Module: Process

Defined in:
process.c,
process.c

Overview

The module contains several groups of functionality for handling OS processes:

  • Low-level property introspection and management of the current process, like Process.argv0, Process.pid;

  • Low-level introspection of other processes, like Process.getpgid, Process.getpriority;

  • Management of the current process: Process.abort, Process.exit, Process.daemon, etc. (for convenience, most of those are also available as global functions and module functions of Kernel);

  • Creation and management of child processes: Process.fork, Process.spawn, and related methods;

  • Management of low-level system clock: Process.times and Process.clock_gettime, which could be important for proper benchmarking and other elapsed time measurement tasks.

Defined Under Namespace

Modules: GID, Sys, UID Classes: Status, Waiter

Constant Summary collapse

WNOHANG =

see Process.wait

INT2FIX(0)
WUNTRACED =

see Process.wait

INT2FIX(0)
PRIO_PROCESS =

see Process.setpriority

INT2FIX(PRIO_PROCESS)
PRIO_PGRP =

see Process.setpriority

INT2FIX(PRIO_PGRP)
PRIO_USER =

see Process.setpriority

INT2FIX(PRIO_USER)
RLIM_SAVED_MAX =

see Process.setrlimit

v
RLIM_INFINITY =

see Process.setrlimit

inf
RLIM_SAVED_CUR =

see Process.setrlimit

v
RLIMIT_AS =

Maximum size of the process’s virtual memory (address space) in bytes.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_AS)
RLIMIT_CORE =

Maximum size of the core file.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_CORE)
RLIMIT_CPU =

CPU time limit in seconds.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_CPU)
RLIMIT_DATA =

Maximum size of the process’s data segment.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_DATA)
RLIMIT_FSIZE =

Maximum size of files that the process may create.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_FSIZE)
RLIMIT_MEMLOCK =

Maximum number of bytes of memory that may be locked into RAM.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_MEMLOCK)
RLIMIT_MSGQUEUE =

Specifies the limit on the number of bytes that can be allocated for POSIX message queues for the real user ID of the calling process.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_MSGQUEUE)
RLIMIT_NICE =

Specifies a ceiling to which the process’s nice value can be raised.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_NICE)
RLIMIT_NOFILE =

Specifies a value one greater than the maximum file descriptor number that can be opened by this process.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_NOFILE)
RLIMIT_NPROC =

The maximum number of processes that can be created for the real user ID of the calling process.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_NPROC)
RLIMIT_RSS =

Specifies the limit (in pages) of the process’s resident set.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_RSS)
RLIMIT_RTPRIO =

Specifies a ceiling on the real-time priority that may be set for this process.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_RTPRIO)
RLIMIT_RTTIME =

Specifies limit on CPU time this process scheduled under a real-time scheduling policy can consume.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_RTTIME)
RLIMIT_SBSIZE =

Maximum size of the socket buffer.

INT2FIX(RLIMIT_SBSIZE)
RLIMIT_SIGPENDING =

Specifies a limit on the number of signals that may be queued for the real user ID of the calling process.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_SIGPENDING)
RLIMIT_STACK =

Maximum size of the stack, in bytes.

see the system getrlimit(2) manual for details.

INT2FIX(RLIMIT_STACK)
CLOCK_REALTIME =

see Process.clock_gettime

RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME
CLOCK_MONOTONIC =

see Process.clock_gettime

RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
CLOCK_PROCESS_CPUTIME_ID =

see Process.clock_gettime

RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
CLOCK_THREAD_CPUTIME_ID =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_THREAD_CPUTIME_ID)
CLOCK_VIRTUAL =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_VIRTUAL)
CLOCK_PROF =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_PROF)
CLOCK_REALTIME_FAST =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_REALTIME_FAST)
CLOCK_REALTIME_PRECISE =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_REALTIME_PRECISE)
CLOCK_REALTIME_COARSE =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_REALTIME_COARSE)
CLOCK_REALTIME_ALARM =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_REALTIME_ALARM)
CLOCK_MONOTONIC_FAST =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_MONOTONIC_FAST)
CLOCK_MONOTONIC_PRECISE =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_MONOTONIC_PRECISE)
CLOCK_MONOTONIC_RAW =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_MONOTONIC_RAW)
CLOCK_MONOTONIC_RAW_APPROX =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_MONOTONIC_RAW_APPROX)
CLOCK_MONOTONIC_COARSE =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_MONOTONIC_COARSE)
CLOCK_BOOTTIME =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_BOOTTIME)
CLOCK_BOOTTIME_ALARM =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_BOOTTIME_ALARM)
CLOCK_UPTIME =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_UPTIME)
CLOCK_UPTIME_FAST =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_UPTIME_FAST)
CLOCK_UPTIME_PRECISE =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_UPTIME_PRECISE)
CLOCK_UPTIME_RAW =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_UPTIME_RAW)
CLOCK_UPTIME_RAW_APPROX =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_UPTIME_RAW_APPROX)
CLOCK_SECOND =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_SECOND)
CLOCK_TAI =

see Process.clock_gettime

CLOCKID2NUM(CLOCK_TAI)

Class Method Summary collapse

Instance Method Summary collapse

Class Method Details

.abortObject .Kernel::abort([msg]) ⇒ Object .abort([msg]) ⇒ Object

Terminate execution immediately, effectively by calling Kernel.exit(false). If msg is given, it is written to STDERR prior to terminating.



4531
4532
4533
4534
4535
4536
# File 'process.c', line 4531

static VALUE
f_abort(int c, const VALUE *a, VALUE _)
{
    rb_f_abort(c, a);
    UNREACHABLE_RETURN(Qnil);
}

.argv0Object

Returns the name of the script being executed. The value is not affected by assigning a new value to $0.

This method first appeared in Ruby 2.1 to serve as a global variable free means to get the script name.



2355
2356
2357
2358
2359
# File 'ruby.c', line 2355

static VALUE
proc_argv0(VALUE process)
{
    return rb_orig_progname;
}

.clock_getres(clock_id[, unit]) ⇒ Numeric

Returns an estimate of the resolution of a clock_id using the POSIX clock_getres() function.

Note the reported resolution is often inaccurate on most platforms due to underlying bugs for this function and therefore the reported resolution often differs from the actual resolution of the clock in practice. Inaccurate reported resolutions have been observed for various clocks including CLOCK_MONOTONIC and CLOCK_MONOTONIC_RAW when using Linux, macOS, BSD or AIX platforms, when using ARM processors, or when using virtualization.

clock_id specifies a kind of clock. See the document of Process.clock_gettime for details. clock_id can be a symbol as for Process.clock_gettime.

If the given clock_id is not supported, Errno::EINVAL is raised.

unit specifies the type of the return value. Process.clock_getres accepts unit as Process.clock_gettime. The default value, :float_second, is also the same as Process.clock_gettime.

Process.clock_getres also accepts :hertz as unit. :hertz means the reciprocal of :float_second.

:hertz can be used to obtain the exact value of the clock ticks per second for the times() function and CLOCKS_PER_SEC for the clock() function.

Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns the clock ticks per second.

Process.clock_getres(:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns CLOCKS_PER_SEC.

p Process.clock_getres(Process::CLOCK_MONOTONIC)
#=> 1.0e-09

Returns:



8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
# File 'process.c', line 8450

static VALUE
rb_clock_getres(int argc, VALUE *argv, VALUE _)
{
    struct timetick tt;
    timetick_int_t numerators[2];
    timetick_int_t denominators[2];
    int num_numerators = 0;
    int num_denominators = 0;

    VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil;
    VALUE clk_id = argv[0];

    if (SYMBOL_P(clk_id)) {
#ifdef RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME
        if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
            tt.giga_count = 0;
            tt.count = 1000;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#ifdef RUBY_TIME_BASED_CLOCK_REALTIME
        if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
            tt.giga_count = 1;
            tt.count = 0;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#ifdef RUBY_TIMES_BASED_CLOCK_MONOTONIC
        if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
            tt.count = 1;
            tt.giga_count = 0;
            denominators[num_denominators++] = get_clk_tck();
            goto success;
        }
#endif

#ifdef RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
        if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            tt.giga_count = 0;
            tt.count = 1000;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#ifdef RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID
        if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            tt.count = 1;
            tt.giga_count = 0;
            denominators[num_denominators++] = get_clk_tck();
            goto success;
        }
#endif

#ifdef RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID
        if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            tt.count = 1;
            tt.giga_count = 0;
            denominators[num_denominators++] = CLOCKS_PER_SEC;
            goto success;
        }
#endif

#ifdef RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
        if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
	    const mach_timebase_info_data_t *info = get_mach_timebase_info();
            tt.count = 1;
            tt.giga_count = 0;
            numerators[num_numerators++] = info->numer;
            denominators[num_denominators++] = info->denom;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif
    }
    else {
#if defined(HAVE_CLOCK_GETRES)
        struct timespec ts;
        clockid_t c = NUM2CLOCKID(clk_id);
        int ret = clock_getres(c, &ts);
        if (ret == -1)
            rb_sys_fail("clock_getres");
        tt.count = (int32_t)ts.tv_nsec;
        tt.giga_count = ts.tv_sec;
        denominators[num_denominators++] = 1000000000;
        goto success;
#endif
    }
    /* EINVAL emulates clock_getres behavior when clock_id is invalid. */
    rb_syserr_fail(EINVAL, 0);

  success:
    if (unit == ID2SYM(id_hertz)) {
        return timetick2dblnum_reciprocal(&tt, numerators, num_numerators, denominators, num_denominators);
    }
    else {
        return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
    }
}

.clock_gettime(clock_id[, unit]) ⇒ Numeric

Returns a time returned by POSIX clock_gettime() function.

p Process.clock_gettime(Process::CLOCK_MONOTONIC)
#=> 896053.968060096

clock_id specifies a kind of clock. It is specified as a constant which begins with Process::CLOCK_ such as Process::CLOCK_REALTIME and Process::CLOCK_MONOTONIC.

The supported constants depends on OS and version. Ruby provides following types of clock_id if available.

CLOCK_REALTIME

SUSv2 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 2.1, macOS 10.12

CLOCK_MONOTONIC

SUSv3 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 3.4, macOS 10.12

CLOCK_PROCESS_CPUTIME_ID

SUSv3 to 4, Linux 2.5.63, FreeBSD 9.3, OpenBSD 5.4, macOS 10.12

CLOCK_THREAD_CPUTIME_ID

SUSv3 to 4, Linux 2.5.63, FreeBSD 7.1, OpenBSD 5.4, macOS 10.12

CLOCK_VIRTUAL

FreeBSD 3.0, OpenBSD 2.1

CLOCK_PROF

FreeBSD 3.0, OpenBSD 2.1

CLOCK_REALTIME_FAST

FreeBSD 8.1

CLOCK_REALTIME_PRECISE

FreeBSD 8.1

CLOCK_REALTIME_COARSE

Linux 2.6.32

CLOCK_REALTIME_ALARM

Linux 3.0

CLOCK_MONOTONIC_FAST

FreeBSD 8.1

CLOCK_MONOTONIC_PRECISE

FreeBSD 8.1

CLOCK_MONOTONIC_COARSE

Linux 2.6.32

CLOCK_MONOTONIC_RAW

Linux 2.6.28, macOS 10.12

CLOCK_MONOTONIC_RAW_APPROX

macOS 10.12

CLOCK_BOOTTIME

Linux 2.6.39

CLOCK_BOOTTIME_ALARM

Linux 3.0

CLOCK_UPTIME

FreeBSD 7.0, OpenBSD 5.5

CLOCK_UPTIME_FAST

FreeBSD 8.1

CLOCK_UPTIME_RAW

macOS 10.12

CLOCK_UPTIME_RAW_APPROX

macOS 10.12

CLOCK_UPTIME_PRECISE

FreeBSD 8.1

CLOCK_SECOND

FreeBSD 8.1

CLOCK_TAI

Linux 3.10

Note that SUS stands for Single Unix Specification. SUS contains POSIX and clock_gettime is defined in the POSIX part. SUS defines CLOCK_REALTIME mandatory but CLOCK_MONOTONIC, CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID are optional.

Also, several symbols are accepted as clock_id. There are emulations for clock_gettime().

For example, Process::CLOCK_REALTIME is defined as :GETTIMEOFDAY_BASED_CLOCK_REALTIME when clock_gettime() is not available.

Emulations for CLOCK_REALTIME:

:GETTIMEOFDAY_BASED_CLOCK_REALTIME

Use gettimeofday() defined by SUS. (SUSv4 obsoleted it, though.) The resolution is 1 microsecond.

:TIME_BASED_CLOCK_REALTIME

Use time() defined by ISO C. The resolution is 1 second.

Emulations for CLOCK_MONOTONIC:

:MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC

Use mach_absolute_time(), available on Darwin. The resolution is CPU dependent.

:TIMES_BASED_CLOCK_MONOTONIC

Use the result value of times() defined by POSIX. POSIX defines it as “times() shall return the elapsed real time, in clock ticks, since an arbitrary point in the past (for example, system start-up time)”. For example, GNU/Linux returns a value based on jiffies and it is monotonic. However, 4.4BSD uses gettimeofday() and it is not monotonic. (FreeBSD uses clock_gettime(CLOCK_MONOTONIC) instead, though.) The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100 and clock_t is 32 bits integer type, the resolution is 10 millisecond and cannot represent over 497 days.

Emulations for CLOCK_PROCESS_CPUTIME_ID:

:GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID

Use getrusage() defined by SUS. getrusage() is used with RUSAGE_SELF to obtain the time only for the calling process (excluding the time for child processes). The result is addition of user time (ru_utime) and system time (ru_stime). The resolution is 1 microsecond.

:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID

Use times() defined by POSIX. The result is addition of user time (tms_utime) and system time (tms_stime). tms_cutime and tms_cstime are ignored to exclude the time for child processes. The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100, the resolution is 10 millisecond.

:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID

Use clock() defined by ISO C. The resolution is 1/CLOCKS_PER_SEC. CLOCKS_PER_SEC is the C-level macro defined by time.h. SUS defines CLOCKS_PER_SEC is 1000000. Non-Unix systems may define it a different value, though. If CLOCKS_PER_SEC is 1000000 as SUS, the resolution is 1 microsecond. If CLOCKS_PER_SEC is 1000000 and clock_t is 32 bits integer type, it cannot represent over 72 minutes.

If the given clock_id is not supported, Errno::EINVAL is raised.

unit specifies a type of the return value.

:float_second

number of seconds as a float (default)

:float_millisecond

number of milliseconds as a float

:float_microsecond

number of microseconds as a float

:second

number of seconds as an integer

:millisecond

number of milliseconds as an integer

:microsecond

number of microseconds as an integer

:nanosecond

number of nanoseconds as an integer

The underlying function, clock_gettime(), returns a number of nanoseconds. Float object (IEEE 754 double) is not enough to represent the return value for CLOCK_REALTIME. If the exact nanoseconds value is required, use :nanoseconds as the unit.

The origin (zero) of the returned value varies. For example, system start up time, process start up time, the Epoch, etc.

The origin in CLOCK_REALTIME is defined as the Epoch (1970-01-01 00:00:00 UTC). But some systems count leap seconds and others doesn’t. So the result can be interpreted differently across systems. Time.now is recommended over CLOCK_REALTIME.

Returns:



8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
# File 'process.c', line 8249

static VALUE
rb_clock_gettime(int argc, VALUE *argv, VALUE _)
{
    int ret;

    struct timetick tt;
    timetick_int_t numerators[2];
    timetick_int_t denominators[2];
    int num_numerators = 0;
    int num_denominators = 0;

    VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil;
    VALUE clk_id = argv[0];

    if (SYMBOL_P(clk_id)) {
        /*
         * Non-clock_gettime clocks are provided by symbol clk_id.
         */
#ifdef HAVE_GETTIMEOFDAY
        /*
         * GETTIMEOFDAY_BASED_CLOCK_REALTIME is used for
         * CLOCK_REALTIME if clock_gettime is not available.
         */
#define RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME ID2SYM(id_GETTIMEOFDAY_BASED_CLOCK_REALTIME)
        if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
            struct timeval tv;
            ret = gettimeofday(&tv, 0);
            if (ret != 0)
                rb_sys_fail("gettimeofday");
            tt.giga_count = tv.tv_sec;
            tt.count = (int32_t)tv.tv_usec * 1000;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#define RUBY_TIME_BASED_CLOCK_REALTIME ID2SYM(id_TIME_BASED_CLOCK_REALTIME)
        if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
            time_t t;
            t = time(NULL);
            if (t == (time_t)-1)
                rb_sys_fail("time");
            tt.giga_count = t;
            tt.count = 0;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }

#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_MONOTONIC \
        ID2SYM(id_TIMES_BASED_CLOCK_MONOTONIC)
        if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
            struct tms buf;
            clock_t c;
            unsigned_clock_t uc;
            c = times(&buf);
            if (c ==  (clock_t)-1)
                rb_sys_fail("times");
            uc = (unsigned_clock_t)c;
            tt.count = (int32_t)(uc % 1000000000);
            tt.giga_count = (uc / 1000000000);
            denominators[num_denominators++] = get_clk_tck();
            goto success;
        }
#endif

#ifdef RUSAGE_SELF
#define RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID \
        ID2SYM(id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID)
        if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            struct rusage usage;
            int32_t usec;
            ret = getrusage(RUSAGE_SELF, &usage);
            if (ret != 0)
                rb_sys_fail("getrusage");
            tt.giga_count = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
            usec = (int32_t)(usage.ru_utime.tv_usec + usage.ru_stime.tv_usec);
            if (1000000 <= usec) {
                tt.giga_count++;
                usec -= 1000000;
            }
            tt.count = usec * 1000;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID \
        ID2SYM(id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID)
        if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            struct tms buf;
            unsigned_clock_t utime, stime;
            if (times(&buf) ==  (clock_t)-1)
                rb_sys_fail("times");
            utime = (unsigned_clock_t)buf.tms_utime;
            stime = (unsigned_clock_t)buf.tms_stime;
            tt.count = (int32_t)((utime % 1000000000) + (stime % 1000000000));
            tt.giga_count = (utime / 1000000000) + (stime / 1000000000);
            if (1000000000 <= tt.count) {
                tt.count -= 1000000000;
                tt.giga_count++;
            }
            denominators[num_denominators++] = get_clk_tck();
            goto success;
        }
#endif

#define RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID \
        ID2SYM(id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID)
        if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            clock_t c;
            unsigned_clock_t uc;
            errno = 0;
            c = clock();
            if (c == (clock_t)-1)
                rb_sys_fail("clock");
            uc = (unsigned_clock_t)c;
            tt.count = (int32_t)(uc % 1000000000);
            tt.giga_count = uc / 1000000000;
            denominators[num_denominators++] = CLOCKS_PER_SEC;
            goto success;
        }

#ifdef __APPLE__
#define RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC ID2SYM(id_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC)
        if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
	    const mach_timebase_info_data_t *info = get_mach_timebase_info();
            uint64_t t = mach_absolute_time();
            tt.count = (int32_t)(t % 1000000000);
            tt.giga_count = t / 1000000000;
            numerators[num_numerators++] = info->numer;
            denominators[num_denominators++] = info->denom;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif
    }
    else {
#if defined(HAVE_CLOCK_GETTIME)
        struct timespec ts;
        clockid_t c;
        c = NUM2CLOCKID(clk_id);
        ret = clock_gettime(c, &ts);
        if (ret == -1)
            rb_sys_fail("clock_gettime");
        tt.count = (int32_t)ts.tv_nsec;
        tt.giga_count = ts.tv_sec;
        denominators[num_denominators++] = 1000000000;
        goto success;
#endif
    }
    /* EINVAL emulates clock_gettime behavior when clock_id is invalid. */
    rb_syserr_fail(EINVAL, 0);

  success:
    return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
}

.daemon0 .daemon(nochdir = nil, noclose = nil) ⇒ 0

Detach the process from controlling terminal and run in the background as system daemon. Unless the argument nochdir is true (i.e. non false), it changes the current working directory to the root (“/”). Unless the argument noclose is true, daemon() will redirect standard input, standard output and standard error to /dev/null. Return zero on success, or raise one of Errno::*.

Overloads:

  • .daemon0

    Returns:

    • (0)
  • .daemon(nochdir = nil, noclose = nil) ⇒ 0

    Returns:

    • (0)


6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
# File 'process.c', line 6988

static VALUE
proc_daemon(int argc, VALUE *argv, VALUE _)
{
    int n, nochdir = FALSE, noclose = FALSE;

    switch (rb_check_arity(argc, 0, 2)) {
      case 2: noclose = TO_BOOL(argv[1], "noclose");
      case 1: nochdir = TO_BOOL(argv[0], "nochdir");
    }

    prefork();
    n = rb_daemon(nochdir, noclose);
    if (n < 0) rb_sys_fail("daemon");
    return INT2FIX(n);
}

.detach(pid) ⇒ Object

Some operating systems retain the status of terminated child processes until the parent collects that status (normally using some variant of wait()). If the parent never collects this status, the child stays around as a zombie process. Process::detach prevents this by setting up a separate Ruby thread whose sole job is to reap the status of the process pid when it terminates. Use #detach only when you do not intend to explicitly wait for the child to terminate.

The waiting thread returns the exit status of the detached process when it terminates, so you can use Thread#join to know the result. If specified pid is not a valid child process ID, the thread returns nil immediately.

The waiting thread has #pid method which returns the pid.

In this first example, we don’t reap the first child process, so it appears as a zombie in the process status display.

p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")

produces:

27389 Z

In the next example, Process::detach is used to reap the child automatically.

p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.detach(p1)
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")

(produces no output)



1701
1702
1703
1704
1705
# File 'process.c', line 1701

static VALUE
proc_detach(VALUE obj, VALUE pid)
{
    return rb_detach_process(NUM2PIDT(pid));
}

.egidInteger .Process::GID.eidInteger .Process::Sys.geteidInteger

Returns the effective group ID for this process. Not available on all platforms.

Process.egid   #=> 500

Overloads:



7380
7381
7382
7383
7384
7385
7386
# File 'process.c', line 7380

static VALUE
proc_getegid(VALUE obj)
{
    rb_gid_t egid = getegid();

    return GIDT2NUM(egid);
}

.egid=Object

.euidInteger .Process::UID.eidInteger .Process::Sys.geteuidInteger

Returns the effective user ID for this process.

Process.euid   #=> 501

Overloads:



7256
7257
7258
7259
7260
7261
# File 'process.c', line 7256

static VALUE
proc_geteuid(VALUE obj)
{
    rb_uid_t euid = geteuid();
    return UIDT2NUM(euid);
}

.euid=(user) ⇒ Object

Sets the effective user ID for this process. Not available on all platforms.



7295
7296
7297
7298
7299
7300
7301
# File 'process.c', line 7295

static VALUE
proc_seteuid_m(VALUE mod, VALUE euid)
{
    check_uid_switch();
    proc_seteuid(OBJ2UID(euid));
    return euid;
}

.exec([env,][,options]) ⇒ Object

Replaces the current process by running the given external command, which can take one of the following forms:

exec(commandline)

command line string which is passed to the standard shell

exec(cmdname, arg1, ...)

command name and one or more arguments (no shell)

exec([cmdname, argv0], arg1, ...)

command name, argv and zero or more arguments (no shell)

In the first form, the string is taken as a command line that is subject to shell expansion before being executed.

The standard shell always means "/bin/sh" on Unix-like systems, same as ENV["RUBYSHELL"] (or ENV["COMSPEC"] on Windows NT series), and similar.

If the string from the first form (exec("command")) follows these simple rules:

  • no meta characters

  • no shell reserved word and no special built-in

  • Ruby invokes the command directly without shell

You can force shell invocation by adding “;” to the string (because “;” is a meta character).

Note that this behavior is observable by pid obtained (return value of spawn() and IO#pid for IO.popen) is the pid of the invoked command, not shell.

In the second form (exec("command1", "arg1", ...)), the first is taken as a command name and the rest are passed as parameters to command with no shell expansion.

In the third form (exec(["command", "argv0"], "arg1", ...)), starting a two-element array at the beginning of the command, the first element is the command to be executed, and the second argument is used as the argv[0] value, which may show up in process listings.

In order to execute the command, one of the exec(2) system calls are used, so the running command may inherit some of the environment of the original program (including open file descriptors).

This behavior is modified by the given env and options parameters. See ::spawn for details.

If the command fails to execute (typically Errno::ENOENT when it was not found) a SystemCallError exception is raised.

This method modifies process attributes according to given options before exec(2) system call. See ::spawn for more details about the given options.

The modified attributes may be retained when exec(2) system call fails.

For example, hard resource limits are not restorable.

Consider to create a child process using ::spawn or Kernel#system if this is not acceptable.

exec "echo *"       # echoes list of files in current directory
# never get here

exec "echo", "*"    # echoes an asterisk
# never get here


3215
3216
3217
3218
3219
3220
# File 'process.c', line 3215

static VALUE
f_exec(int c, const VALUE *a, VALUE _)
{
    rb_f_exec(c, a);
    UNREACHABLE_RETURN(Qnil);
}

.exit(status = true) ⇒ Object .Kernel::exit(status = true) ⇒ Object .Process::exit(status = true) ⇒ Object

Initiates the termination of the Ruby script by raising the SystemExit exception. This exception may be caught. The optional parameter is used to return a status code to the invoking environment. true and FALSE of status means success and failure respectively. The interpretation of other integer values are system dependent.

begin
  exit
  puts "never get here"
rescue SystemExit
  puts "rescued a SystemExit exception"
end
puts "after begin block"

produces:

rescued a SystemExit exception
after begin block

Just prior to termination, Ruby executes any at_exit functions (see Kernel::at_exit) and runs any object finalizers (see ObjectSpace::define_finalizer).

at_exit { puts "at_exit function" }
ObjectSpace.define_finalizer("string",  proc { puts "in finalizer" })
exit

produces:

at_exit function
in finalizer


4486
4487
4488
4489
4490
4491
# File 'process.c', line 4486

static VALUE
f_exit(int c, const VALUE *a, VALUE _)
{
    rb_f_exit(c, a);
    UNREACHABLE_RETURN(Qnil);
}

.exit!(status = false) ⇒ Object

Exits the process immediately. No exit handlers are run. status is returned to the underlying system as the exit status.

Process.exit!(true)


4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
# File 'process.c', line 4399

static VALUE
rb_f_exit_bang(int argc, VALUE *argv, VALUE obj)
{
    int istatus;

    if (rb_check_arity(argc, 0, 1) == 1) {
	istatus = exit_status_code(argv[0]);
    }
    else {
	istatus = EXIT_FAILURE;
    }
    _exit(istatus);

    UNREACHABLE_RETURN(Qnil);
}

.fork { ... } ⇒ Integer? .fork { ... } ⇒ Integer?

Creates a subprocess. If a block is specified, that block is run in the subprocess, and the subprocess terminates with a status of zero. Otherwise, the fork call returns twice, once in the parent, returning the process ID of the child, and once in the child, returning nil. The child process can exit using Kernel.exit! to avoid running any at_exit functions. The parent process should use Process.wait to collect the termination statuses of its children or use Process.detach to register disinterest in their status; otherwise, the operating system may accumulate zombie processes.

The thread calling fork is the only thread in the created child process. fork doesn’t copy other threads.

If fork is not usable, Process.respond_to?(:fork) returns false.

Note that fork(2) is not available on some platforms like Windows and NetBSD 4. Therefore you should use spawn() instead of fork().

Overloads:



4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
# File 'process.c', line 4337

static VALUE
rb_f_fork(VALUE obj)
{
    rb_pid_t pid;

    switch (pid = rb_fork_ruby(NULL)) {
      case 0:
	rb_thread_atfork();
	if (rb_block_given_p()) {
	    int status;
	    rb_protect(rb_yield, Qundef, &status);
	    ruby_stop(status);
	}
	return Qnil;

      case -1:
	rb_sys_fail("fork(2)");
	return Qnil;

      default:
	return PIDT2NUM(pid);
    }
}

.getpgid(pid) ⇒ Integer

Returns the process group ID for the given process id. Not available on all platforms.

Process.getpgid(Process.ppid())   #=> 25527

Returns:



5199
5200
5201
5202
5203
5204
5205
5206
5207
# File 'process.c', line 5199

static VALUE
proc_getpgid(VALUE obj, VALUE pid)
{
    rb_pid_t i;

    i = getpgid(NUM2PIDT(pid));
    if (i < 0) rb_sys_fail(0);
    return PIDT2NUM(i);
}

.getpgrpInteger

Returns the process group ID for this process. Not available on all platforms.

Process.getpgid(0)   #=> 25527
Process.getpgrp      #=> 25527

Returns:



5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
# File 'process.c', line 5140

static VALUE
proc_getpgrp(VALUE _)
{
    rb_pid_t pgrp;

#if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)
    pgrp = getpgrp();
    if (pgrp < 0) rb_sys_fail(0);
    return PIDT2NUM(pgrp);
#else /* defined(HAVE_GETPGID) */
    pgrp = getpgid(0);
    if (pgrp < 0) rb_sys_fail(0);
    return PIDT2NUM(pgrp);
#endif
}

.getpriority(kind, integer) ⇒ Integer

Gets the scheduling priority for specified process, process group, or user. kind indicates the kind of entity to find: one of Process::PRIO_PGRP, Process::PRIO_USER, or Process::PRIO_PROCESS. integer is an id indicating the particular process, process group, or user (an id of 0 means current). Lower priorities are more favorable for scheduling. Not available on all platforms.

Process.getpriority(Process::PRIO_USER, 0)      #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0)   #=> 19

Returns:



5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
# File 'process.c', line 5345

static VALUE
proc_getpriority(VALUE obj, VALUE which, VALUE who)
{
    int prio, iwhich, iwho;

    iwhich = NUM2INT(which);
    iwho   = NUM2INT(who);

    errno = 0;
    prio = getpriority(iwhich, iwho);
    if (errno) rb_sys_fail(0);
    return INT2FIX(prio);
}

.getrlimit(resource) ⇒ Array

Gets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.

resource indicates the kind of resource to limit. It is specified as a symbol such as :CORE, a string such as "CORE" or a constant such as Process::RLIMIT_CORE. See Process.setrlimit for details.

cur_limit and max_limit may be Process::RLIM_INFINITY, Process::RLIM_SAVED_MAX or Process::RLIM_SAVED_CUR. See Process.setrlimit and the system getrlimit(2) manual for details.

Returns:



5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
# File 'process.c', line 5636

static VALUE
proc_getrlimit(VALUE obj, VALUE resource)
{
    struct rlimit rlim;

    if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) {
	rb_sys_fail("getrlimit");
    }
    return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max));
}

.getsidInteger .getsid(pid) ⇒ Integer

Returns the session ID for the given process id. If not given, return current process sid. Not available on all platforms.

Process.getsid()                #=> 27422
Process.getsid(0)               #=> 27422
Process.getsid(Process.pid())   #=> 27422

Overloads:



5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
# File 'process.c', line 5251

static VALUE
proc_getsid(int argc, VALUE *argv, VALUE _)
{
    rb_pid_t sid;
    rb_pid_t pid = 0;

    if (rb_check_arity(argc, 0, 1) == 1 && !NIL_P(argv[0]))
	pid = NUM2PIDT(argv[0]);

    sid = getsid(pid);
    if (sid < 0) rb_sys_fail(0);
    return PIDT2NUM(sid);
}

.gidInteger .Process::GID.ridInteger .Process::Sys.getgidInteger

Returns the (real) group ID for this process.

Process.gid   #=> 500

Overloads:



6690
6691
6692
6693
6694
6695
# File 'process.c', line 6690

static VALUE
proc_getgid(VALUE obj)
{
    rb_gid_t gid = getgid();
    return GIDT2NUM(gid);
}

.gid=(integer) ⇒ Integer

Sets the group ID for this process.

Returns:



6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
# File 'process.c', line 6706

static VALUE
proc_setgid(VALUE obj, VALUE id)
{
    rb_gid_t gid;

    check_gid_switch();

    gid = OBJ2GID(id);
#if defined(HAVE_SETRESGID)
    if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
    if (setregid(gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRGID
    if (setrgid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
    {
	if (getegid() == gid) {
	    if (setgid(gid) < 0) rb_sys_fail(0);
	}
	else {
	    rb_notimplement();
	}
    }
#endif
    return GIDT2NUM(gid);
}

.groupsArray

Get an Array of the group IDs in the supplemental group access list for this process.

Process.groups   #=> [27, 6, 10, 11]

Note that this method is just a wrapper of getgroups(2). This means that the following characteristics of the result completely depend on your system:

  • the result is sorted

  • the result includes effective GIDs

  • the result does not include duplicated GIDs

You can make sure to get a sorted unique GID list of the current process by this expression:

Process.groups.uniq.sort

Returns:



6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
# File 'process.c', line 6810

static VALUE
proc_getgroups(VALUE obj)
{
    VALUE ary, tmp;
    int i, ngroups;
    rb_gid_t *groups;

    ngroups = getgroups(0, NULL);
    if (ngroups == -1)
	rb_sys_fail(0);

    groups = ALLOCV_N(rb_gid_t, tmp, ngroups);

    ngroups = getgroups(ngroups, groups);
    if (ngroups == -1)
	rb_sys_fail(0);

    ary = rb_ary_new();
    for (i = 0; i < ngroups; i++)
	rb_ary_push(ary, GIDT2NUM(groups[i]));

    ALLOCV_END(tmp);

    return ary;
}

.groups=(array) ⇒ Array

Set the supplemental group access list to the given Array of group IDs.

Process.groups   #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
Process.groups = [27, 6, 10, 11]   #=> [27, 6, 10, 11]
Process.groups   #=> [27, 6, 10, 11]

Returns:



6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
# File 'process.c', line 6854

static VALUE
proc_setgroups(VALUE obj, VALUE ary)
{
    int ngroups, i;
    rb_gid_t *groups;
    VALUE tmp;
    PREPARE_GETGRNAM;

    Check_Type(ary, T_ARRAY);

    ngroups = RARRAY_LENINT(ary);
    if (ngroups > maxgroups())
	rb_raise(rb_eArgError, "too many groups, %d max", maxgroups());

    groups = ALLOCV_N(rb_gid_t, tmp, ngroups);

    for (i = 0; i < ngroups; i++) {
	VALUE g = RARRAY_AREF(ary, i);

	groups[i] = OBJ2GID1(g);
    }
    FINISH_GETGRNAM;

    if (setgroups(ngroups, groups) == -1) /* ngroups <= maxgroups */
	rb_sys_fail(0);

    ALLOCV_END(tmp);

    return proc_getgroups(obj);
}

.initgroups(username, gid) ⇒ Array

Initializes the supplemental group access list by reading the system group database and using all groups of which the given user is a member. The group with the specified gid is also added to the list. Returns the resulting Array of the gids of all the groups in the supplementary group access list. Not available on all platforms.

Process.groups   #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
Process.initgroups( "mgranger", 30 )   #=> [30, 6, 10, 11]
Process.groups   #=> [30, 6, 10, 11]

Returns:



6907
6908
6909
6910
6911
6912
6913
6914
# File 'process.c', line 6907

static VALUE
proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp)
{
    if (initgroups(StringValueCStr(uname), OBJ2GID(base_grp)) != 0) {
	rb_sys_fail(0);
    }
    return proc_getgroups(obj);
}

.kill(signal, pid, ...) ⇒ Integer

Sends the given signal to the specified process id(s) if pid is positive. If pid is zero, signal is sent to all processes whose group ID is equal to the group ID of the process. If pid is negative, results are dependent on the operating system. signal may be an integer signal number or a POSIX signal name (either with or without a SIG prefix). If signal is negative (or starts with a minus sign), kills process groups instead of processes. Not all signals are available on all platforms. The keys and values of Signal.list are known signal names and numbers, respectively.

pid = fork do
   Signal.trap("HUP") { puts "Ouch!"; exit }
   # ... do some work ...
end
# ...
Process.kill("HUP", pid)
Process.wait

produces:

Ouch!

If signal is an integer but wrong for signal, Errno::EINVAL or RangeError will be raised. Otherwise unless signal is a String or a Symbol, and a known signal name, ArgumentError will be raised.

Also, Errno::ESRCH or RangeError for invalid pid, Errno::EPERM when failed because of no privilege, will be raised. In these cases, signals may have been sent to preceding processes.

Returns:



8602
8603
8604
8605
8606
# File 'process.c', line 8602

static VALUE
proc_rb_f_kill(int c, const VALUE *v, VALUE _)
{
    return rb_f_kill(c, v);
}

.last_statusProcess::Status?

Returns the status of the last executed child process in the current thread.

Process.wait Process.spawn("ruby", "-e", "exit 13")
Process.last_status   #=> #<Process::Status: pid 4825 exit 13>

If no child process has ever been executed in the current thread, this returns nil.

Process.last_status   #=> nil

Returns:



616
617
618
619
620
# File 'process.c', line 616

static VALUE
proc_s_last_status(VALUE mod)
{
    return rb_last_status_get();
}

.maxgroupsInteger

Returns the maximum number of gids allowed in the supplemental group access list.

Process.maxgroups   #=> 32

Returns:



6930
6931
6932
6933
6934
# File 'process.c', line 6930

static VALUE
proc_getmaxgroups(VALUE obj)
{
    return INT2FIX(maxgroups());
}

.maxgroups=(integer) ⇒ Integer

Sets the maximum number of gids allowed in the supplemental group access list.

Returns:



6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
# File 'process.c', line 6948

static VALUE
proc_setmaxgroups(VALUE obj, VALUE val)
{
    int ngroups = FIX2INT(val);
    int ngroups_max = get_sc_ngroups_max();

    if (ngroups <= 0)
	rb_raise(rb_eArgError, "maxgroups %d should be positive", ngroups);

    if (ngroups > RB_MAX_GROUPS)
	ngroups = RB_MAX_GROUPS;

    if (ngroups_max > 0 && ngroups > ngroups_max)
	ngroups = ngroups_max;

    _maxgroups = ngroups;

    return INT2FIX(_maxgroups);
}

.pidInteger

Returns the process id of this process. Not available on all platforms.

Process.pid   #=> 27415

Returns:



505
506
507
508
509
# File 'process.c', line 505

static VALUE
proc_get_pid(VALUE _)
{
    return get_pid();
}

.ppidInteger

Returns the process id of the parent of this process. Returns untrustworthy value on Win32/64. Not available on all platforms.

puts "I am #{Process.pid}"
Process.fork { puts "Dad is #{Process.ppid}" }

produces:

I am 27417
Dad is 27417

Returns:



533
534
535
536
537
# File 'process.c', line 533

static VALUE
proc_get_ppid(VALUE _)
{
    return get_ppid();
}

.setpgid(pid, integer) ⇒ 0

Sets the process group ID of pid (0 indicates this process) to integer. Not available on all platforms.

Returns:

  • (0)


5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
# File 'process.c', line 5222

static VALUE
proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp)
{
    rb_pid_t ipid, ipgrp;

    ipid = NUM2PIDT(pid);
    ipgrp = NUM2PIDT(pgrp);

    if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0);
    return INT2FIX(0);
}

.setpgrp0

Equivalent to setpgid(0,0). Not available on all platforms.

Returns:

  • (0)


5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
# File 'process.c', line 5169

static VALUE
proc_setpgrp(VALUE _)
{
  /* check for posix setpgid() first; this matches the posix */
  /* getpgrp() above.  It appears that configure will set SETPGRP_VOID */
  /* even though setpgrp(0,0) would be preferred. The posix call avoids */
  /* this confusion. */
#ifdef HAVE_SETPGID
    if (setpgid(0,0) < 0) rb_sys_fail(0);
#elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID)
    if (setpgrp() < 0) rb_sys_fail(0);
#endif
    return INT2FIX(0);
}

.setpriority(kind, integer, priority) ⇒ 0

See Process.getpriority.

Process.setpriority(Process::PRIO_USER, 0, 19)      #=> 0
Process.setpriority(Process::PRIO_PROCESS, 0, 19)   #=> 0
Process.getpriority(Process::PRIO_USER, 0)          #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0)       #=> 19

Returns:

  • (0)


5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
# File 'process.c', line 5376

static VALUE
proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio)
{
    int iwhich, iwho, iprio;

    iwhich = NUM2INT(which);
    iwho   = NUM2INT(who);
    iprio  = NUM2INT(prio);

    if (setpriority(iwhich, iwho, iprio) < 0)
	rb_sys_fail(0);
    return INT2FIX(0);
}

.setproctitle(string) ⇒ String

Sets the process title that appears on the ps(1) command. Not necessarily effective on all platforms. No exception will be raised regardless of the result, nor will NotImplementedError be raised even if the platform does not support the feature.

Calling this method does not affect the value of $0.

Process.setproctitle('myapp: worker #%d' % worker_id)

This method first appeared in Ruby 2.1 to serve as a global variable free means to change the process title.

Returns:



2380
2381
2382
2383
2384
# File 'ruby.c', line 2380

static VALUE
proc_setproctitle(VALUE process, VALUE title)
{
    return ruby_setproctitle(title);
}

.setrlimit(resource, cur_limit, max_limit) ⇒ nil .setrlimit(resource, cur_limit) ⇒ nil

Sets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.

If max_limit is not given, cur_limit is used.

resource indicates the kind of resource to limit. It should be a symbol such as :CORE, a string such as "CORE" or a constant such as Process::RLIMIT_CORE. The available resources are OS dependent. Ruby may support following resources.

AS

total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite)

CORE

core size (bytes) (SUSv3)

CPU

CPU time (seconds) (SUSv3)

DATA

data segment (bytes) (SUSv3)

FSIZE

file size (bytes) (SUSv3)

MEMLOCK

total size for mlock(2) (bytes) (4.4BSD, GNU/Linux)

MSGQUEUE

allocation for POSIX message queues (bytes) (GNU/Linux)

NICE

ceiling on process’s nice(2) value (number) (GNU/Linux)

NOFILE

file descriptors (number) (SUSv3)

NPROC

number of processes for the user (number) (4.4BSD, GNU/Linux)

RSS

resident memory size (bytes) (4.2BSD, GNU/Linux)

RTPRIO

ceiling on the process’s real-time priority (number) (GNU/Linux)

RTTIME

CPU time for real-time process (us) (GNU/Linux)

SBSIZE

all socket buffers (bytes) (NetBSD, FreeBSD)

SIGPENDING

number of queued signals allowed (signals) (GNU/Linux)

STACK

stack size (bytes) (SUSv3)

cur_limit and max_limit may be :INFINITY, "INFINITY" or Process::RLIM_INFINITY, which means that the resource is not limited. They may be Process::RLIM_SAVED_MAX, Process::RLIM_SAVED_CUR and corresponding symbols and strings too. See system setrlimit(2) manual for details.

The following example raises the soft limit of core size to the hard limit to try to make core dump possible.

Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])

Overloads:

  • .setrlimit(resource, cur_limit, max_limit) ⇒ nil

    Returns:

    • (nil)
  • .setrlimit(resource, cur_limit) ⇒ nil

    Returns:

    • (nil)


5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
# File 'process.c', line 5702

static VALUE
proc_setrlimit(int argc, VALUE *argv, VALUE obj)
{
    VALUE resource, rlim_cur, rlim_max;
    struct rlimit rlim;

    rb_check_arity(argc, 2, 3);
    resource = argv[0];
    rlim_cur = argv[1];
    if (argc < 3 || NIL_P(rlim_max = argv[2]))
        rlim_max = rlim_cur;

    rlim.rlim_cur = rlimit_resource_value(rlim_cur);
    rlim.rlim_max = rlimit_resource_value(rlim_max);

    if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) {
	rb_sys_fail("setrlimit");
    }
    return Qnil;
}

.setsidInteger

Establishes this process as a new session and process group leader, with no controlling tty. Returns the session id. Not available on all platforms.

Process.setsid   #=> 27422

Returns:



5285
5286
5287
5288
5289
5290
5291
5292
5293
# File 'process.c', line 5285

static VALUE
proc_setsid(VALUE _)
{
    rb_pid_t pid;

    pid = setsid();
    if (pid < 0) rb_sys_fail(0);
    return PIDT2NUM(pid);
}

.spawn([env,][,options]) ⇒ Object .spawn([env,][,options]) ⇒ Object

spawn executes specified command and return its pid.

pid = spawn("tar xf ruby-2.0.0-p195.tar.bz2")
Process.wait pid

pid = spawn(RbConfig.ruby, "-eputs'Hello, world!'")
Process.wait pid

This method is similar to Kernel#system but it doesn’t wait for the command to finish.

The parent process should use Process.wait to collect the termination status of its child or use Process.detach to register disinterest in their status; otherwise, the operating system may accumulate zombie processes.

spawn has bunch of options to specify process attributes:

env: hash
  name => val : set the environment variable
  name => nil : unset the environment variable

  the keys and the values except for +nil+ must be strings.
command...:
  commandline                 : command line string which is passed to the standard shell
  cmdname, arg1, ...          : command name and one or more arguments (This form does not use the shell. See below for caveats.)
  [cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)
options: hash
  clearing environment variables:
    :unsetenv_others => true   : clear environment variables except specified by env
    :unsetenv_others => false  : don't clear (default)
  process group:
    :pgroup => true or 0 : make a new process group
    :pgroup => pgid      : join the specified process group
    :pgroup => nil       : don't change the process group (default)
  create new process group: Windows only
    :new_pgroup => true  : the new process is the root process of a new process group
    :new_pgroup => false : don't create a new process group (default)
  resource limit: resourcename is core, cpu, data, etc.  See Process.setrlimit.
    :rlimit_resourcename => limit
    :rlimit_resourcename => [cur_limit, max_limit]
  umask:
    :umask => int
  redirection:
    key:
      FD              : single file descriptor in child process
      [FD, FD, ...]   : multiple file descriptor in child process
    value:
      FD                        : redirect to the file descriptor in parent process
      string                    : redirect to file with open(string, "r" or "w")
      [string]                  : redirect to file with open(string, File::RDONLY)
      [string, open_mode]       : redirect to file with open(string, open_mode, 0644)
      [string, open_mode, perm] : redirect to file with open(string, open_mode, perm)
      [:child, FD]              : redirect to the redirected file descriptor
      :close                    : close the file descriptor in child process
    FD is one of follows
      :in     : the file descriptor 0 which is the standard input
      :out    : the file descriptor 1 which is the standard output
      :err    : the file descriptor 2 which is the standard error
      integer : the file descriptor of specified the integer
      io      : the file descriptor specified as io.fileno
  file descriptor inheritance: close non-redirected non-standard fds (3, 4, 5, ...) or not
    :close_others => false  : inherit
  current directory:
    :chdir => str

The cmdname, arg1, ... form does not use the shell. However, on different OSes, different things are provided as built-in commands. An example of this is ‘echo’, which is a built-in on Windows, but is a normal program on Linux and Mac OS X. This means that Process.spawn 'echo', '%Path%' will display the contents of the %Path% environment variable on Windows, but Process.spawn 'echo', '$PATH' prints the literal $PATH.

If a hash is given as env, the environment is updated by env before exec(2) in the child process. If a pair in env has nil as the value, the variable is deleted.

# set FOO as BAR and unset BAZ.
pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)

If a hash is given as options, it specifies process group, create new process group, resource limit, current directory, umask and redirects for the child process. Also, it can be specified to clear environment variables.

The :unsetenv_others key in options specifies to clear environment variables, other than specified by env.

pid = spawn(command, :unsetenv_others=>true) # no environment variable
pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true) # FOO only

The :pgroup key in options specifies a process group. The corresponding value should be true, zero, a positive integer, or nil. true and zero cause the process to be a process leader of a new process group. A non-zero positive integer causes the process to join the provided process group. The default value, nil, causes the process to remain in the same process group.

pid = spawn(command, :pgroup=>true) # process leader
pid = spawn(command, :pgroup=>10) # belongs to the process group 10

The :new_pgroup key in options specifies to pass CREATE_NEW_PROCESS_GROUP flag to CreateProcessW() that is Windows API. This option is only for Windows. true means the new process is the root process of the new process group. The new process has CTRL+C disabled. This flag is necessary for Process.kill(:SIGINT, pid) on the subprocess. :new_pgroup is false by default.

pid = spawn(command, :new_pgroup=>true)  # new process group
pid = spawn(command, :new_pgroup=>false) # same process group

The :rlimit_foo key specifies a resource limit. foo should be one of resource types such as core. The corresponding value should be an integer or an array which have one or two integers: same as cur_limit and max_limit arguments for Process.setrlimit.

cur, max = Process.getrlimit(:CORE)
pid = spawn(command, :rlimit_core=>[0,max]) # disable core temporary.
pid = spawn(command, :rlimit_core=>max) # enable core dump
pid = spawn(command, :rlimit_core=>0) # never dump core.

The :umask key in options specifies the umask.

pid = spawn(command, :umask=>077)

The :in, :out, :err, an integer, an IO and an array key specifies a redirection. The redirection maps a file descriptor in the child process.

For example, stderr can be merged into stdout as follows:

pid = spawn(command, :err=>:out)
pid = spawn(command, 2=>1)
pid = spawn(command, STDERR=>:out)
pid = spawn(command, STDERR=>STDOUT)

The hash keys specifies a file descriptor in the child process started by #spawn. :err, 2 and STDERR specifies the standard error stream (stderr).

The hash values specifies a file descriptor in the parent process which invokes #spawn. :out, 1 and STDOUT specifies the standard output stream (stdout).

In the above example, the standard output in the child process is not specified. So it is inherited from the parent process.

The standard input stream (stdin) can be specified by :in, 0 and STDIN.

A filename can be specified as a hash value.

pid = spawn(command, :in=>"/dev/null") # read mode
pid = spawn(command, :out=>"/dev/null") # write mode
pid = spawn(command, :err=>"log") # write mode
pid = spawn(command, [:out, :err]=>"/dev/null") # write mode
pid = spawn(command, 3=>"/dev/null") # read mode

For stdout and stderr (and combination of them), it is opened in write mode. Otherwise read mode is used.

For specifying flags and permission of file creation explicitly, an array is used instead.

pid = spawn(command, :in=>["file"]) # read mode is assumed
pid = spawn(command, :in=>["file", "r"])
pid = spawn(command, :out=>["log", "w"]) # 0644 assumed
pid = spawn(command, :out=>["log", "w", 0600])
pid = spawn(command, :out=>["log", File::WRONLY|File::EXCL|File::CREAT, 0600])

The array specifies a filename, flags and permission. The flags can be a string or an integer. If the flags is omitted or nil, File::RDONLY is assumed. The permission should be an integer. If the permission is omitted or nil, 0644 is assumed.

If an array of IOs and integers are specified as a hash key, all the elements are redirected.

# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, [:out, :err]=>["log", "w"])

Another way to merge multiple file descriptors is [:child, fd]. [:child, fd] means the file descriptor in the child process. This is different from fd. For example, :err=>:out means redirecting child stderr to parent stdout. But :err=>[:child, :out] means redirecting child stderr to child stdout. They differ if stdout is redirected in the child process as follows.

# stdout and stderr is redirected to log file.
# The file "log" is opened just once.
pid = spawn(command, :out=>["log", "w"], :err=>[:child, :out])

[:child, :out] can be used to merge stderr into stdout in IO.popen. In this case, IO.popen redirects stdout to a pipe in the child process and [:child, :out] refers the redirected stdout.

io = IO.popen(["sh", "-c", "echo out; echo err >&2", :err=>[:child, :out]])
p io.read #=> "out\nerr\n"

The :chdir key in options specifies the current directory.

pid = spawn(command, :chdir=>"/var/tmp")

spawn closes all non-standard unspecified descriptors by default. The “standard” descriptors are 0, 1 and 2. This behavior is specified by :close_others option. :close_others doesn’t affect the standard descriptors which are closed only if :close is specified explicitly.

pid = spawn(command, :close_others=>true)  # close 3,4,5,... (default)
pid = spawn(command, :close_others=>false) # don't close 3,4,5,...

:close_others is false by default for spawn and IO.popen.

Note that fds which close-on-exec flag is already set are closed regardless of :close_others option.

So IO.pipe and spawn can be used as IO.popen.

# similar to r = IO.popen(command)
r, w = IO.pipe
pid = spawn(command, :out=>w)   # r, w is closed in the child process.
w.close

:close is specified as a hash value to close a fd individually.

f = open(foo)
system(command, f=>:close)        # don't inherit f.

If a file descriptor need to be inherited, io=>io can be used.

# valgrind has --log-fd option for log destination.
# log_w=>log_w indicates log_w.fileno inherits to child process.
log_r, log_w = IO.pipe
pid = spawn("valgrind", "--log-fd=#{log_w.fileno}", "echo", "a", log_w=>log_w)
log_w.close
p log_r.read

It is also possible to exchange file descriptors.

pid = spawn(command, :out=>:err, :err=>:out)

The hash keys specify file descriptors in the child process. The hash values specifies file descriptors in the parent process. So the above specifies exchanging stdout and stderr. Internally, spawn uses an extra file descriptor to resolve such cyclic file descriptor mapping.

See Kernel.exec for the standard shell.



5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
# File 'process.c', line 5059

static VALUE
rb_f_spawn(int argc, VALUE *argv, VALUE _)
{
    rb_pid_t pid;
    char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };
    VALUE execarg_obj, fail_str;
    struct rb_execarg *eargp;

    execarg_obj = rb_execarg_new(argc, argv, TRUE, FALSE);
    eargp = rb_execarg_get(execarg_obj);
    fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;

    pid = rb_execarg_spawn(execarg_obj, errmsg, sizeof(errmsg));

    if (pid == -1) {
	int err = errno;
	rb_exec_fail(eargp, err, errmsg);
	RB_GC_GUARD(execarg_obj);
	rb_syserr_fail_str(err, fail_str);
    }
#if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV)
    return PIDT2NUM(pid);
#else
    return Qnil;
#endif
}

.timesaProcessTms

Returns a Tms structure (see Process::Tms) that contains user and system CPU times for this process, and also for children processes.

t = Process.times
[ t.utime, t.stime, t.cutime, t.cstime ]   #=> [0.0, 0.02, 0.00, 0.00]

Returns:

  • (aProcessTms)


7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
# File 'process.c', line 7877

VALUE
rb_proc_times(VALUE obj)
{
    VALUE utime, stime, cutime, cstime, ret;
#if defined(RUSAGE_SELF) && defined(RUSAGE_CHILDREN)
    struct rusage usage_s, usage_c;

    if (getrusage(RUSAGE_SELF, &usage_s) != 0 || getrusage(RUSAGE_CHILDREN, &usage_c) != 0)
	rb_sys_fail("getrusage");
    utime = DBL2NUM((double)usage_s.ru_utime.tv_sec + (double)usage_s.ru_utime.tv_usec/1e6);
    stime = DBL2NUM((double)usage_s.ru_stime.tv_sec + (double)usage_s.ru_stime.tv_usec/1e6);
    cutime = DBL2NUM((double)usage_c.ru_utime.tv_sec + (double)usage_c.ru_utime.tv_usec/1e6);
    cstime = DBL2NUM((double)usage_c.ru_stime.tv_sec + (double)usage_c.ru_stime.tv_usec/1e6);
#else
    const double hertz = (double)get_clk_tck();
    struct tms buf;

    times(&buf);
    utime = DBL2NUM(buf.tms_utime / hertz);
    stime = DBL2NUM(buf.tms_stime / hertz);
    cutime = DBL2NUM(buf.tms_cutime / hertz);
    cstime = DBL2NUM(buf.tms_cstime / hertz);
#endif
    ret = rb_struct_new(rb_cProcessTms, utime, stime, cutime, cstime);
    RB_GC_GUARD(utime);
    RB_GC_GUARD(stime);
    RB_GC_GUARD(cutime);
    RB_GC_GUARD(cstime);
    return ret;
}

.uidInteger .Process::UID.ridInteger .Process::Sys.getuidInteger

Returns the (real) user ID of this process.

Process.uid   #=> 501

Overloads:



6287
6288
6289
6290
6291
6292
# File 'process.c', line 6287

static VALUE
proc_getuid(VALUE obj)
{
    rb_uid_t uid = getuid();
    return UIDT2NUM(uid);
}

.uid=(user) ⇒ Numeric

Sets the (user) user ID for this process. Not available on all platforms.

Returns:



6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
# File 'process.c', line 6304

static VALUE
proc_setuid(VALUE obj, VALUE id)
{
    rb_uid_t uid;

    check_uid_switch();

    uid = OBJ2UID(id);
#if defined(HAVE_SETRESUID)
    if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
    if (setreuid(uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRUID
    if (setruid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
    {
	if (geteuid() == uid) {
	    if (setuid(uid) < 0) rb_sys_fail(0);
	}
	else {
	    rb_notimplement();
	}
    }
#endif
    return id;
}

.waitInteger .wait(pid = -1, flags = 0) ⇒ Integer .waitpid(pid = -1, flags = 0) ⇒ Integer

Waits for a child process to exit, returns its process id, and sets $? to a Process::Status object containing information on that process. Which child it waits on depends on the value of pid:

> 0

Waits for the child whose process ID equals pid.

0

Waits for any child whose process group ID equals that of the calling process.

-1

Waits for any child process (the default if no pid is given).

< -1

Waits for any child whose process group ID equals the absolute value of pid.

The flags argument may be a logical or of the flag values Process::WNOHANG (do not block if no child available) or Process::WUNTRACED (return stopped children that haven’t been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.

Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.

include Process
fork { exit 99 }                 #=> 27429
wait                             #=> 27429
$?.exitstatus                    #=> 99

pid = fork { sleep 3 }           #=> 27440
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG)   #=> nil
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0)                  #=> 27440
Time.now                         #=> 2008-03-08 19:56:19 +0900

Overloads:



1550
1551
1552
1553
1554
# File 'process.c', line 1550

static VALUE
proc_m_wait(int c, VALUE *v, VALUE _)
{
    return proc_wait(c, v);
}

.wait2(pid = -1, flags = 0) ⇒ Array .waitpid2(pid = -1, flags = 0) ⇒ Array

Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Status object) of that child. Raises a SystemCallError if there are no child processes.

Process.fork { exit 99 }   #=> 27437
pid, status = Process.wait2
pid                        #=> 27437
status.exitstatus          #=> 99

Overloads:

  • .wait2(pid = -1, flags = 0) ⇒ Array

    Returns:

  • .waitpid2(pid = -1, flags = 0) ⇒ Array

    Returns:



1573
1574
1575
1576
1577
1578
1579
# File 'process.c', line 1573

static VALUE
proc_wait2(int argc, VALUE *argv, VALUE _)
{
    VALUE pid = proc_wait(argc, argv);
    if (NIL_P(pid)) return Qnil;
    return rb_assoc_new(pid, rb_last_status_get());
}

.waitallArray

Waits for all children, returning an array of pid/status pairs (where status is a Process::Status object).

fork { sleep 0.2; exit 2 }   #=> 27432
fork { sleep 0.1; exit 1 }   #=> 27433
fork {            exit 0 }   #=> 27434
p Process.waitall

produces:

[[30982, #<Process::Status: pid 30982 exit 0>],
 [30979, #<Process::Status: pid 30979 exit 1>],
 [30976, #<Process::Status: pid 30976 exit 2>]]

Returns:



1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
# File 'process.c', line 1602

static VALUE
proc_waitall(VALUE _)
{
    VALUE result;
    rb_pid_t pid;
    int status;

    result = rb_ary_new();
    rb_last_status_clear();

    for (pid = -1;;) {
	pid = rb_waitpid(-1, &status, 0);
	if (pid == -1) {
	    int e = errno;
	    if (e == ECHILD)
		break;
	    rb_syserr_fail(e, 0);
	}
	rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get()));
    }
    return result;
}

.waitInteger .wait(pid = -1, flags = 0) ⇒ Integer .waitpid(pid = -1, flags = 0) ⇒ Integer

Waits for a child process to exit, returns its process id, and sets $? to a Process::Status object containing information on that process. Which child it waits on depends on the value of pid:

> 0

Waits for the child whose process ID equals pid.

0

Waits for any child whose process group ID equals that of the calling process.

-1

Waits for any child process (the default if no pid is given).

< -1

Waits for any child whose process group ID equals the absolute value of pid.

The flags argument may be a logical or of the flag values Process::WNOHANG (do not block if no child available) or Process::WUNTRACED (return stopped children that haven’t been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.

Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.

include Process
fork { exit 99 }                 #=> 27429
wait                             #=> 27429
$?.exitstatus                    #=> 99

pid = fork { sleep 3 }           #=> 27440
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG)   #=> nil
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0)                  #=> 27440
Time.now                         #=> 2008-03-08 19:56:19 +0900

Overloads:



1550
1551
1552
1553
1554
# File 'process.c', line 1550

static VALUE
proc_m_wait(int c, VALUE *v, VALUE _)
{
    return proc_wait(c, v);
}

.wait2(pid = -1, flags = 0) ⇒ Array .waitpid2(pid = -1, flags = 0) ⇒ Array

Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Status object) of that child. Raises a SystemCallError if there are no child processes.

Process.fork { exit 99 }   #=> 27437
pid, status = Process.wait2
pid                        #=> 27437
status.exitstatus          #=> 99

Overloads:

  • .wait2(pid = -1, flags = 0) ⇒ Array

    Returns:

  • .waitpid2(pid = -1, flags = 0) ⇒ Array

    Returns:



1573
1574
1575
1576
1577
1578
1579
# File 'process.c', line 1573

static VALUE
proc_wait2(int argc, VALUE *argv, VALUE _)
{
    VALUE pid = proc_wait(argc, argv);
    if (NIL_P(pid)) return Qnil;
    return rb_assoc_new(pid, rb_last_status_get());
}

Instance Method Details

#argv0Object (private)

Returns the name of the script being executed. The value is not affected by assigning a new value to $0.

This method first appeared in Ruby 2.1 to serve as a global variable free means to get the script name.



2355
2356
2357
2358
2359
# File 'ruby.c', line 2355

static VALUE
proc_argv0(VALUE process)
{
    return rb_orig_progname;
}

#clock_getres(clock_id[, unit]) ⇒ Numeric (private)

Returns an estimate of the resolution of a clock_id using the POSIX clock_getres() function.

Note the reported resolution is often inaccurate on most platforms due to underlying bugs for this function and therefore the reported resolution often differs from the actual resolution of the clock in practice. Inaccurate reported resolutions have been observed for various clocks including CLOCK_MONOTONIC and CLOCK_MONOTONIC_RAW when using Linux, macOS, BSD or AIX platforms, when using ARM processors, or when using virtualization.

clock_id specifies a kind of clock. See the document of Process.clock_gettime for details. clock_id can be a symbol as for Process.clock_gettime.

If the given clock_id is not supported, Errno::EINVAL is raised.

unit specifies the type of the return value. Process.clock_getres accepts unit as Process.clock_gettime. The default value, :float_second, is also the same as Process.clock_gettime.

Process.clock_getres also accepts :hertz as unit. :hertz means the reciprocal of :float_second.

:hertz can be used to obtain the exact value of the clock ticks per second for the times() function and CLOCKS_PER_SEC for the clock() function.

Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns the clock ticks per second.

Process.clock_getres(:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) returns CLOCKS_PER_SEC.

p Process.clock_getres(Process::CLOCK_MONOTONIC)
#=> 1.0e-09

Returns:



8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
# File 'process.c', line 8450

static VALUE
rb_clock_getres(int argc, VALUE *argv, VALUE _)
{
    struct timetick tt;
    timetick_int_t numerators[2];
    timetick_int_t denominators[2];
    int num_numerators = 0;
    int num_denominators = 0;

    VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil;
    VALUE clk_id = argv[0];

    if (SYMBOL_P(clk_id)) {
#ifdef RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME
        if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
            tt.giga_count = 0;
            tt.count = 1000;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#ifdef RUBY_TIME_BASED_CLOCK_REALTIME
        if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
            tt.giga_count = 1;
            tt.count = 0;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#ifdef RUBY_TIMES_BASED_CLOCK_MONOTONIC
        if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
            tt.count = 1;
            tt.giga_count = 0;
            denominators[num_denominators++] = get_clk_tck();
            goto success;
        }
#endif

#ifdef RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
        if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            tt.giga_count = 0;
            tt.count = 1000;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#ifdef RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID
        if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            tt.count = 1;
            tt.giga_count = 0;
            denominators[num_denominators++] = get_clk_tck();
            goto success;
        }
#endif

#ifdef RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID
        if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            tt.count = 1;
            tt.giga_count = 0;
            denominators[num_denominators++] = CLOCKS_PER_SEC;
            goto success;
        }
#endif

#ifdef RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
        if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
	    const mach_timebase_info_data_t *info = get_mach_timebase_info();
            tt.count = 1;
            tt.giga_count = 0;
            numerators[num_numerators++] = info->numer;
            denominators[num_denominators++] = info->denom;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif
    }
    else {
#if defined(HAVE_CLOCK_GETRES)
        struct timespec ts;
        clockid_t c = NUM2CLOCKID(clk_id);
        int ret = clock_getres(c, &ts);
        if (ret == -1)
            rb_sys_fail("clock_getres");
        tt.count = (int32_t)ts.tv_nsec;
        tt.giga_count = ts.tv_sec;
        denominators[num_denominators++] = 1000000000;
        goto success;
#endif
    }
    /* EINVAL emulates clock_getres behavior when clock_id is invalid. */
    rb_syserr_fail(EINVAL, 0);

  success:
    if (unit == ID2SYM(id_hertz)) {
        return timetick2dblnum_reciprocal(&tt, numerators, num_numerators, denominators, num_denominators);
    }
    else {
        return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
    }
}

#clock_gettime(clock_id[, unit]) ⇒ Numeric (private)

Returns a time returned by POSIX clock_gettime() function.

p Process.clock_gettime(Process::CLOCK_MONOTONIC)
#=> 896053.968060096

clock_id specifies a kind of clock. It is specified as a constant which begins with Process::CLOCK_ such as Process::CLOCK_REALTIME and Process::CLOCK_MONOTONIC.

The supported constants depends on OS and version. Ruby provides following types of clock_id if available.

CLOCK_REALTIME

SUSv2 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 2.1, macOS 10.12

CLOCK_MONOTONIC

SUSv3 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 3.4, macOS 10.12

CLOCK_PROCESS_CPUTIME_ID

SUSv3 to 4, Linux 2.5.63, FreeBSD 9.3, OpenBSD 5.4, macOS 10.12

CLOCK_THREAD_CPUTIME_ID

SUSv3 to 4, Linux 2.5.63, FreeBSD 7.1, OpenBSD 5.4, macOS 10.12

CLOCK_VIRTUAL

FreeBSD 3.0, OpenBSD 2.1

CLOCK_PROF

FreeBSD 3.0, OpenBSD 2.1

CLOCK_REALTIME_FAST

FreeBSD 8.1

CLOCK_REALTIME_PRECISE

FreeBSD 8.1

CLOCK_REALTIME_COARSE

Linux 2.6.32

CLOCK_REALTIME_ALARM

Linux 3.0

CLOCK_MONOTONIC_FAST

FreeBSD 8.1

CLOCK_MONOTONIC_PRECISE

FreeBSD 8.1

CLOCK_MONOTONIC_COARSE

Linux 2.6.32

CLOCK_MONOTONIC_RAW

Linux 2.6.28, macOS 10.12

CLOCK_MONOTONIC_RAW_APPROX

macOS 10.12

CLOCK_BOOTTIME

Linux 2.6.39

CLOCK_BOOTTIME_ALARM

Linux 3.0

CLOCK_UPTIME

FreeBSD 7.0, OpenBSD 5.5

CLOCK_UPTIME_FAST

FreeBSD 8.1

CLOCK_UPTIME_RAW

macOS 10.12

CLOCK_UPTIME_RAW_APPROX

macOS 10.12

CLOCK_UPTIME_PRECISE

FreeBSD 8.1

CLOCK_SECOND

FreeBSD 8.1

CLOCK_TAI

Linux 3.10

Note that SUS stands for Single Unix Specification. SUS contains POSIX and clock_gettime is defined in the POSIX part. SUS defines CLOCK_REALTIME mandatory but CLOCK_MONOTONIC, CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID are optional.

Also, several symbols are accepted as clock_id. There are emulations for clock_gettime().

For example, Process::CLOCK_REALTIME is defined as :GETTIMEOFDAY_BASED_CLOCK_REALTIME when clock_gettime() is not available.

Emulations for CLOCK_REALTIME:

:GETTIMEOFDAY_BASED_CLOCK_REALTIME

Use gettimeofday() defined by SUS. (SUSv4 obsoleted it, though.) The resolution is 1 microsecond.

:TIME_BASED_CLOCK_REALTIME

Use time() defined by ISO C. The resolution is 1 second.

Emulations for CLOCK_MONOTONIC:

:MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC

Use mach_absolute_time(), available on Darwin. The resolution is CPU dependent.

:TIMES_BASED_CLOCK_MONOTONIC

Use the result value of times() defined by POSIX. POSIX defines it as “times() shall return the elapsed real time, in clock ticks, since an arbitrary point in the past (for example, system start-up time)”. For example, GNU/Linux returns a value based on jiffies and it is monotonic. However, 4.4BSD uses gettimeofday() and it is not monotonic. (FreeBSD uses clock_gettime(CLOCK_MONOTONIC) instead, though.) The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100 and clock_t is 32 bits integer type, the resolution is 10 millisecond and cannot represent over 497 days.

Emulations for CLOCK_PROCESS_CPUTIME_ID:

:GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID

Use getrusage() defined by SUS. getrusage() is used with RUSAGE_SELF to obtain the time only for the calling process (excluding the time for child processes). The result is addition of user time (ru_utime) and system time (ru_stime). The resolution is 1 microsecond.

:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID

Use times() defined by POSIX. The result is addition of user time (tms_utime) and system time (tms_stime). tms_cutime and tms_cstime are ignored to exclude the time for child processes. The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100, the resolution is 10 millisecond.

:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID

Use clock() defined by ISO C. The resolution is 1/CLOCKS_PER_SEC. CLOCKS_PER_SEC is the C-level macro defined by time.h. SUS defines CLOCKS_PER_SEC is 1000000. Non-Unix systems may define it a different value, though. If CLOCKS_PER_SEC is 1000000 as SUS, the resolution is 1 microsecond. If CLOCKS_PER_SEC is 1000000 and clock_t is 32 bits integer type, it cannot represent over 72 minutes.

If the given clock_id is not supported, Errno::EINVAL is raised.

unit specifies a type of the return value.

:float_second

number of seconds as a float (default)

:float_millisecond

number of milliseconds as a float

:float_microsecond

number of microseconds as a float

:second

number of seconds as an integer

:millisecond

number of milliseconds as an integer

:microsecond

number of microseconds as an integer

:nanosecond

number of nanoseconds as an integer

The underlying function, clock_gettime(), returns a number of nanoseconds. Float object (IEEE 754 double) is not enough to represent the return value for CLOCK_REALTIME. If the exact nanoseconds value is required, use :nanoseconds as the unit.

The origin (zero) of the returned value varies. For example, system start up time, process start up time, the Epoch, etc.

The origin in CLOCK_REALTIME is defined as the Epoch (1970-01-01 00:00:00 UTC). But some systems count leap seconds and others doesn’t. So the result can be interpreted differently across systems. Time.now is recommended over CLOCK_REALTIME.

Returns:



8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
# File 'process.c', line 8249

static VALUE
rb_clock_gettime(int argc, VALUE *argv, VALUE _)
{
    int ret;

    struct timetick tt;
    timetick_int_t numerators[2];
    timetick_int_t denominators[2];
    int num_numerators = 0;
    int num_denominators = 0;

    VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil;
    VALUE clk_id = argv[0];

    if (SYMBOL_P(clk_id)) {
        /*
         * Non-clock_gettime clocks are provided by symbol clk_id.
         */
#ifdef HAVE_GETTIMEOFDAY
        /*
         * GETTIMEOFDAY_BASED_CLOCK_REALTIME is used for
         * CLOCK_REALTIME if clock_gettime is not available.
         */
#define RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME ID2SYM(id_GETTIMEOFDAY_BASED_CLOCK_REALTIME)
        if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
            struct timeval tv;
            ret = gettimeofday(&tv, 0);
            if (ret != 0)
                rb_sys_fail("gettimeofday");
            tt.giga_count = tv.tv_sec;
            tt.count = (int32_t)tv.tv_usec * 1000;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#define RUBY_TIME_BASED_CLOCK_REALTIME ID2SYM(id_TIME_BASED_CLOCK_REALTIME)
        if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
            time_t t;
            t = time(NULL);
            if (t == (time_t)-1)
                rb_sys_fail("time");
            tt.giga_count = t;
            tt.count = 0;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }

#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_MONOTONIC \
        ID2SYM(id_TIMES_BASED_CLOCK_MONOTONIC)
        if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
            struct tms buf;
            clock_t c;
            unsigned_clock_t uc;
            c = times(&buf);
            if (c ==  (clock_t)-1)
                rb_sys_fail("times");
            uc = (unsigned_clock_t)c;
            tt.count = (int32_t)(uc % 1000000000);
            tt.giga_count = (uc / 1000000000);
            denominators[num_denominators++] = get_clk_tck();
            goto success;
        }
#endif

#ifdef RUSAGE_SELF
#define RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID \
        ID2SYM(id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID)
        if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            struct rusage usage;
            int32_t usec;
            ret = getrusage(RUSAGE_SELF, &usage);
            if (ret != 0)
                rb_sys_fail("getrusage");
            tt.giga_count = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
            usec = (int32_t)(usage.ru_utime.tv_usec + usage.ru_stime.tv_usec);
            if (1000000 <= usec) {
                tt.giga_count++;
                usec -= 1000000;
            }
            tt.count = usec * 1000;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif

#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID \
        ID2SYM(id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID)
        if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            struct tms buf;
            unsigned_clock_t utime, stime;
            if (times(&buf) ==  (clock_t)-1)
                rb_sys_fail("times");
            utime = (unsigned_clock_t)buf.tms_utime;
            stime = (unsigned_clock_t)buf.tms_stime;
            tt.count = (int32_t)((utime % 1000000000) + (stime % 1000000000));
            tt.giga_count = (utime / 1000000000) + (stime / 1000000000);
            if (1000000000 <= tt.count) {
                tt.count -= 1000000000;
                tt.giga_count++;
            }
            denominators[num_denominators++] = get_clk_tck();
            goto success;
        }
#endif

#define RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID \
        ID2SYM(id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID)
        if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
            clock_t c;
            unsigned_clock_t uc;
            errno = 0;
            c = clock();
            if (c == (clock_t)-1)
                rb_sys_fail("clock");
            uc = (unsigned_clock_t)c;
            tt.count = (int32_t)(uc % 1000000000);
            tt.giga_count = uc / 1000000000;
            denominators[num_denominators++] = CLOCKS_PER_SEC;
            goto success;
        }

#ifdef __APPLE__
#define RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC ID2SYM(id_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC)
        if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
	    const mach_timebase_info_data_t *info = get_mach_timebase_info();
            uint64_t t = mach_absolute_time();
            tt.count = (int32_t)(t % 1000000000);
            tt.giga_count = t / 1000000000;
            numerators[num_numerators++] = info->numer;
            denominators[num_denominators++] = info->denom;
            denominators[num_denominators++] = 1000000000;
            goto success;
        }
#endif
    }
    else {
#if defined(HAVE_CLOCK_GETTIME)
        struct timespec ts;
        clockid_t c;
        c = NUM2CLOCKID(clk_id);
        ret = clock_gettime(c, &ts);
        if (ret == -1)
            rb_sys_fail("clock_gettime");
        tt.count = (int32_t)ts.tv_nsec;
        tt.giga_count = ts.tv_sec;
        denominators[num_denominators++] = 1000000000;
        goto success;
#endif
    }
    /* EINVAL emulates clock_gettime behavior when clock_id is invalid. */
    rb_syserr_fail(EINVAL, 0);

  success:
    return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
}

#daemon0 (private) #daemon(nochdir = nil, noclose = nil) ⇒ 0 (private)

Detach the process from controlling terminal and run in the background as system daemon. Unless the argument nochdir is true (i.e. non false), it changes the current working directory to the root (“/”). Unless the argument noclose is true, daemon() will redirect standard input, standard output and standard error to /dev/null. Return zero on success, or raise one of Errno::*.

Overloads:

  • #daemon0

    Returns:

    • (0)
  • #daemon(nochdir = nil, noclose = nil) ⇒ 0

    Returns:

    • (0)


6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
# File 'process.c', line 6988

static VALUE
proc_daemon(int argc, VALUE *argv, VALUE _)
{
    int n, nochdir = FALSE, noclose = FALSE;

    switch (rb_check_arity(argc, 0, 2)) {
      case 2: noclose = TO_BOOL(argv[1], "noclose");
      case 1: nochdir = TO_BOOL(argv[0], "nochdir");
    }

    prefork();
    n = rb_daemon(nochdir, noclose);
    if (n < 0) rb_sys_fail("daemon");
    return INT2FIX(n);
}

#detach(pid) ⇒ Object (private)

Some operating systems retain the status of terminated child processes until the parent collects that status (normally using some variant of wait()). If the parent never collects this status, the child stays around as a zombie process. Process::detach prevents this by setting up a separate Ruby thread whose sole job is to reap the status of the process pid when it terminates. Use #detach only when you do not intend to explicitly wait for the child to terminate.

The waiting thread returns the exit status of the detached process when it terminates, so you can use Thread#join to know the result. If specified pid is not a valid child process ID, the thread returns nil immediately.

The waiting thread has #pid method which returns the pid.

In this first example, we don’t reap the first child process, so it appears as a zombie in the process status display.

p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")

produces:

27389 Z

In the next example, Process::detach is used to reap the child automatically.

p1 = fork { sleep 0.1 }
p2 = fork { sleep 0.2 }
Process.detach(p1)
Process.waitpid(p2)
sleep 2
system("ps -ho pid,state -p #{p1}")

(produces no output)



1701
1702
1703
1704
1705
# File 'process.c', line 1701

static VALUE
proc_detach(VALUE obj, VALUE pid)
{
    return rb_detach_process(NUM2PIDT(pid));
}

#egidInteger (private) #Process::GID.eidInteger (private) #Process::Sys.geteidInteger (private)

Returns the effective group ID for this process. Not available on all platforms.

Process.egid   #=> 500

Overloads:



7380
7381
7382
7383
7384
7385
7386
# File 'process.c', line 7380

static VALUE
proc_getegid(VALUE obj)
{
    rb_gid_t egid = getegid();

    return GIDT2NUM(egid);
}

#egid=Object (private)

#euidInteger (private) #Process::UID.eidInteger (private) #Process::Sys.geteuidInteger (private)

Returns the effective user ID for this process.

Process.euid   #=> 501

Overloads:



7256
7257
7258
7259
7260
7261
# File 'process.c', line 7256

static VALUE
proc_geteuid(VALUE obj)
{
    rb_uid_t euid = geteuid();
    return UIDT2NUM(euid);
}

#euid=(user) ⇒ Object (private)

Sets the effective user ID for this process. Not available on all platforms.



7295
7296
7297
7298
7299
7300
7301
# File 'process.c', line 7295

static VALUE
proc_seteuid_m(VALUE mod, VALUE euid)
{
    check_uid_switch();
    proc_seteuid(OBJ2UID(euid));
    return euid;
}

#getpgid(pid) ⇒ Integer (private)

Returns the process group ID for the given process id. Not available on all platforms.

Process.getpgid(Process.ppid())   #=> 25527

Returns:



5199
5200
5201
5202
5203
5204
5205
5206
5207
# File 'process.c', line 5199

static VALUE
proc_getpgid(VALUE obj, VALUE pid)
{
    rb_pid_t i;

    i = getpgid(NUM2PIDT(pid));
    if (i < 0) rb_sys_fail(0);
    return PIDT2NUM(i);
}

#getpgrpInteger (private)

Returns the process group ID for this process. Not available on all platforms.

Process.getpgid(0)   #=> 25527
Process.getpgrp      #=> 25527

Returns:



5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
# File 'process.c', line 5140

static VALUE
proc_getpgrp(VALUE _)
{
    rb_pid_t pgrp;

#if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)
    pgrp = getpgrp();
    if (pgrp < 0) rb_sys_fail(0);
    return PIDT2NUM(pgrp);
#else /* defined(HAVE_GETPGID) */
    pgrp = getpgid(0);
    if (pgrp < 0) rb_sys_fail(0);
    return PIDT2NUM(pgrp);
#endif
}

#getpriority(kind, integer) ⇒ Integer (private)

Gets the scheduling priority for specified process, process group, or user. kind indicates the kind of entity to find: one of Process::PRIO_PGRP, Process::PRIO_USER, or Process::PRIO_PROCESS. integer is an id indicating the particular process, process group, or user (an id of 0 means current). Lower priorities are more favorable for scheduling. Not available on all platforms.

Process.getpriority(Process::PRIO_USER, 0)      #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0)   #=> 19

Returns:



5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
# File 'process.c', line 5345

static VALUE
proc_getpriority(VALUE obj, VALUE which, VALUE who)
{
    int prio, iwhich, iwho;

    iwhich = NUM2INT(which);
    iwho   = NUM2INT(who);

    errno = 0;
    prio = getpriority(iwhich, iwho);
    if (errno) rb_sys_fail(0);
    return INT2FIX(prio);
}

#getrlimit(resource) ⇒ Array (private)

Gets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.

resource indicates the kind of resource to limit. It is specified as a symbol such as :CORE, a string such as "CORE" or a constant such as Process::RLIMIT_CORE. See Process.setrlimit for details.

cur_limit and max_limit may be Process::RLIM_INFINITY, Process::RLIM_SAVED_MAX or Process::RLIM_SAVED_CUR. See Process.setrlimit and the system getrlimit(2) manual for details.

Returns:



5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
# File 'process.c', line 5636

static VALUE
proc_getrlimit(VALUE obj, VALUE resource)
{
    struct rlimit rlim;

    if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) {
	rb_sys_fail("getrlimit");
    }
    return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max));
}

#getsidInteger (private) #getsid(pid) ⇒ Integer (private)

Returns the session ID for the given process id. If not given, return current process sid. Not available on all platforms.

Process.getsid()                #=> 27422
Process.getsid(0)               #=> 27422
Process.getsid(Process.pid())   #=> 27422

Overloads:



5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
# File 'process.c', line 5251

static VALUE
proc_getsid(int argc, VALUE *argv, VALUE _)
{
    rb_pid_t sid;
    rb_pid_t pid = 0;

    if (rb_check_arity(argc, 0, 1) == 1 && !NIL_P(argv[0]))
	pid = NUM2PIDT(argv[0]);

    sid = getsid(pid);
    if (sid < 0) rb_sys_fail(0);
    return PIDT2NUM(sid);
}

#gidInteger (private) #Process::GID.ridInteger (private) #Process::Sys.getgidInteger (private)

Returns the (real) group ID for this process.

Process.gid   #=> 500

Overloads:



6690
6691
6692
6693
6694
6695
# File 'process.c', line 6690

static VALUE
proc_getgid(VALUE obj)
{
    rb_gid_t gid = getgid();
    return GIDT2NUM(gid);
}

#gid=(integer) ⇒ Integer (private)

Sets the group ID for this process.

Returns:



6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
# File 'process.c', line 6706

static VALUE
proc_setgid(VALUE obj, VALUE id)
{
    rb_gid_t gid;

    check_gid_switch();

    gid = OBJ2GID(id);
#if defined(HAVE_SETRESGID)
    if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
    if (setregid(gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRGID
    if (setrgid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
    {
	if (getegid() == gid) {
	    if (setgid(gid) < 0) rb_sys_fail(0);
	}
	else {
	    rb_notimplement();
	}
    }
#endif
    return GIDT2NUM(gid);
}

#groupsArray (private)

Get an Array of the group IDs in the supplemental group access list for this process.

Process.groups   #=> [27, 6, 10, 11]

Note that this method is just a wrapper of getgroups(2). This means that the following characteristics of the result completely depend on your system:

  • the result is sorted

  • the result includes effective GIDs

  • the result does not include duplicated GIDs

You can make sure to get a sorted unique GID list of the current process by this expression:

Process.groups.uniq.sort

Returns:



6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
# File 'process.c', line 6810

static VALUE
proc_getgroups(VALUE obj)
{
    VALUE ary, tmp;
    int i, ngroups;
    rb_gid_t *groups;

    ngroups = getgroups(0, NULL);
    if (ngroups == -1)
	rb_sys_fail(0);

    groups = ALLOCV_N(rb_gid_t, tmp, ngroups);

    ngroups = getgroups(ngroups, groups);
    if (ngroups == -1)
	rb_sys_fail(0);

    ary = rb_ary_new();
    for (i = 0; i < ngroups; i++)
	rb_ary_push(ary, GIDT2NUM(groups[i]));

    ALLOCV_END(tmp);

    return ary;
}

#groups=(array) ⇒ Array (private)

Set the supplemental group access list to the given Array of group IDs.

Process.groups   #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
Process.groups = [27, 6, 10, 11]   #=> [27, 6, 10, 11]
Process.groups   #=> [27, 6, 10, 11]

Returns:



6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
# File 'process.c', line 6854

static VALUE
proc_setgroups(VALUE obj, VALUE ary)
{
    int ngroups, i;
    rb_gid_t *groups;
    VALUE tmp;
    PREPARE_GETGRNAM;

    Check_Type(ary, T_ARRAY);

    ngroups = RARRAY_LENINT(ary);
    if (ngroups > maxgroups())
	rb_raise(rb_eArgError, "too many groups, %d max", maxgroups());

    groups = ALLOCV_N(rb_gid_t, tmp, ngroups);

    for (i = 0; i < ngroups; i++) {
	VALUE g = RARRAY_AREF(ary, i);

	groups[i] = OBJ2GID1(g);
    }
    FINISH_GETGRNAM;

    if (setgroups(ngroups, groups) == -1) /* ngroups <= maxgroups */
	rb_sys_fail(0);

    ALLOCV_END(tmp);

    return proc_getgroups(obj);
}

#initgroups(username, gid) ⇒ Array (private)

Initializes the supplemental group access list by reading the system group database and using all groups of which the given user is a member. The group with the specified gid is also added to the list. Returns the resulting Array of the gids of all the groups in the supplementary group access list. Not available on all platforms.

Process.groups   #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
Process.initgroups( "mgranger", 30 )   #=> [30, 6, 10, 11]
Process.groups   #=> [30, 6, 10, 11]

Returns:



6907
6908
6909
6910
6911
6912
6913
6914
# File 'process.c', line 6907

static VALUE
proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp)
{
    if (initgroups(StringValueCStr(uname), OBJ2GID(base_grp)) != 0) {
	rb_sys_fail(0);
    }
    return proc_getgroups(obj);
}

#kill(signal, pid, ...) ⇒ Integer (private)

Sends the given signal to the specified process id(s) if pid is positive. If pid is zero, signal is sent to all processes whose group ID is equal to the group ID of the process. If pid is negative, results are dependent on the operating system. signal may be an integer signal number or a POSIX signal name (either with or without a SIG prefix). If signal is negative (or starts with a minus sign), kills process groups instead of processes. Not all signals are available on all platforms. The keys and values of Signal.list are known signal names and numbers, respectively.

pid = fork do
   Signal.trap("HUP") { puts "Ouch!"; exit }
   # ... do some work ...
end
# ...
Process.kill("HUP", pid)
Process.wait

produces:

Ouch!

If signal is an integer but wrong for signal, Errno::EINVAL or RangeError will be raised. Otherwise unless signal is a String or a Symbol, and a known signal name, ArgumentError will be raised.

Also, Errno::ESRCH or RangeError for invalid pid, Errno::EPERM when failed because of no privilege, will be raised. In these cases, signals may have been sent to preceding processes.

Returns:



8602
8603
8604
8605
8606
# File 'process.c', line 8602

static VALUE
proc_rb_f_kill(int c, const VALUE *v, VALUE _)
{
    return rb_f_kill(c, v);
}

#maxgroupsInteger (private)

Returns the maximum number of gids allowed in the supplemental group access list.

Process.maxgroups   #=> 32

Returns:



6930
6931
6932
6933
6934
# File 'process.c', line 6930

static VALUE
proc_getmaxgroups(VALUE obj)
{
    return INT2FIX(maxgroups());
}

#maxgroups=(integer) ⇒ Integer (private)

Sets the maximum number of gids allowed in the supplemental group access list.

Returns:



6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
# File 'process.c', line 6948

static VALUE
proc_setmaxgroups(VALUE obj, VALUE val)
{
    int ngroups = FIX2INT(val);
    int ngroups_max = get_sc_ngroups_max();

    if (ngroups <= 0)
	rb_raise(rb_eArgError, "maxgroups %d should be positive", ngroups);

    if (ngroups > RB_MAX_GROUPS)
	ngroups = RB_MAX_GROUPS;

    if (ngroups_max > 0 && ngroups > ngroups_max)
	ngroups = ngroups_max;

    _maxgroups = ngroups;

    return INT2FIX(_maxgroups);
}

#pidInteger (private)

Returns the process id of this process. Not available on all platforms.

Process.pid   #=> 27415

Returns:



505
506
507
508
509
# File 'process.c', line 505

static VALUE
proc_get_pid(VALUE _)
{
    return get_pid();
}

#ppidInteger (private)

Returns the process id of the parent of this process. Returns untrustworthy value on Win32/64. Not available on all platforms.

puts "I am #{Process.pid}"
Process.fork { puts "Dad is #{Process.ppid}" }

produces:

I am 27417
Dad is 27417

Returns:



533
534
535
536
537
# File 'process.c', line 533

static VALUE
proc_get_ppid(VALUE _)
{
    return get_ppid();
}

#setpgid(pid, integer) ⇒ 0 (private)

Sets the process group ID of pid (0 indicates this process) to integer. Not available on all platforms.

Returns:

  • (0)


5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
# File 'process.c', line 5222

static VALUE
proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp)
{
    rb_pid_t ipid, ipgrp;

    ipid = NUM2PIDT(pid);
    ipgrp = NUM2PIDT(pgrp);

    if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0);
    return INT2FIX(0);
}

#setpgrp0 (private)

Equivalent to setpgid(0,0). Not available on all platforms.

Returns:

  • (0)


5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
# File 'process.c', line 5169

static VALUE
proc_setpgrp(VALUE _)
{
  /* check for posix setpgid() first; this matches the posix */
  /* getpgrp() above.  It appears that configure will set SETPGRP_VOID */
  /* even though setpgrp(0,0) would be preferred. The posix call avoids */
  /* this confusion. */
#ifdef HAVE_SETPGID
    if (setpgid(0,0) < 0) rb_sys_fail(0);
#elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID)
    if (setpgrp() < 0) rb_sys_fail(0);
#endif
    return INT2FIX(0);
}

#setpriority(kind, integer, priority) ⇒ 0 (private)

See Process.getpriority.

Process.setpriority(Process::PRIO_USER, 0, 19)      #=> 0
Process.setpriority(Process::PRIO_PROCESS, 0, 19)   #=> 0
Process.getpriority(Process::PRIO_USER, 0)          #=> 19
Process.getpriority(Process::PRIO_PROCESS, 0)       #=> 19

Returns:

  • (0)


5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
# File 'process.c', line 5376

static VALUE
proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio)
{
    int iwhich, iwho, iprio;

    iwhich = NUM2INT(which);
    iwho   = NUM2INT(who);
    iprio  = NUM2INT(prio);

    if (setpriority(iwhich, iwho, iprio) < 0)
	rb_sys_fail(0);
    return INT2FIX(0);
}

#setproctitle(string) ⇒ String (private)

Sets the process title that appears on the ps(1) command. Not necessarily effective on all platforms. No exception will be raised regardless of the result, nor will NotImplementedError be raised even if the platform does not support the feature.

Calling this method does not affect the value of $0.

Process.setproctitle('myapp: worker #%d' % worker_id)

This method first appeared in Ruby 2.1 to serve as a global variable free means to change the process title.

Returns:



2380
2381
2382
2383
2384
# File 'ruby.c', line 2380

static VALUE
proc_setproctitle(VALUE process, VALUE title)
{
    return ruby_setproctitle(title);
}

#setrlimit(resource, cur_limit, max_limit) ⇒ nil (private) #setrlimit(resource, cur_limit) ⇒ nil (private)

Sets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.

If max_limit is not given, cur_limit is used.

resource indicates the kind of resource to limit. It should be a symbol such as :CORE, a string such as "CORE" or a constant such as Process::RLIMIT_CORE. The available resources are OS dependent. Ruby may support following resources.

AS

total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite)

CORE

core size (bytes) (SUSv3)

CPU

CPU time (seconds) (SUSv3)

DATA

data segment (bytes) (SUSv3)

FSIZE

file size (bytes) (SUSv3)

MEMLOCK

total size for mlock(2) (bytes) (4.4BSD, GNU/Linux)

MSGQUEUE

allocation for POSIX message queues (bytes) (GNU/Linux)

NICE

ceiling on process’s nice(2) value (number) (GNU/Linux)

NOFILE

file descriptors (number) (SUSv3)

NPROC

number of processes for the user (number) (4.4BSD, GNU/Linux)

RSS

resident memory size (bytes) (4.2BSD, GNU/Linux)

RTPRIO

ceiling on the process’s real-time priority (number) (GNU/Linux)

RTTIME

CPU time for real-time process (us) (GNU/Linux)

SBSIZE

all socket buffers (bytes) (NetBSD, FreeBSD)

SIGPENDING

number of queued signals allowed (signals) (GNU/Linux)

STACK

stack size (bytes) (SUSv3)

cur_limit and max_limit may be :INFINITY, "INFINITY" or Process::RLIM_INFINITY, which means that the resource is not limited. They may be Process::RLIM_SAVED_MAX, Process::RLIM_SAVED_CUR and corresponding symbols and strings too. See system setrlimit(2) manual for details.

The following example raises the soft limit of core size to the hard limit to try to make core dump possible.

Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])

Overloads:

  • #setrlimit(resource, cur_limit, max_limit) ⇒ nil

    Returns:

    • (nil)
  • #setrlimit(resource, cur_limit) ⇒ nil

    Returns:

    • (nil)


5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
# File 'process.c', line 5702

static VALUE
proc_setrlimit(int argc, VALUE *argv, VALUE obj)
{
    VALUE resource, rlim_cur, rlim_max;
    struct rlimit rlim;

    rb_check_arity(argc, 2, 3);
    resource = argv[0];
    rlim_cur = argv[1];
    if (argc < 3 || NIL_P(rlim_max = argv[2]))
        rlim_max = rlim_cur;

    rlim.rlim_cur = rlimit_resource_value(rlim_cur);
    rlim.rlim_max = rlimit_resource_value(rlim_max);

    if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) {
	rb_sys_fail("setrlimit");
    }
    return Qnil;
}

#setsidInteger (private)

Establishes this process as a new session and process group leader, with no controlling tty. Returns the session id. Not available on all platforms.

Process.setsid   #=> 27422

Returns:



5285
5286
5287
5288
5289
5290
5291
5292
5293
# File 'process.c', line 5285

static VALUE
proc_setsid(VALUE _)
{
    rb_pid_t pid;

    pid = setsid();
    if (pid < 0) rb_sys_fail(0);
    return PIDT2NUM(pid);
}

#timesaProcessTms (private)

Returns a Tms structure (see Process::Tms) that contains user and system CPU times for this process, and also for children processes.

t = Process.times
[ t.utime, t.stime, t.cutime, t.cstime ]   #=> [0.0, 0.02, 0.00, 0.00]

Returns:

  • (aProcessTms)


7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
# File 'process.c', line 7877

VALUE
rb_proc_times(VALUE obj)
{
    VALUE utime, stime, cutime, cstime, ret;
#if defined(RUSAGE_SELF) && defined(RUSAGE_CHILDREN)
    struct rusage usage_s, usage_c;

    if (getrusage(RUSAGE_SELF, &usage_s) != 0 || getrusage(RUSAGE_CHILDREN, &usage_c) != 0)
	rb_sys_fail("getrusage");
    utime = DBL2NUM((double)usage_s.ru_utime.tv_sec + (double)usage_s.ru_utime.tv_usec/1e6);
    stime = DBL2NUM((double)usage_s.ru_stime.tv_sec + (double)usage_s.ru_stime.tv_usec/1e6);
    cutime = DBL2NUM((double)usage_c.ru_utime.tv_sec + (double)usage_c.ru_utime.tv_usec/1e6);
    cstime = DBL2NUM((double)usage_c.ru_stime.tv_sec + (double)usage_c.ru_stime.tv_usec/1e6);
#else
    const double hertz = (double)get_clk_tck();
    struct tms buf;

    times(&buf);
    utime = DBL2NUM(buf.tms_utime / hertz);
    stime = DBL2NUM(buf.tms_stime / hertz);
    cutime = DBL2NUM(buf.tms_cutime / hertz);
    cstime = DBL2NUM(buf.tms_cstime / hertz);
#endif
    ret = rb_struct_new(rb_cProcessTms, utime, stime, cutime, cstime);
    RB_GC_GUARD(utime);
    RB_GC_GUARD(stime);
    RB_GC_GUARD(cutime);
    RB_GC_GUARD(cstime);
    return ret;
}

#uidInteger (private) #Process::UID.ridInteger (private) #Process::Sys.getuidInteger (private)

Returns the (real) user ID of this process.

Process.uid   #=> 501

Overloads:



6287
6288
6289
6290
6291
6292
# File 'process.c', line 6287

static VALUE
proc_getuid(VALUE obj)
{
    rb_uid_t uid = getuid();
    return UIDT2NUM(uid);
}

#uid=(user) ⇒ Numeric (private)

Sets the (user) user ID for this process. Not available on all platforms.

Returns:



6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
# File 'process.c', line 6304

static VALUE
proc_setuid(VALUE obj, VALUE id)
{
    rb_uid_t uid;

    check_uid_switch();

    uid = OBJ2UID(id);
#if defined(HAVE_SETRESUID)
    if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
    if (setreuid(uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRUID
    if (setruid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
    {
	if (geteuid() == uid) {
	    if (setuid(uid) < 0) rb_sys_fail(0);
	}
	else {
	    rb_notimplement();
	}
    }
#endif
    return id;
}

#waitInteger (private) #wait(pid = -1, flags = 0) ⇒ Integer (private) #waitpid(pid = -1, flags = 0) ⇒ Integer (private)

Waits for a child process to exit, returns its process id, and sets $? to a Process::Status object containing information on that process. Which child it waits on depends on the value of pid:

> 0

Waits for the child whose process ID equals pid.

0

Waits for any child whose process group ID equals that of the calling process.

-1

Waits for any child process (the default if no pid is given).

< -1

Waits for any child whose process group ID equals the absolute value of pid.

The flags argument may be a logical or of the flag values Process::WNOHANG (do not block if no child available) or Process::WUNTRACED (return stopped children that haven’t been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.

Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.

include Process
fork { exit 99 }                 #=> 27429
wait                             #=> 27429
$?.exitstatus                    #=> 99

pid = fork { sleep 3 }           #=> 27440
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG)   #=> nil
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0)                  #=> 27440
Time.now                         #=> 2008-03-08 19:56:19 +0900

Overloads:



1550
1551
1552
1553
1554
# File 'process.c', line 1550

static VALUE
proc_m_wait(int c, VALUE *v, VALUE _)
{
    return proc_wait(c, v);
}

#wait2(pid = -1, flags = 0) ⇒ Array (private) #waitpid2(pid = -1, flags = 0) ⇒ Array (private)

Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Status object) of that child. Raises a SystemCallError if there are no child processes.

Process.fork { exit 99 }   #=> 27437
pid, status = Process.wait2
pid                        #=> 27437
status.exitstatus          #=> 99

Overloads:

  • #wait2(pid = -1, flags = 0) ⇒ Array

    Returns:

  • #waitpid2(pid = -1, flags = 0) ⇒ Array

    Returns:



1573
1574
1575
1576
1577
1578
1579
# File 'process.c', line 1573

static VALUE
proc_wait2(int argc, VALUE *argv, VALUE _)
{
    VALUE pid = proc_wait(argc, argv);
    if (NIL_P(pid)) return Qnil;
    return rb_assoc_new(pid, rb_last_status_get());
}

#waitallArray (private)

Waits for all children, returning an array of pid/status pairs (where status is a Process::Status object).

fork { sleep 0.2; exit 2 }   #=> 27432
fork { sleep 0.1; exit 1 }   #=> 27433
fork {            exit 0 }   #=> 27434
p Process.waitall

produces:

[[30982, #<Process::Status: pid 30982 exit 0>],
 [30979, #<Process::Status: pid 30979 exit 1>],
 [30976, #<Process::Status: pid 30976 exit 2>]]

Returns:



1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
# File 'process.c', line 1602

static VALUE
proc_waitall(VALUE _)
{
    VALUE result;
    rb_pid_t pid;
    int status;

    result = rb_ary_new();
    rb_last_status_clear();

    for (pid = -1;;) {
	pid = rb_waitpid(-1, &status, 0);
	if (pid == -1) {
	    int e = errno;
	    if (e == ECHILD)
		break;
	    rb_syserr_fail(e, 0);
	}
	rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get()));
    }
    return result;
}

#waitInteger (private) #wait(pid = -1, flags = 0) ⇒ Integer (private) #waitpid(pid = -1, flags = 0) ⇒ Integer (private)

Waits for a child process to exit, returns its process id, and sets $? to a Process::Status object containing information on that process. Which child it waits on depends on the value of pid:

> 0

Waits for the child whose process ID equals pid.

0

Waits for any child whose process group ID equals that of the calling process.

-1

Waits for any child process (the default if no pid is given).

< -1

Waits for any child whose process group ID equals the absolute value of pid.

The flags argument may be a logical or of the flag values Process::WNOHANG (do not block if no child available) or Process::WUNTRACED (return stopped children that haven’t been reported). Not all flags are available on all platforms, but a flag value of zero will work on all platforms.

Calling this method raises a SystemCallError if there are no child processes. Not available on all platforms.

include Process
fork { exit 99 }                 #=> 27429
wait                             #=> 27429
$?.exitstatus                    #=> 99

pid = fork { sleep 3 }           #=> 27440
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, Process::WNOHANG)   #=> nil
Time.now                         #=> 2008-03-08 19:56:16 +0900
waitpid(pid, 0)                  #=> 27440
Time.now                         #=> 2008-03-08 19:56:19 +0900

Overloads:



1550
1551
1552
1553
1554
# File 'process.c', line 1550

static VALUE
proc_m_wait(int c, VALUE *v, VALUE _)
{
    return proc_wait(c, v);
}

#wait2(pid = -1, flags = 0) ⇒ Array (private) #waitpid2(pid = -1, flags = 0) ⇒ Array (private)

Waits for a child process to exit (see Process::waitpid for exact semantics) and returns an array containing the process id and the exit status (a Process::Status object) of that child. Raises a SystemCallError if there are no child processes.

Process.fork { exit 99 }   #=> 27437
pid, status = Process.wait2
pid                        #=> 27437
status.exitstatus          #=> 99

Overloads:

  • #wait2(pid = -1, flags = 0) ⇒ Array

    Returns:

  • #waitpid2(pid = -1, flags = 0) ⇒ Array

    Returns:



1573
1574
1575
1576
1577
1578
1579
# File 'process.c', line 1573

static VALUE
proc_wait2(int argc, VALUE *argv, VALUE _)
{
    VALUE pid = proc_wait(argc, argv);
    if (NIL_P(pid)) return Qnil;
    return rb_assoc_new(pid, rb_last_status_get());
}