai.ipv6? && ai.ip_address == "::"
      s.setsockopt(:IPV6, ipv6_recvpktinfo, 1)
    end
  }

  if block_given?
    begin
      yield sockets
    ensure
      sockets.each {|s| s.close if !s.closed? } if sockets
    end
  else
    sockets
  end
end

.unix(path) ⇒ Object

creates a new socket connected to path using UNIX socket socket.

If a block is given, the block is called with the socket. The value of the block is returned. The socket is closed when this method returns.

If no block is given, the socket is returned.

# talk to /tmp/sock socket.
Socket.unix("/tmp/sock") {|sock|
  t = Thread.new { IO.copy_stream(sock, STDOUT) }
  IO.copy_stream(STDIN, sock)
  t.join
}


763
764
765
766
767
768
769
770
771
772
773
774
775
# File 'lib/socket.rb', line 763

def self.unix(path) # :yield: socket
  addr = Addrinfo.unix(path)
  sock = addr.connect
  if block_given?
    begin
      yield sock
    ensure
      sock.close if !sock.closed?
    end
  else
    sock
  end
end

.unix_server_loop(path, &b) ⇒ Object

creates a UNIX socket server on path. It calls the block for each socket accepted.

If host is specified, it is used with port to determine the server ports.

The socket is not closed when the block returns. So application should close it.

This method deletes the socket file pointed by path at first if the file is a socket file and it is owned by the user of the application. This is safe only if the directory of path is not changed by a malicious user. So don’t use /tmp/malicious-users-directory/socket. Note that /tmp/socket and /tmp/your-private-directory/socket is safe assuming that /tmp has sticky bit.

# Sequential echo server.
# It services only one client at a time.
Socket.unix_server_loop("/tmp/sock") {|sock, client_addrinfo|
  begin
    IO.copy_stream(sock, sock)
  ensure
    sock.close
  end
}


850
851
852
853
854
# File 'lib/socket.rb', line 850

def self.unix_server_loop(path, &b) # :yield: socket, client_addrinfo
  unix_server_socket(path) {|serv|
    accept_loop(serv, &b)
  }
end

.unix_server_socket(path) ⇒ Object

creates a UNIX server socket on path

If no block given, it returns a listening socket.

If a block is given, it is called with the socket and the block value is returned. When the block exits, the socket is closed and the socket file is removed.

socket = Socket.unix_server_socket("/tmp/s")
p socket                  #=> #<Socket:fd 3>
p socket.local_address    #=> #<Addrinfo: /tmp/s SOCK_STREAM>

Socket.unix_server_socket("/tmp/sock") {|s|
  p s                     #=> #<Socket:fd 3>
  p s.local_address       #=> # #<Addrinfo: /tmp/sock SOCK_STREAM>
}


793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
# File 'lib/socket.rb', line 793

def self.unix_server_socket(path)
  if !unix_socket_abstract_name?(path)
    begin
      st = File.lstat(path)
    rescue Errno::ENOENT
    end
    if st && st.socket? && st.owned?
      File.unlink path
    end
  end
  s = Addrinfo.unix(path).listen
  if block_given?
    begin
      yield s
    ensure
      s.close if !s.closed?
      if !unix_socket_abstract_name?(path)
        File.unlink path
      end
    end
  else
    s
  end
end

.unpack_sockaddr_in(sockaddr) ⇒ Array

Unpacks sockaddr into port and ip_address.

sockaddr should be a string or an addrinfo for AF_INET/AF_INET6.

sockaddr = Socket.sockaddr_in(80, "127.0.0.1")
p sockaddr #=> "\x02\x00\x00P\x7F\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
p Socket.unpack_sockaddr_in(sockaddr) #=> [80, "127.0.0.1"]

Returns:

  • (Array)


1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
# File 'socket.c', line 1379

static VALUE
sock_s_unpack_sockaddr_in(VALUE self, VALUE addr)
{
    struct sockaddr_in * sockaddr;
    VALUE host;

    sockaddr = (struct sockaddr_in*)SockAddrStringValuePtr(addr);
    if (RSTRING_LEN(addr) <
        (char*)&((struct sockaddr *)sockaddr)->sa_family +
        sizeof(((struct sockaddr *)sockaddr)->sa_family) -
        (char*)sockaddr)
        rb_raise(rb_eArgError, "too short sockaddr");
    if (((struct sockaddr *)sockaddr)->sa_family != AF_INET
#ifdef INET6
        && ((struct sockaddr *)sockaddr)->sa_family != AF_INET6
#endif
        ) {
#ifdef INET6
        rb_raise(rb_eArgError, "not an AF_INET/AF_INET6 sockaddr");
#else
        rb_raise(rb_eArgError, "not an AF_INET sockaddr");
#endif
    }
    host = rsock_make_ipaddr((struct sockaddr*)sockaddr);
    OBJ_INFECT(host, addr);
    return rb_assoc_new(INT2NUM(ntohs(sockaddr->sin_port)), host);
}

.unpack_sockaddr_un(sockaddr) ⇒ Object

Unpacks sockaddr into path.

sockaddr should be a string or an addrinfo for AF_UNIX.

sockaddr = Socket.sockaddr_un("/tmp/sock")
p Socket.unpack_sockaddr_un(sockaddr) #=> "/tmp/sock"


1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
# File 'socket.c', line 1451

static VALUE
sock_s_unpack_sockaddr_un(VALUE self, VALUE addr)
{
    struct sockaddr_un * sockaddr;
    VALUE path;

    sockaddr = (struct sockaddr_un*)SockAddrStringValuePtr(addr);
    if (RSTRING_LEN(addr) <
        (char*)&((struct sockaddr *)sockaddr)->sa_family +
        sizeof(((struct sockaddr *)sockaddr)->sa_family) -
        (char*)sockaddr)
        rb_raise(rb_eArgError, "too short sockaddr");
    if (((struct sockaddr *)sockaddr)->sa_family != AF_UNIX) {
        rb_raise(rb_eArgError, "not an AF_UNIX sockaddr");
    }
    if (sizeof(struct sockaddr_un) < (size_t)RSTRING_LEN(addr)) {
	rb_raise(rb_eTypeError, "too long sockaddr_un - %ld longer than %d",
		 RSTRING_LEN(addr), (int)sizeof(struct sockaddr_un));
    }
    path = rsock_unixpath_str(sockaddr, RSTRING_LENINT(addr));
    OBJ_INFECT(path, addr);
    return path;
}

Instance Method Details

#acceptArray

Accepts a next connection. Returns a new Socket object and Addrinfo object.

serv = Socket.new(:INET, :STREAM, 0)
serv.listen(5)
c = Socket.new(:INET, :STREAM, 0)
c.connect(serv.connect_address)
p serv.accept #=> [#<Socket:fd 6>, #<Addrinfo: 127.0.0.1:48555 TCP>]

Returns:

  • (Array)


753
754
755
756
757
758
759
760
761
762
763
764
765
# File 'socket.c', line 753

static VALUE
sock_accept(VALUE sock)
{
    rb_io_t *fptr;
    VALUE sock2;
    struct sockaddr_storage buf;
    socklen_t len = (socklen_t)sizeof buf;

    GetOpenFile(sock, fptr);
    sock2 = rsock_s_accept(rb_cSocket,fptr->fd,(struct sockaddr*)&buf,&len);

    return rb_assoc_new(sock2, rsock_io_socket_addrinfo(sock2, (struct sockaddr*)&buf, len));
}

#accept_nonblockArray

Accepts an incoming connection using accept(2) after O_NONBLOCK is set for the underlying file descriptor. It returns an array containing the accepted socket for the incoming connection, client_socket, and an Addrinfo, client_addrinfo.

Example

# In one script, start this first require ‘socket’ include Socket::Constants socket = Socket.new(AF_INET, SOCK_STREAM, 0) sockaddr = Socket.sockaddr_in(2200, ‘localhost’) socket.bind(sockaddr) socket.listen(5) begin # emulate blocking accept client_socket, client_addrinfo = socket.accept_nonblock rescue IO::WaitReadable, Errno::EINTR IO.select() retry end puts “The client said, ‘#Socket.client_socketclient_socket.readlineclient_socket.readline.chomp’” client_socket.puts “Hello from script one!” socket.close

# In another script, start this second require ‘socket’ include Socket::Constants socket = Socket.new(AF_INET, SOCK_STREAM, 0) sockaddr = Socket.sockaddr_in(2200, ‘localhost’) socket.connect(sockaddr) socket.puts “Hello from script 2.” puts “The server said, ‘#Socket.socketsocket.readlinesocket.readline.chomp’” socket.close

Refer to Socket#accept for the exceptions that may be thrown if the call to accept_nonblock fails.

Socket#accept_nonblock may raise any error corresponding to accept(2) failure, including Errno::EWOULDBLOCK.

If the exception is Errno::EWOULDBLOCK, Errno::AGAIN, Errno::ECONNABORTED or Errno::EPROTO, it is extended by IO::WaitReadable. So IO::WaitReadable can be used to rescue the exceptions for retrying accept_nonblock.

See

  • Socket#accept

Returns:

  • (Array)


818
819
820
821
822
823
824
825
826
827
828
829
# File 'socket.c', line 818

static VALUE
sock_accept_nonblock(VALUE sock)
{
    rb_io_t *fptr;
    VALUE sock2;
    struct sockaddr_storage buf;
    socklen_t len = (socklen_t)sizeof buf;

    GetOpenFile(sock, fptr);
    sock2 = rsock_s_accept_nonblock(rb_cSocket, fptr, (struct sockaddr *)&buf, &len);
    return rb_assoc_new(sock2, rsock_io_socket_addrinfo(sock2, (struct sockaddr*)&buf, len));
}

#bind(local_sockaddr) ⇒ 0

Binds to the given local address.

Parameter

  • local_sockaddr - the struct sockaddr contained in a string or an Addrinfo object

Example

require ‘socket’

# use Addrinfo socket = Socket.new(:INET, :STREAM, 0) socket.bind(Addrinfo.tcp(“127.0.0.1”, 2222)) p socket.local_address #=> #<Addrinfo: 127.0.0.1:2222 TCP>

# use struct sockaddr include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, ‘localhost’ ) socket.bind( sockaddr )

Unix-based Exceptions

On unix-based based systems the following system exceptions may be raised if the call to bind fails:

  • Errno::EACCES - the specified sockaddr is protected and the current user does not have permission to bind to it

  • Errno::EADDRINUSE - the specified sockaddr is already in use

  • Errno::EADDRNOTAVAIL - the specified sockaddr is not available from the local machine

  • Errno::EAFNOSUPPORT - the specified sockaddr is not a valid address for the family of the calling socket

  • Errno::EBADF - the sockaddr specified is not a valid file descriptor

  • Errno::EFAULT - the sockaddr argument cannot be accessed

  • Errno::EINVAL - the socket is already bound to an address, and the protocol does not support binding to the new sockaddr or the socket has been shut down.

  • Errno::EINVAL - the address length is not a valid length for the address family

  • Errno::ENAMETOOLONG - the pathname resolved had a length which exceeded PATH_MAX

  • Errno::ENOBUFS - no buffer space is available

  • Errno::ENOSR - there were insufficient STREAMS resources available to complete the operation

  • Errno::ENOTSOCK - the socket does not refer to a socket

  • Errno::EOPNOTSUPP - the socket type of the socket does not support binding to an address

On unix-based based systems if the address family of the calling socket is Socket::AF_UNIX the follow exceptions may be raised if the call to bind fails:

  • Errno::EACCES - search permission is denied for a component of the prefix path or write access to the socket is denied

  • Errno::EDESTADDRREQ - the sockaddr argument is a null pointer

  • Errno::EISDIR - same as Errno::EDESTADDRREQ

  • Errno::EIO - an i/o error occurred

  • Errno::ELOOP - too many symbolic links were encountered in translating the pathname in sockaddr

  • Errno::ENAMETOOLLONG - a component of a pathname exceeded NAME_MAX characters, or an entire pathname exceeded PATH_MAX characters

  • Errno::ENOENT - a component of the pathname does not name an existing file or the pathname is an empty string

  • Errno::ENOTDIR - a component of the path prefix of the pathname in sockaddr is not a directory

  • Errno::EROFS - the name would reside on a read only filesystem

Windows Exceptions

On Windows systems the following system exceptions may be raised if the call to bind fails:

  • Errno::ENETDOWN– the network is down

  • Errno::EACCES - the attempt to connect the datagram socket to the broadcast address failed

  • Errno::EADDRINUSE - the socket’s local address is already in use

  • Errno::EADDRNOTAVAIL - the specified address is not a valid address for this computer

  • Errno::EFAULT - the socket’s internal address or address length parameter is too small or is not a valid part of the user space addressed

  • Errno::EINVAL - the socket is already bound to an address

  • Errno::ENOBUFS - no buffer space is available

  • Errno::ENOTSOCK - the socket argument does not refer to a socket

See

  • bind manual pages on unix-based systems

  • bind function in Microsoft’s Winsock functions reference

Returns:

  • (0)


462
463
464
465
466
467
468
469
470
471
472
473
# File 'socket.c', line 462

static VALUE
sock_bind(VALUE sock, VALUE addr)
{
    rb_io_t *fptr;

    SockAddrStringValue(addr);
    GetOpenFile(sock, fptr);
    if (bind(fptr->fd, (struct sockaddr*)RSTRING_PTR(addr), RSTRING_LENINT(addr)) < 0)
	rb_sys_fail("bind(2)");

    return INT2FIX(0);
}

#connect(remote_sockaddr) ⇒ 0

Requests a connection to be made on the given remote_sockaddr. Returns 0 if successful, otherwise an exception is raised.

Parameter

  • remote_sockaddr - the struct sockaddr contained in a string or Addrinfo object

Example:

# Pull down Google’s web page require ‘socket’ include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 80, ‘www.google.com’ ) socket.connect( sockaddr ) socket.write( “GET / HTTP/1.0rnrn” ) results = socket.read

Unix-based Exceptions

On unix-based systems the following system exceptions may be raised if the call to connect fails:

  • Errno::EACCES - search permission is denied for a component of the prefix path or write access to the socket is denied

  • Errno::EADDRINUSE - the sockaddr is already in use

  • Errno::EADDRNOTAVAIL - the specified sockaddr is not available from the local machine

  • Errno::EAFNOSUPPORT - the specified sockaddr is not a valid address for the address family of the specified socket

  • Errno::EALREADY - a connection is already in progress for the specified socket

  • Errno::EBADF - the socket is not a valid file descriptor

  • Errno::ECONNREFUSED - the target sockaddr was not listening for connections refused the connection request

  • Errno::ECONNRESET - the remote host reset the connection request

  • Errno::EFAULT - the sockaddr cannot be accessed

  • Errno::EHOSTUNREACH - the destination host cannot be reached (probably because the host is down or a remote router cannot reach it)

  • Errno::EINPROGRESS - the O_NONBLOCK is set for the socket and the connection cannot be immediately established; the connection will be established asynchronously

  • Errno::EINTR - the attempt to establish the connection was interrupted by delivery of a signal that was caught; the connection will be established asynchronously

  • Errno::EISCONN - the specified socket is already connected

  • Errno::EINVAL - the address length used for the sockaddr is not a valid length for the address family or there is an invalid family in sockaddr

  • Errno::ENAMETOOLONG - the pathname resolved had a length which exceeded PATH_MAX

  • Errno::ENETDOWN - the local interface used to reach the destination is down

  • Errno::ENETUNREACH - no route to the network is present

  • Errno::ENOBUFS - no buffer space is available

  • Errno::ENOSR - there were insufficient STREAMS resources available to complete the operation

  • Errno::ENOTSOCK - the socket argument does not refer to a socket

  • Errno::EOPNOTSUPP - the calling socket is listening and cannot be connected

  • Errno::EPROTOTYPE - the sockaddr has a different type than the socket bound to the specified peer address

  • Errno::ETIMEDOUT - the attempt to connect time out before a connection was made.

On unix-based systems if the address family of the calling socket is AF_UNIX the follow exceptions may be raised if the call to connect fails:

  • Errno::EIO - an i/o error occurred while reading from or writing to the file system

  • Errno::ELOOP - too many symbolic links were encountered in translating the pathname in sockaddr

  • Errno::ENAMETOOLLONG - a component of a pathname exceeded NAME_MAX characters, or an entire pathname exceeded PATH_MAX characters

  • Errno::ENOENT - a component of the pathname does not name an existing file or the pathname is an empty string

  • Errno::ENOTDIR - a component of the path prefix of the pathname in sockaddr is not a directory

Windows Exceptions

On Windows systems the following system exceptions may be raised if the call to connect fails:

  • Errno::ENETDOWN - the network is down

  • Errno::EADDRINUSE - the socket’s local address is already in use

  • Errno::EINTR - the socket was cancelled

  • Errno::EINPROGRESS - a blocking socket is in progress or the service provider is still processing a callback function. Or a nonblocking connect call is in progress on the socket.

  • Errno::EALREADY - see Errno::EINVAL

  • Errno::EADDRNOTAVAIL - the remote address is not a valid address, such as ADDR_ANY TODO check ADDRANY TO INADDR_ANY

  • Errno::EAFNOSUPPORT - addresses in the specified family cannot be used with with this socket

  • Errno::ECONNREFUSED - the target sockaddr was not listening for connections refused the connection request

  • Errno::EFAULT - the socket’s internal address or address length parameter is too small or is not a valid part of the user space address

  • Errno::EINVAL - the socket is a listening socket

  • Errno::EISCONN - the socket is already connected

  • Errno::ENETUNREACH - the network cannot be reached from this host at this time

  • Errno::EHOSTUNREACH - no route to the network is present

  • Errno::ENOBUFS - no buffer space is available

  • Errno::ENOTSOCK - the socket argument does not refer to a socket

  • Errno::ETIMEDOUT - the attempt to connect time out before a connection was made.

  • Errno::EWOULDBLOCK - the socket is marked as nonblocking and the connection cannot be completed immediately

  • Errno::EACCES - the attempt to connect the datagram socket to the broadcast address failed

See

  • connect manual pages on unix-based systems

  • connect function in Microsoft’s Winsock functions reference

Returns:

  • (0)


296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# File 'socket.c', line 296

static VALUE
sock_connect(VALUE sock, VALUE addr)
{
    rb_io_t *fptr;
    int fd, n;

    SockAddrStringValue(addr);
    addr = rb_str_new4(addr);
    GetOpenFile(sock, fptr);
    fd = fptr->fd;
    n = rsock_connect(fd, (struct sockaddr*)RSTRING_PTR(addr), RSTRING_LENINT(addr), 0);
    if (n < 0) {
	rb_sys_fail("connect(2)");
    }

    return INT2FIX(n);
}

#connect_nonblock(remote_sockaddr) ⇒ 0

Requests a connection to be made on the given remote_sockaddr after O_NONBLOCK is set for the underlying file descriptor. Returns 0 if successful, otherwise an exception is raised.

Parameter

  • remote_sockaddr - the struct sockaddr contained in a string or Addrinfo object

Example:

# Pull down Google’s web page require ‘socket’ include Socket::Constants socket = Socket.new(AF_INET, SOCK_STREAM, 0) sockaddr = Socket.sockaddr_in(80, ‘www.google.com’) begin # emulate blocking connect socket.connect_nonblock(sockaddr) rescue IO::WaitWritable IO.select(nil, [socket]) # wait 3-way handshake completion begin socket.connect_nonblock(sockaddr) # check connection failure rescue Errno::EISCONN end end socket.write(“GET / HTTP/1.0rnrn”) results = socket.read

Refer to Socket#connect for the exceptions that may be thrown if the call to connect_nonblock fails.

Socket#connect_nonblock may raise any error corresponding to connect(2) failure, including Errno::EINPROGRESS.

If the exception is Errno::EINPROGRESS, it is extended by IO::WaitWritable. So IO::WaitWritable can be used to rescue the exceptions for retrying connect_nonblock.

See

  • Socket#connect

Returns:

  • (0)


356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# File 'socket.c', line 356

static VALUE
sock_connect_nonblock(VALUE sock, VALUE addr)
{
    rb_io_t *fptr;
    int n;

    SockAddrStringValue(addr);
    addr = rb_str_new4(addr);
    GetOpenFile(sock, fptr);
    rb_io_set_nonblock(fptr);
    n = connect(fptr->fd, (struct sockaddr*)RSTRING_PTR(addr), RSTRING_LENINT(addr));
    if (n < 0) {
        if (errno == EINPROGRESS)
            rb_mod_sys_fail(rb_mWaitWritable, "connect(2) would block");
	rb_sys_fail("connect(2)");
    }

    return INT2FIX(n);
}

#ipv6only!Object

enable the socket option IPV6_V6ONLY if IPV6_V6ONLY is available.



267
268
269
270
271
# File 'lib/socket.rb', line 267

def ipv6only!
  if defined? Socket::IPV6_V6ONLY
    self.setsockopt(:IPV6, :V6ONLY, 1)
  end
end

#listen(int) ⇒ 0

Listens for connections, using the specified int as the backlog. A call to listen only applies if the socket is of type SOCK_STREAM or SOCK_SEQPACKET.

Parameter

  • backlog - the maximum length of the queue for pending connections.

Example 1

require ‘socket’ include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, ‘localhost’ ) socket.bind( sockaddr ) socket.listen( 5 )

Example 2 (listening on an arbitrary port, unix-based systems only):

require ‘socket’ include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) socket.listen( 1 )

Unix-based Exceptions

On unix based systems the above will work because a new sockaddr struct is created on the address ADDR_ANY, for an arbitrary port number as handed off by the kernel. It will not work on Windows, because Windows requires that the socket is bound by calling bind before it can listen.

If the backlog amount exceeds the implementation-dependent maximum queue length, the implementation’s maximum queue length will be used.

On unix-based based systems the following system exceptions may be raised if the call to listen fails:

  • Errno::EBADF - the socket argument is not a valid file descriptor

  • Errno::EDESTADDRREQ - the socket is not bound to a local address, and the protocol does not support listening on an unbound socket

  • Errno::EINVAL - the socket is already connected

  • Errno::ENOTSOCK - the socket argument does not refer to a socket

  • Errno::EOPNOTSUPP - the socket protocol does not support listen

  • Errno::EACCES - the calling process does not have appropriate privileges

  • Errno::EINVAL - the socket has been shut down

  • Errno::ENOBUFS - insufficient resources are available in the system to complete the call

Windows Exceptions

On Windows systems the following system exceptions may be raised if the call to listen fails:

  • Errno::ENETDOWN - the network is down

  • Errno::EADDRINUSE - the socket’s local address is already in use. This usually occurs during the execution of bind but could be delayed if the call to bind was to a partially wildcard address (involving ADDR_ANY) and if a specific address needs to be committed at the time of the call to listen

  • Errno::EINPROGRESS - a Windows Sockets 1.1 call is in progress or the service provider is still processing a callback function

  • Errno::EINVAL - the socket has not been bound with a call to bind.

  • Errno::EISCONN - the socket is already connected

  • Errno::EMFILE - no more socket descriptors are available

  • Errno::ENOBUFS - no buffer space is available

  • Errno::ENOTSOC - socket is not a socket

  • Errno::EOPNOTSUPP - the referenced socket is not a type that supports the listen method

See

  • listen manual pages on unix-based systems

  • listen function in Microsoft’s Winsock functions reference

Returns:

  • (0)


545
546
547
548
549
550
551
552
553
554
555
556
557
558
# File 'socket.c', line 545

VALUE
rsock_sock_listen(VALUE sock, VALUE log)
{
    rb_io_t *fptr;
    int backlog;

    rb_secure(4);
    backlog = NUM2INT(log);
    GetOpenFile(sock, fptr);
    if (listen(fptr->fd, backlog) < 0)
	rb_sys_fail("listen(2)");

    return INT2FIX(0);
}

#recvfrom(maxlen) ⇒ Array #recvfrom(maxlen, flags) ⇒ Array

Receives up to maxlen bytes from socket. flags is zero or more of the MSG_ options. The first element of the results, mesg, is the data received. The second element, sender_addrinfo, contains protocol-specific address information of the sender.

Parameters

  • maxlen - the maximum number of bytes to receive from the socket

  • flags - zero or more of the MSG_ options

Example

# In one file, start this first require ‘socket’ include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, ‘localhost’ ) socket.bind( sockaddr ) socket.listen( 5 ) client, client_addrinfo = socket.accept data = client.recvfrom( 20 )[0].chomp puts “I only received 20 bytes ‘#data’” sleep 1 socket.close

# In another file, start this second require ‘socket’ include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, ‘localhost’ ) socket.connect( sockaddr ) socket.puts “Watch this get cut short!” socket.close

Unix-based Exceptions

On unix-based based systems the following system exceptions may be raised if the call to recvfrom fails:

  • Errno::EAGAIN - the socket file descriptor is marked as O_NONBLOCK and no data is waiting to be received; or MSG_OOB is set and no out-of-band data is available and either the socket file descriptor is marked as O_NONBLOCK or the socket does not support blocking to wait for out-of-band-data

  • Errno::EWOULDBLOCK - see Errno::EAGAIN

  • Errno::EBADF - the socket is not a valid file descriptor

  • Errno::ECONNRESET - a connection was forcibly closed by a peer

  • Errno::EFAULT - the socket’s internal buffer, address or address length cannot be accessed or written

  • Errno::EINTR - a signal interrupted recvfrom before any data was available

  • Errno::EINVAL - the MSG_OOB flag is set and no out-of-band data is available

  • Errno::EIO - an i/o error occurred while reading from or writing to the filesystem

  • Errno::ENOBUFS - insufficient resources were available in the system to perform the operation

  • Errno::ENOMEM - insufficient memory was available to fulfill the request

  • Errno::ENOSR - there were insufficient STREAMS resources available to complete the operation

  • Errno::ENOTCONN - a receive is attempted on a connection-mode socket that is not connected

  • Errno::ENOTSOCK - the socket does not refer to a socket

  • Errno::EOPNOTSUPP - the specified flags are not supported for this socket type

  • Errno::ETIMEDOUT - the connection timed out during connection establishment or due to a transmission timeout on an active connection

Windows Exceptions

On Windows systems the following system exceptions may be raised if the call to recvfrom fails:

  • Errno::ENETDOWN - the network is down

  • Errno::EFAULT - the internal buffer and from parameters on socket are not part of the user address space, or the internal fromlen parameter is too small to accommodate the peer address

  • Errno::EINTR - the (blocking) call was cancelled by an internal call to the WinSock function WSACancelBlockingCall

  • Errno::EINPROGRESS - a blocking Windows Sockets 1.1 call is in progress or the service provider is still processing a callback function

  • Errno::EINVAL - socket has not been bound with a call to bind, or an unknown flag was specified, or MSG_OOB was specified for a socket with SO_OOBINLINE enabled, or (for byte stream-style sockets only) the internal len parameter on socket was zero or negative

  • Errno::EISCONN - socket is already connected. The call to recvfrom is not permitted with a connected socket on a socket that is connection oriented or connectionless.

  • Errno::ENETRESET - the connection has been broken due to the keep-alive activity detecting a failure while the operation was in progress.

  • Errno::EOPNOTSUPP - MSG_OOB was specified, but socket is not stream-style such as type SOCK_STREAM. OOB data is not supported in the communication domain associated with socket, or socket is unidirectional and supports only send operations

  • Errno::ESHUTDOWN - socket has been shutdown. It is not possible to call recvfrom on a socket after shutdown has been invoked.

  • Errno::EWOULDBLOCK - socket is marked as nonblocking and a call to recvfrom would block.

  • Errno::EMSGSIZE - the message was too large to fit into the specified buffer and was truncated.

  • Errno::ETIMEDOUT - the connection has been dropped, because of a network failure or because the system on the other end went down without notice

  • Errno::ECONNRESET - the virtual circuit was reset by the remote side executing a hard or abortive close. The application should close the socket; it is no longer usable. On a UDP-datagram socket this error indicates a previous send operation resulted in an ICMP Port Unreachable message.

Overloads:

  • #recvfrom(maxlen) ⇒ Array

    Returns:

    • (Array)
  • #recvfrom(maxlen, flags) ⇒ Array

    Returns:

    • (Array)


665
666
667
668
669
# File 'socket.c', line 665

static VALUE
sock_recvfrom(int argc, VALUE *argv, VALUE sock)
{
    return rsock_s_recvfrom(sock, argc, argv, RECV_SOCKET);
}

#recvfrom_nonblock(maxlen) ⇒ Array #recvfrom_nonblock(maxlen, flags) ⇒ Array

Receives up to maxlen bytes from socket using recvfrom(2) after O_NONBLOCK is set for the underlying file descriptor. flags is zero or more of the MSG_ options. The first element of the results, mesg, is the data received. The second element, sender_addrinfo, contains protocol-specific address information of the sender.

When recvfrom(2) returns 0, Socket#recvfrom_nonblock returns an empty string as data. The meaning depends on the socket: EOF on TCP, empty packet on UDP, etc.

Parameters

  • maxlen - the maximum number of bytes to receive from the socket

  • flags - zero or more of the MSG_ options

Example

# In one file, start this first require ‘socket’ include Socket::Constants socket = Socket.new(AF_INET, SOCK_STREAM, 0) sockaddr = Socket.sockaddr_in(2200, ‘localhost’) socket.bind(sockaddr) socket.listen(5) client, client_addrinfo = socket.accept begin # emulate blocking recvfrom pair = client.recvfrom_nonblock(20) rescue IO::WaitReadable IO.select() retry end data = pair.chomp puts “I only received 20 bytes ‘#data’” sleep 1 socket.close

# In another file, start this second require ‘socket’ include Socket::Constants socket = Socket.new(AF_INET, SOCK_STREAM, 0) sockaddr = Socket.sockaddr_in(2200, ‘localhost’) socket.connect(sockaddr) socket.puts “Watch this get cut short!” socket.close

Refer to Socket#recvfrom for the exceptions that may be thrown if the call to recvfrom_nonblock fails.

Socket#recvfrom_nonblock may raise any error corresponding to recvfrom(2) failure, including Errno::EWOULDBLOCK.

If the exception is Errno::EWOULDBLOCK or Errno::AGAIN, it is extended by IO::WaitReadable. So IO::WaitReadable can be used to rescue the exceptions for retrying recvfrom_nonblock.

See

  • Socket#recvfrom

Overloads:

  • #recvfrom_nonblock(maxlen) ⇒ Array

    Returns:

    • (Array)
  • #recvfrom_nonblock(maxlen, flags) ⇒ Array

    Returns:

    • (Array)


733
734
735
736
737
# File 'socket.c', line 733

static VALUE
sock_recvfrom_nonblock(int argc, VALUE *argv, VALUE sock)
{
    return rsock_s_recvfrom_nonblock(sock, argc, argv, RECV_SOCKET);
}

#sysacceptArray

Accepts an incoming connection returning an array containing the (integer) file descriptor for the incoming connection, client_socket_fd, and an Addrinfo, client_addrinfo.

Example

# In one script, start this first require ‘socket’ include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, ‘localhost’ ) socket.bind( sockaddr ) socket.listen( 5 ) client_fd, client_addrinfo = socket.sysaccept client_socket = Socket.for_fd( client_fd ) puts “The client said, ‘#Socket.client_socketclient_socket.readlineclient_socket.readline.chomp’” client_socket.puts “Hello from script one!” socket.close

# In another script, start this second require ‘socket’ include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, ‘localhost’ ) socket.connect( sockaddr ) socket.puts “Hello from script 2.” puts “The server said, ‘#Socket.socketsocket.readlinesocket.readline.chomp’” socket.close

Refer to Socket#accept for the exceptions that may be thrown if the call to sysaccept fails.

See

  • Socket#accept

Returns:

  • (Array)


869
870
871
872
873
874
875
876
877
878
879
880
881
# File 'socket.c', line 869

static VALUE
sock_sysaccept(VALUE sock)
{
    rb_io_t *fptr;
    VALUE sock2;
    struct sockaddr_storage buf;
    socklen_t len = (socklen_t)sizeof buf;

    GetOpenFile(sock, fptr);
    sock2 = rsock_s_accept(0,fptr->fd,(struct sockaddr*)&buf,&len);

    return rb_assoc_new(sock2, rsock_io_socket_addrinfo(sock2, (struct sockaddr*)&buf, len));
}