Class: Module

Inherits:
Object show all
Defined in:
object.c,
class.c,
object.c

Overview

*********************************************************************

A <code>Module</code> is a collection of methods and constants. The
methods in a module may be instance methods or module methods.
Instance methods appear as methods in a class when the module is
included, module methods do not. Conversely, module methods may be
called without creating an encapsulating object, while instance
methods may not. (See <code>Module#module_function</code>.)

In the descriptions that follow, the parameter <i>sym</i> refers
to a symbol, which is either a quoted string or a
<code>Symbol</code> (such as <code>:name</code>).

   module Mod
     include Math
     CONST = 1
     def meth
       #  ...
     end
   end
   Mod.class              #=> Module
   Mod.constants          #=> [:CONST, :PI, :E]
   Mod.instance_methods   #=> [:meth]

Direct Known Subclasses

Class

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#newObject #new {|mod| ... } ⇒ Object

Creates a new anonymous module. If a block is given, it is passed the module object, and the block is evaluated in the context of this module using module_eval.

fred = Module.new do
  def meth1
    "hello"
  end
  def meth2
    "bye"
  end
end
a = "my string"
a.extend(fred)   #=> "my string"
a.meth1          #=> "hello"
a.meth2          #=> "bye"

Assign the module to a constant (name starting uppercase) if you want to treat it like a regular module.

Overloads:

  • #new {|mod| ... } ⇒ Object

    Yields:

    • (mod)


1699
1700
1701
1702
1703
1704
1705
1706
# File 'object.c', line 1699

static VALUE
rb_mod_initialize(VALUE module)
{
    if (rb_block_given_p()) {
	rb_mod_module_exec(1, &module, module);
    }
    return Qnil;
}

Class Method Details

.constantsArray .constants(inherited) ⇒ Array

In the first form, returns an array of the names of all constants accessible from the point of call. This list includes the names of all modules and classes defined in the global scope.

Module.constants.first(4)
   # => [:ARGF, :ARGV, :ArgumentError, :Array]

Module.constants.include?(:SEEK_SET)   # => false

class IO
  Module.constants.include?(:SEEK_SET) # => true
end

The second form calls the instance method constants.

Overloads:



367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# File 'eval.c', line 367

static VALUE
rb_mod_s_constants(int argc, VALUE *argv, VALUE mod)
{
    const rb_cref_t *cref = rb_vm_cref();
    VALUE klass;
    VALUE cbase = 0;
    void *data = 0;

    if (argc > 0 || mod != rb_cModule) {
	return rb_mod_constants(argc, argv, mod);
    }

    while (cref) {
	klass = CREF_CLASS(cref);
	if (!CREF_PUSHED_BY_EVAL(cref) &&
	    !NIL_P(klass)) {
	    data = rb_mod_const_at(CREF_CLASS(cref), data);
	    if (!cbase) {
		cbase = klass;
	    }
	}
	cref = CREF_NEXT(cref);
    }

    if (cbase) {
	data = rb_mod_const_of(cbase, data);
    }
    return rb_const_list(data);
}

.nestingArray

Returns the list of Modules nested at the point of call.

module M1
  module M2
    $a = Module.nesting
  end
end
$a           #=> [M1::M2, M1]
$a[0].name   #=> "M1::M2"

Returns:



328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# File 'eval.c', line 328

static VALUE
rb_mod_nesting(void)
{
    VALUE ary = rb_ary_new();
    const rb_cref_t *cref = rb_vm_cref();

    while (cref && CREF_NEXT(cref)) {
	VALUE klass = CREF_CLASS(cref);
	if (!CREF_PUSHED_BY_EVAL(cref) &&
	    !NIL_P(klass)) {
	    rb_ary_push(ary, klass);
	}
	cref = CREF_NEXT(cref);
    }
    return ary;
}

Instance Method Details

#<(other) ⇒ true, ...

Returns true if mod is a subclass of other. Returns nil if there's no relationship between the two. (Think of the relationship in terms of the class definition: “class A<B” implies “A<B”.)

Returns:

  • (true, false, nil)


1580
1581
1582
1583
1584
1585
# File 'object.c', line 1580

static VALUE
rb_mod_lt(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qfalse;
    return rb_class_inherited_p(mod, arg);
}

#<=(other) ⇒ true, ...

Returns true if mod is a subclass of other or is the same as other. Returns nil if there's no relationship between the two. (Think of the relationship in terms of the class definition: “class A<B” implies “A<B”.)

Returns:

  • (true, false, nil)


1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
# File 'object.c', line 1549

VALUE
rb_class_inherited_p(VALUE mod, VALUE arg)
{
    VALUE start = mod;

    if (mod == arg) return Qtrue;
    if (!CLASS_OR_MODULE_P(arg) && !RB_TYPE_P(arg, T_ICLASS)) {
	rb_raise(rb_eTypeError, "compared with non class/module");
    }
    arg = RCLASS_ORIGIN(arg);
    if (class_search_ancestor(mod, arg)) {
	return Qtrue;
    }
    /* not mod < arg; check if mod > arg */
    if (class_search_ancestor(arg, start)) {
	return Qfalse;
    }
    return Qnil;
}

#<=>(other_module) ⇒ -1, ...

Comparison—Returns -1, 0, +1 or nil depending on whether module includes other_module, they are the same, or if module is included by other_module.

Returns nil if module has no relationship with other_module, if other_module is not a module, or if the two values are incomparable.

Returns:

  • (-1, 0, +1, nil)


1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
# File 'object.c', line 1640

static VALUE
rb_mod_cmp(VALUE mod, VALUE arg)
{
    VALUE cmp;

    if (mod == arg) return INT2FIX(0);
    if (!CLASS_OR_MODULE_P(arg)) {
	return Qnil;
    }

    cmp = rb_class_inherited_p(mod, arg);
    if (NIL_P(cmp)) return Qnil;
    if (cmp) {
	return INT2FIX(-1);
    }
    return INT2FIX(1);
}

#==(other) ⇒ Boolean #equal?(other) ⇒ Boolean #eql?(other) ⇒ Boolean

Equality — At the Object level, == returns true only if obj and other are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.

Unlike ==, the equal? method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b) if and only if a is the same object as b):

obj = "a"
other = obj.dup

obj == other      #=> true
obj.equal? other  #=> false
obj.equal? obj    #=> true

The eql? method returns true if obj and other refer to the same hash key. This is used by Hash to test members for equality. For objects of class Object, eql? is synonymous with ==. Subclasses normally continue this tradition by aliasing eql? to their overridden == method, but there are exceptions. Numeric types, for example, perform type conversion across ==, but not across eql?, so:

1 == 1.0     #=> true
1.eql? 1.0   #=> false

Overloads:

  • #==(other) ⇒ Boolean

    Returns:

    • (Boolean)
  • #equal?(other) ⇒ Boolean

    Returns:

    • (Boolean)
  • #eql?(other) ⇒ Boolean

    Returns:

    • (Boolean)


138
139
140
141
142
143
# File 'object.c', line 138

VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
    if (obj1 == obj2) return Qtrue;
    return Qfalse;
}

#===(obj) ⇒ Boolean

Case Equality—Returns true if obj is an instance of mod or and instance of one of mod's descendants. Of limited use for modules, but can be used in case statements to classify objects by class.

Returns:

  • (Boolean)


1531
1532
1533
1534
1535
# File 'object.c', line 1531

static VALUE
rb_mod_eqq(VALUE mod, VALUE arg)
{
    return rb_obj_is_kind_of(arg, mod);
}

#>(other) ⇒ true, ...

Returns true if mod is an ancestor of other. Returns nil if there's no relationship between the two. (Think of the relationship in terms of the class definition: “class A<B” implies “B>A”.)

Returns:

  • (true, false, nil)


1621
1622
1623
1624
1625
1626
# File 'object.c', line 1621

static VALUE
rb_mod_gt(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qfalse;
    return rb_mod_ge(mod, arg);
}

#>=(other) ⇒ true, ...

Returns true if mod is an ancestor of other, or the two modules are the same. Returns nil if there's no relationship between the two. (Think of the relationship in terms of the class definition: “class A<B” implies “B>A”.)

Returns:

  • (true, false, nil)


1600
1601
1602
1603
1604
1605
1606
1607
1608
# File 'object.c', line 1600

static VALUE
rb_mod_ge(VALUE mod, VALUE arg)
{
    if (!CLASS_OR_MODULE_P(arg)) {
	rb_raise(rb_eTypeError, "compared with non class/module");
    }

    return rb_class_inherited_p(arg, mod);
}

#alias_method(new_name, old_name) ⇒ self (private)

Makes new_name a new copy of the method old_name. This can be used to retain access to methods that are overridden.

module Mod
  alias_method :orig_exit, :exit
  def exit(code=0)
    puts "Exiting with code #{code}"
    orig_exit(code)
  end
end
include Mod
exit(99)

produces:

Exiting with code 99

Returns:

  • (self)


1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
# File 'vm_method.c', line 1591

static VALUE
rb_mod_alias_method(VALUE mod, VALUE newname, VALUE oldname)
{
    ID oldid = rb_check_id(&oldname);
    if (!oldid) {
	rb_print_undef_str(mod, oldname);
    }
    rb_alias(mod, rb_to_id(newname), oldid);
    return mod;
}

#ancestorsArray

Returns a list of modules included/prepended in mod (including mod itself).

module Mod
  include Math
  include Comparable
  prepend Enumerable
end

Mod.ancestors        #=> [Enumerable, Mod, Comparable, Math]
Math.ancestors       #=> [Math]
Enumerable.ancestors #=> [Enumerable]

Returns:



1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
# File 'class.c', line 1075

VALUE
rb_mod_ancestors(VALUE mod)
{
    VALUE p, ary = rb_ary_new();

    for (p = mod; p; p = RCLASS_SUPER(p)) {
	if (BUILTIN_TYPE(p) == T_ICLASS) {
	    rb_ary_push(ary, RBASIC(p)->klass);
	}
	else if (p == RCLASS_ORIGIN(p)) {
	    rb_ary_push(ary, p);
	}
    }
    return ary;
}

#append_features(mod) ⇒ Object (private)

When this module is included in another, Ruby calls append_features in this module, passing it the receiving module in mod. Ruby's default implementation is to add the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#include.



1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
# File 'eval.c', line 1003

static VALUE
rb_mod_append_features(VALUE module, VALUE include)
{
    if (!CLASS_OR_MODULE_P(include)) {
	Check_Type(include, T_CLASS);
    }
    rb_include_module(include, module);

    return module;
}

#attr(*args) ⇒ Object (private)



1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
# File 'object.c', line 1970

VALUE
rb_mod_attr(int argc, VALUE *argv, VALUE klass)
{
    if (argc == 2 && (argv[1] == Qtrue || argv[1] == Qfalse)) {
	rb_warning("optional boolean argument is obsoleted");
	rb_attr(klass, id_for_attr(klass, argv[0]), 1, RTEST(argv[1]), TRUE);
	return Qnil;
    }
    return rb_mod_attr_reader(argc, argv, klass);
}

#attr_accessor(symbol, ...) ⇒ nil (private) #attr_accessor(string, ...) ⇒ nil (private)

Defines a named attribute for this module, where the name is symbol.id2name, creating an instance variable (@name) and a corresponding access method to read it. Also creates a method called name= to set the attribute. String arguments are converted to symbols.

module Mod
  attr_accessor(:one, :two)
end
Mod.instance_methods.sort   #=> [:one, :one=, :two, :two=]

Overloads:

  • #attr_accessor(symbol, ...) ⇒ nil

    Returns:

    • (nil)
  • #attr_accessor(string, ...) ⇒ nil

    Returns:

    • (nil)


2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
# File 'object.c', line 2019

static VALUE
rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass)
{
    int i;

    for (i=0; i<argc; i++) {
	rb_attr(klass, id_for_attr(klass, argv[i]), TRUE, TRUE, TRUE);
    }
    return Qnil;
}

#attr_reader(symbol, ...) ⇒ nil (private) #attr(symbol, ...) ⇒ nil (private) #attr_reader(string, ...) ⇒ nil (private) #attr(string, ...) ⇒ nil (private)

Creates instance variables and corresponding methods that return the value of each instance variable. Equivalent to calling “attr:name'' on each name in turn. String arguments are converted to symbols.

Overloads:

  • #attr_reader(symbol, ...) ⇒ nil

    Returns:

    • (nil)
  • #attr(symbol, ...) ⇒ nil

    Returns:

    • (nil)
  • #attr_reader(string, ...) ⇒ nil

    Returns:

    • (nil)
  • #attr(string, ...) ⇒ nil

    Returns:

    • (nil)


1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
# File 'object.c', line 1959

static VALUE
rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass)
{
    int i;

    for (i=0; i<argc; i++) {
	rb_attr(klass, id_for_attr(klass, argv[i]), TRUE, FALSE, TRUE);
    }
    return Qnil;
}

#attr_writer(symbol, ...) ⇒ nil (private) #attr_writer(string, ...) ⇒ nil (private)

Creates an accessor method to allow assignment to the attribute symbol.id2name. String arguments are converted to symbols.

Overloads:

  • #attr_writer(symbol, ...) ⇒ nil

    Returns:

    • (nil)
  • #attr_writer(string, ...) ⇒ nil

    Returns:

    • (nil)


1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
# File 'object.c', line 1991

static VALUE
rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass)
{
    int i;

    for (i=0; i<argc; i++) {
	rb_attr(klass, id_for_attr(klass, argv[i]), FALSE, TRUE, TRUE);
    }
    return Qnil;
}

#autoloadnil

Registers filename to be loaded (using Kernel::require) the first time that module (which may be a String or a symbol) is accessed in the namespace of mod.

module A
end
A.autoload(:B, "b")
A::B.doit            # autoloads "b"

Returns:

  • (nil)


1102
1103
1104
1105
1106
1107
1108
1109
1110
# File 'load.c', line 1102

static VALUE
rb_mod_autoload(VALUE mod, VALUE sym, VALUE file)
{
    ID id = rb_to_id(sym);

    FilePathValue(file);
    rb_autoload_str(mod, id, file);
    return Qnil;
}

#autoload?(name) ⇒ String?

Returns filename to be loaded if name is registered as autoload in the namespace of mod.

module A
end
A.autoload(:B, "b")
A.autoload?(:B)            #=> "b"

Returns:

Returns:

  • (Boolean)


1125
1126
1127
1128
1129
1130
1131
1132
1133
# File 'load.c', line 1125

static VALUE
rb_mod_autoload_p(VALUE mod, VALUE sym)
{
    ID id = rb_check_id(&sym);
    if (!id) {
	return Qnil;
    }
    return rb_autoload_p(mod, id);
}

#class_eval(string[, filename [, lineno]]) ⇒ Object #module_eval { ... } ⇒ Object

Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.

class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)

produces:

Hello there!
dummy:123:in `module_eval': undefined local variable
    or method `code' for Thing:Class

Overloads:

  • #class_eval(string[, filename [, lineno]]) ⇒ Object

    Returns:

  • #module_eval { ... } ⇒ Object

    Yields:

    Returns:



1762
1763
1764
1765
1766
# File 'vm_eval.c', line 1762

VALUE
rb_mod_module_eval(int argc, const VALUE *argv, VALUE mod)
{
    return specific_eval(argc, argv, mod, mod);
}

#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object

Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.

class Thing
end
Thing.class_exec{
  def hello() "Hello there!" end
}
puts Thing.new.hello()

produces:

Hello there!

Overloads:

  • #module_exec(arg...) {|var...| ... } ⇒ Object

    Yields:

    • (var...)

    Returns:

  • #class_exec(arg...) {|var...| ... } ⇒ Object

    Yields:

    • (var...)

    Returns:



1790
1791
1792
1793
1794
# File 'vm_eval.c', line 1790

VALUE
rb_mod_module_exec(int argc, const VALUE *argv, VALUE mod)
{
    return yield_under(mod, mod, rb_ary_new4(argc, argv));
}

#class_variable_defined?(symbol) ⇒ Boolean #class_variable_defined?(string) ⇒ Boolean

Returns true if the given class variable is defined in obj. String arguments are converted to symbols.

class Fred
  @@foo = 99
end
Fred.class_variable_defined?(:@@foo)    #=> true
Fred.class_variable_defined?(:@@bar)    #=> false

Overloads:

  • #class_variable_defined?(symbol) ⇒ Boolean

    Returns:

    • (Boolean)
  • #class_variable_defined?(string) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
# File 'object.c', line 2488

static VALUE
rb_mod_cvar_defined(VALUE obj, VALUE iv)
{
    ID id = id_for_var(obj, iv, a, class);

    if (!id) {
	return Qfalse;
    }
    return rb_cvar_defined(obj, id);
}

#class_variable_get(symbol) ⇒ Object #class_variable_get(string) ⇒ Object

Returns the value of the given class variable (or throws a NameError exception). The @@ part of the variable name should be included for regular class variables. String arguments are converted to symbols.

class Fred
  @@foo = 99
end
Fred.class_variable_get(:@@foo)     #=> 99

Overloads:



2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
# File 'object.c', line 2431

static VALUE
rb_mod_cvar_get(VALUE obj, VALUE iv)
{
    ID id = id_for_var(obj, iv, a, class);

    if (!id) {
	rb_name_err_raise("uninitialized class variable %1$s in %2$s",
			  obj, iv);
    }
    return rb_cvar_get(obj, id);
}

#class_variable_set(symbol, obj) ⇒ Object #class_variable_set(string, obj) ⇒ Object

Sets the class variable named by symbol to the given object. If the class variable name is passed as a string, that string is converted to a symbol.

class Fred
  @@foo = 99
  def foo
    @@foo
  end
end
Fred.class_variable_set(:@@foo, 101)     #=> 101
Fred.new.foo                             #=> 101

Overloads:

  • #class_variable_set(symbol, obj) ⇒ Object

    Returns:

  • #class_variable_set(string, obj) ⇒ Object

    Returns:



2463
2464
2465
2466
2467
2468
2469
2470
# File 'object.c', line 2463

static VALUE
rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val)
{
    ID id = id_for_var(obj, iv, a, class);
    if (!id) id = rb_intern_str(iv);
    rb_cvar_set(obj, id, val);
    return val;
}

#class_variables(inherit = true) ⇒ Array

Returns an array of the names of class variables in mod. This includes the names of class variables in any included modules, unless the inherit parameter is set to false.

class One
  @@var1 = 1
end
class Two < One
  @@var2 = 2
end
One.class_variables          #=> [:@@var1]
Two.class_variables          #=> [:@@var2, :@@var1]
Two.class_variables(false)   #=> [:@@var2]

Returns:



2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
# File 'variable.c', line 2953

VALUE
rb_mod_class_variables(int argc, const VALUE *argv, VALUE mod)
{
    VALUE inherit;
    st_table *tbl;

    if (argc == 0) {
	inherit = Qtrue;
    }
    else {
	rb_scan_args(argc, argv, "01", &inherit);
    }
    if (RTEST(inherit)) {
	tbl = mod_cvar_of(mod, 0);
    }
    else {
	tbl = mod_cvar_at(mod, 0);
    }
    return cvar_list(tbl);
}

#const_defined?(sym, inherit = true) ⇒ Boolean #const_defined?(str, inherit = true) ⇒ Boolean

Says whether mod or its ancestors have a constant with the given name:

Float.const_defined?(:EPSILON)      #=> true, found in Float itself
Float.const_defined?("String")      #=> true, found in Object (ancestor)
BasicObject.const_defined?(:Hash)   #=> false

If mod is a Module, additionally Object and its ancestors are checked:

Math.const_defined?(:String)   #=> true, found in Object

In each of the checked classes or modules, if the constant is not present but there is an autoload for it, true is returned directly without autoloading:

module Admin
  autoload :User, 'admin/user'
end
Admin.const_defined?(:User)   #=> true

If the constant is not found the callback const_missing is not called and the method returns false.

If inherit is false, the lookup only checks the constants in the receiver:

IO.const_defined?(:SYNC)          #=> true, found in File::Constants (ancestor)
IO.const_defined?(:SYNC, false)   #=> false, not found in IO itself

In this case, the same logic for autoloading applies.

If the argument is not a valid constant name a NameError is raised with the message “wrong constant name name”:

Hash.const_defined? 'foobar'   #=> NameError: wrong constant name foobar

Overloads:

  • #const_defined?(sym, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)
  • #const_defined?(str, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
# File 'object.c', line 2227

static VALUE
rb_mod_const_defined(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    recur = (argc == 1) ? Qtrue : argv[1];

    if (SYMBOL_P(name)) {
	if (!rb_is_const_sym(name)) goto wrong_name;
	id = rb_check_id(&name);
	if (!id) return Qfalse;
	return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
	rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
      wrong_name:
	rb_name_err_raise(wrong_constant_name, mod, name);
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
	mod = rb_cObject;
	p += 2;
	pbeg = p;
    }

    while (p < pend) {
	VALUE part;
	long len, beglen;

	while (p < pend && *p != ':') p++;

	if (pbeg == p) goto wrong_name;

	id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
	beglen = pbeg-path;

	if (p < pend && p[0] == ':') {
	    if (p + 2 >= pend || p[1] != ':') goto wrong_name;
	    p += 2;
	    pbeg = p;
	}

	if (!id) {
	    part = rb_str_subseq(name, beglen, len);
	    OBJ_FREEZE(part);
	    if (!ISUPPER(*pbeg) || !rb_is_const_name(part)) {
		name = part;
		goto wrong_name;
	    }
	    else {
		return Qfalse;
	    }
	}
	if (!rb_is_const_id(id)) {
	    name = ID2SYM(id);
	    goto wrong_name;
	}
	if (RTEST(recur)) {
	    if (!rb_const_defined(mod, id))
		return Qfalse;
	    mod = rb_const_get(mod, id);
	}
	else {
	    if (!rb_const_defined_at(mod, id))
		return Qfalse;
	    mod = rb_const_get_at(mod, id);
	}
	recur = Qfalse;

	if (p < pend && !RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
	    rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
		     QUOTE(name));
	}
    }

    return Qtrue;
}

#const_get(sym, inherit = true) ⇒ Object #const_get(str, inherit = true) ⇒ Object

Checks for a constant with the given name in mod. If inherit is set, the lookup will also search the ancestors (and Object if mod is a Module).

The value of the constant is returned if a definition is found, otherwise a NameError is raised.

Math.const_get(:PI)   #=> 3.14159265358979

This method will recursively look up constant names if a namespaced class name is provided. For example:

module Foo; class Bar; end end
Object.const_get 'Foo::Bar'

The inherit flag is respected on each lookup. For example:

module Foo
  class Bar
    VAL = 10
  end

  class Baz < Bar; end
end

Object.const_get 'Foo::Baz::VAL'         # => 10
Object.const_get 'Foo::Baz::VAL', false  # => NameError

If the argument is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_get 'foobar' #=> NameError: wrong constant name foobar

Overloads:

  • #const_get(sym, inherit = true) ⇒ Object

    Returns:

  • #const_get(str, inherit = true) ⇒ Object

    Returns:



2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
# File 'object.c', line 2070

static VALUE
rb_mod_const_get(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    recur = (argc == 1) ? Qtrue : argv[1];

    if (SYMBOL_P(name)) {
	if (!rb_is_const_sym(name)) goto wrong_name;
	id = rb_check_id(&name);
	if (!id) return rb_const_missing(mod, name);
	return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
	rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
      wrong_name:
	rb_name_err_raise(wrong_constant_name, mod, name);
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
	mod = rb_cObject;
	p += 2;
	pbeg = p;
    }

    while (p < pend) {
	VALUE part;
	long len, beglen;

	while (p < pend && *p != ':') p++;

	if (pbeg == p) goto wrong_name;

	id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
	beglen = pbeg-path;

	if (p < pend && p[0] == ':') {
	    if (p + 2 >= pend || p[1] != ':') goto wrong_name;
	    p += 2;
	    pbeg = p;
	}

	if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
	    rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
		     QUOTE(name));
	}

	if (!id) {
	    part = rb_str_subseq(name, beglen, len);
	    OBJ_FREEZE(part);
	    if (!ISUPPER(*pbeg) || !rb_is_const_name(part)) {
		name = part;
		goto wrong_name;
	    }
	    else if (!rb_method_basic_definition_p(CLASS_OF(mod), id_const_missing)) {
		part = rb_str_intern(part);
		mod = rb_const_missing(mod, part);
		continue;
	    }
	    else {
		rb_mod_const_missing(mod, part);
	    }
	}
	if (!rb_is_const_id(id)) {
	    name = ID2SYM(id);
	    goto wrong_name;
	}
	mod = RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
    }

    return mod;
}

#const_missing(sym) ⇒ Object

Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. The following code is an example of the same:

def Foo.const_missing(name)
  name # return the constant name as Symbol
end

Foo::UNDEFINED_CONST    #=> :UNDEFINED_CONST: symbol returned

In the next example when a reference is made to an undefined constant, it attempts to load a file whose name is the lowercase version of the constant (thus class Fred is assumed to be in file fred.rb). If found, it returns the loaded class. It therefore implements an autoload feature similar to Kernel#autoload and Module#autoload.

def Object.const_missing(name)
  @looked_for ||= {}
  str_name = name.to_s
  raise "Class not found: #{name}" if @looked_for[str_name]
  @looked_for[str_name] = 1
  file = str_name.downcase
  require file
  klass = const_get(name)
  return klass if klass
  raise "Class not found: #{name}"
end

Returns:



1824
1825
1826
1827
1828
1829
1830
1831
# File 'variable.c', line 1824

VALUE
rb_mod_const_missing(VALUE klass, VALUE name)
{
    rb_vm_pop_cfunc_frame();
    uninitialized_constant(klass, name);

    UNREACHABLE;
}

#const_set(sym, obj) ⇒ Object #const_set(str, obj) ⇒ Object

Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.

Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0)   #=> 3.14285714285714
Math::HIGH_SCHOOL_PI - Math::PI              #=> 0.00126448926734968

If sym or str is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_set('foobar', 42) #=> NameError: wrong constant name foobar

Overloads:



2177
2178
2179
2180
2181
2182
2183
2184
# File 'object.c', line 2177

static VALUE
rb_mod_const_set(VALUE mod, VALUE name, VALUE value)
{
    ID id = id_for_setter(mod, name, const, wrong_constant_name);
    if (!id) id = rb_intern_str(name);
    rb_const_set(mod, id, value);
    return value;
}

#constants(inherit = true) ⇒ Array

Returns an array of the names of the constants accessible in mod. This includes the names of constants in any included modules (example at start of section), unless the inherit parameter is set to false.

The implementation makes no guarantees about the order in which the constants are yielded.

IO.constants.include?(:SYNC)        #=> true
IO.constants(false).include?(:SYNC) #=> false

Also see Module::const_defined?.

Returns:



2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
# File 'variable.c', line 2457

VALUE
rb_mod_constants(int argc, const VALUE *argv, VALUE mod)
{
    VALUE inherit;

    if (argc == 0) {
	inherit = Qtrue;
    }
    else {
	rb_scan_args(argc, argv, "01", &inherit);
    }

    if (RTEST(inherit)) {
	return rb_const_list(rb_mod_const_of(mod, 0));
    }
    else {
	return rb_local_constants(mod);
    }
}

#define_method(symbol, method) ⇒ Object (private) #define_method(symbol) { ... } ⇒ Object (private)

Defines an instance method in the receiver. The method parameter can be a Proc, a Method or an UnboundMethod object. If a block is specified, it is used as the method body. This block is evaluated using instance_eval, a point that is tricky to demonstrate because define_method is private. (This is why we resort to the send hack in this example.)

class A
  def fred
    puts "In Fred"
  end
  def create_method(name, &block)
    self.class.send(:define_method, name, &block)
  end
  define_method(:wilma) { puts "Charge it!" }
end
class B < A
  define_method(:barney, instance_method(:fred))
end
a = B.new
a.barney
a.wilma
a.create_method(:betty) { p self }
a.betty

produces:

In Fred
Charge it!
#<B:0x401b39e8>

Overloads:

  • #define_method(symbol) { ... } ⇒ Object

    Yields:



1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
# File 'proc.c', line 1752

static VALUE
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
{
    ID id;
    VALUE body;
    VALUE name;
    const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod);
    const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE};
    const rb_scope_visibility_t *scope_visi = &default_scope_visi;
    int is_method = FALSE;

    if (cref) {
	scope_visi = CREF_SCOPE_VISI(cref);
    }

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    id = rb_check_id(&name);
    if (argc == 1) {
#if PROC_NEW_REQUIRES_BLOCK
	body = rb_block_lambda();
#else
	rb_thread_t *th = GET_THREAD();
	rb_block_t *block = rb_vm_control_frame_block_ptr(th->cfp);
	if (!block) rb_raise(rb_eArgError, proc_without_block);

	body = block->proc;

	if (SYMBOL_P(body)) {
	    body = rb_sym_to_proc(body);
	}
	else if (!body) {
	    body = rb_vm_make_proc_lambda(th, block, rb_cProc, TRUE);
	}
#endif
    }
    else {
	body = argv[1];

	if (rb_obj_is_method(body)) {
	    is_method = TRUE;
	}
	else if (rb_obj_is_proc(body)) {
	    is_method = FALSE;
	}
	else {
	    rb_raise(rb_eTypeError,
		     "wrong argument type %s (expected Proc/Method)",
		     rb_obj_classname(body));
	}
    }
    if (!id) id = rb_to_id(name);

    if (is_method) {
	struct METHOD *method = (struct METHOD *)DATA_PTR(body);
	if (method->me->owner != mod && !RB_TYPE_P(method->me->owner, T_MODULE) &&
	    !RTEST(rb_class_inherited_p(mod, method->me->owner))) {
	    if (FL_TEST(method->me->owner, FL_SINGLETON)) {
		rb_raise(rb_eTypeError,
			 "can't bind singleton method to a different class");
	    }
	    else {
		rb_raise(rb_eTypeError,
			 "bind argument must be a subclass of % "PRIsVALUE,
			 rb_class_name(method->me->owner));
	    }
	}
	rb_method_entry_set(mod, id, method->me, scope_visi->method_visi);
	if (scope_visi->module_func) {
	    rb_method_entry_set(rb_singleton_class(mod), id, method->me, METHOD_VISI_PUBLIC);
	}
	RB_GC_GUARD(body);
    }
    else {
	rb_proc_t *proc;
	body = proc_dup(body);
	GetProcPtr(body, proc);
	if (RUBY_VM_NORMAL_ISEQ_P(proc->block.iseq)) {
	    proc->is_lambda = TRUE;
	    proc->is_from_method = TRUE;
	}
	rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)body, scope_visi->method_visi);
	if (scope_visi->module_func) {
	    rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, METHOD_VISI_PUBLIC);
	}
    }

    return ID2SYM(id);
}

#deprecate_constant(*args) ⇒ Object



2728
2729
2730
2731
2732
2733
# File 'variable.c', line 2728

VALUE
rb_mod_deprecate_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_DEPRECATED, CONST_DEPRECATED);
    return obj;
}

#extend_object(obj) ⇒ Object (private)

Extends the specified object by adding this module's constants and methods (which are added as singleton methods). This is the callback method used by Object#extend.

module Picky
  def Picky.extend_object(o)
    if String === o
      puts "Can't add Picky to a String"
    else
      puts "Picky added to #{o.class}"
      super
    end
  end
end
(s = Array.new).extend Picky  # Call Object.extend
(s = "quick brown fox").extend Picky

produces:

Picky added to Array
Can't add Picky to a String

Returns:



1343
1344
1345
1346
1347
1348
# File 'eval.c', line 1343

static VALUE
rb_mod_extend_object(VALUE mod, VALUE obj)
{
    rb_extend_object(obj, mod);
    return obj;
}

#extendedObject (private)

Not documented



924
925
926
927
928
# File 'object.c', line 924

static VALUE
rb_obj_dummy(void)
{
    return Qnil;
}

#freezeObject

Prevents further modifications to mod.

This method returns self.



1514
1515
1516
1517
1518
1519
# File 'object.c', line 1514

static VALUE
rb_mod_freeze(VALUE mod)
{
    rb_class_name(mod);
    return rb_obj_freeze(mod);
}

#includeself

Invokes Module.append_features on each parameter in reverse order.

Returns:

  • (self)


1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
# File 'eval.c', line 1021

static VALUE
rb_mod_include(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id_append_features, id_included;

    CONST_ID(id_append_features, "append_features");
    CONST_ID(id_included, "included");

    for (i = 0; i < argc; i++)
	Check_Type(argv[i], T_MODULE);
    while (argc--) {
	rb_funcall(argv[argc], id_append_features, 1, module);
	rb_funcall(argv[argc], id_included, 1, module);
    }
    return module;
}

#include?Boolean

Returns true if module is included in mod or one of mod's ancestors.

module A
end
class B
  include A
end
class C < B
end
B.include?(A)   #=> true
C.include?(A)   #=> true
A.include?(A)   #=> false

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
# File 'class.c', line 1043

VALUE
rb_mod_include_p(VALUE mod, VALUE mod2)
{
    VALUE p;

    Check_Type(mod2, T_MODULE);
    for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
	if (BUILTIN_TYPE(p) == T_ICLASS) {
	    if (RBASIC(p)->klass == mod2) return Qtrue;
	}
    }
    return Qfalse;
}

#includedObject (private)

Not documented



924
925
926
927
928
# File 'object.c', line 924

static VALUE
rb_obj_dummy(void)
{
    return Qnil;
}

#included_modulesArray

Returns the list of modules included in mod.

module Mixin
end

module Outer
  include Mixin
end

Mixin.included_modules   #=> []
Outer.included_modules   #=> [Mixin]

Returns:



1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
# File 'class.c', line 1007

VALUE
rb_mod_included_modules(VALUE mod)
{
    VALUE ary = rb_ary_new();
    VALUE p;
    VALUE origin = RCLASS_ORIGIN(mod);

    for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
	if (p != origin && BUILTIN_TYPE(p) == T_ICLASS) {
	    VALUE m = RBASIC(p)->klass;
	    if (RB_TYPE_P(m, T_MODULE))
		rb_ary_push(ary, m);
	}
    }
    return ary;
}

#initialize_clone(orig) ⇒ Object

:nodoc:



1709
1710
1711
1712
1713
1714
1715
1716
1717
# File 'object.c', line 1709

static VALUE
rb_mod_initialize_clone(VALUE clone, VALUE orig)
{
    VALUE ret;
    ret = rb_obj_init_dup_clone(clone, orig);
    if (OBJ_FROZEN(orig))
        rb_class_name(clone);
    return ret;
}

#initialize_copy(orig) ⇒ Object

:nodoc:



313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# File 'class.c', line 313

VALUE
rb_mod_init_copy(VALUE clone, VALUE orig)
{
    if (RB_TYPE_P(clone, T_CLASS)) {
	class_init_copy_check(clone, orig);
    }
    if (!OBJ_INIT_COPY(clone, orig)) return clone;
    if (!FL_TEST(CLASS_OF(clone), FL_SINGLETON)) {
	RBASIC_SET_CLASS(clone, rb_singleton_class_clone(orig));
	rb_singleton_class_attached(RBASIC(clone)->klass, (VALUE)clone);
    }
    RCLASS_SET_SUPER(clone, RCLASS_SUPER(orig));
    RCLASS_EXT(clone)->allocator = RCLASS_EXT(orig)->allocator;
    if (RCLASS_IV_TBL(clone)) {
	st_free_table(RCLASS_IV_TBL(clone));
	RCLASS_IV_TBL(clone) = 0;
    }
    if (RCLASS_CONST_TBL(clone)) {
	rb_free_const_table(RCLASS_CONST_TBL(clone));
	RCLASS_CONST_TBL(clone) = 0;
    }
    RCLASS_M_TBL(clone) = 0;
    if (RCLASS_IV_TBL(orig)) {
	st_data_t id;

	RCLASS_IV_TBL(clone) = rb_st_copy(clone, RCLASS_IV_TBL(orig));
	CONST_ID(id, "__tmp_classpath__");
	st_delete(RCLASS_IV_TBL(clone), &id, 0);
	CONST_ID(id, "__classpath__");
	st_delete(RCLASS_IV_TBL(clone), &id, 0);
	CONST_ID(id, "__classid__");
	st_delete(RCLASS_IV_TBL(clone), &id, 0);
    }
    if (RCLASS_CONST_TBL(orig)) {
	struct clone_const_arg arg;

	RCLASS_CONST_TBL(clone) = st_init_numtable();
	arg.klass = clone;
	arg.tbl = RCLASS_CONST_TBL(clone);
	st_foreach(RCLASS_CONST_TBL(orig), clone_const_i, (st_data_t)&arg);
    }
    if (RCLASS_M_TBL(orig)) {
	struct clone_method_arg arg;
	arg.old_klass = orig;
	arg.new_klass = clone;
	RCLASS_M_TBL_INIT(clone);
	rb_id_table_foreach(RCLASS_M_TBL(orig), clone_method_i, &arg);
    }

    return clone;
}

#instance_method(symbol) ⇒ Object

Returns an UnboundMethod representing the given instance method in mod.

class Interpreter
  def do_a() print "there, "; end
  def do_d() print "Hello ";  end
  def do_e() print "!\n";     end
  def do_v() print "Dave";    end
  Dispatcher = {
    "a" => instance_method(:do_a),
    "d" => instance_method(:do_d),
    "e" => instance_method(:do_e),
    "v" => instance_method(:do_v)
  }
  def interpret(string)
    string.each_char {|b| Dispatcher[b].bind(self).call }
  end
end

interpreter = Interpreter.new
interpreter.interpret('dave')

produces:

Hello there, Dave!


1688
1689
1690
1691
1692
1693
1694
1695
1696
# File 'proc.c', line 1688

static VALUE
rb_mod_instance_method(VALUE mod, VALUE vid)
{
    ID id = rb_check_id(&vid);
    if (!id) {
	rb_method_name_error(mod, vid);
    }
    return mnew(mod, Qundef, id, rb_cUnboundMethod, FALSE);
}

#instance_methods(include_super = true) ⇒ Array

Returns an array containing the names of the public and protected instance methods in the receiver. For a module, these are the public and protected methods; for a class, they are the instance (not singleton) methods. If the optional parameter is false, the methods of any ancestors are not included.

module A
  def method1()  end
end
class B
  include A
  def method2()  end
end
class C < B
  def method3()  end
end

A.instance_methods(false)                   #=> [:method1]
B.instance_methods(false)                   #=> [:method2]
B.instance_methods(true).include?(:method1) #=> true
C.instance_methods(false)                   #=> [:method3]
C.instance_methods.include?(:method2)       #=> true

Returns:



1226
1227
1228
1229
1230
# File 'class.c', line 1226

VALUE
rb_class_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_i);
}

#method_addedObject (private)

Not documented



924
925
926
927
928
# File 'object.c', line 924

static VALUE
rb_obj_dummy(void)
{
    return Qnil;
}

#method_defined?(symbol) ⇒ Boolean #method_defined?(string) ⇒ Boolean

Returns true if the named method is defined by mod (or its included modules and, if mod is a class, its ancestors). Public and protected methods are matched. String arguments are converted to symbols.

module A
  def method1()  end
  def protected_method1()  end
  protected :protected_method1
end
class B
  def method2()  end
  def private_method2()  end
  private :private_method2
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1              #=> true
C.method_defined? "method1"             #=> true
C.method_defined? "method2"             #=> true
C.method_defined? "method3"             #=> true
C.method_defined? "protected_method1"   #=> true
C.method_defined? "method4"             #=> false
C.method_defined? "private_method2"     #=> false

Overloads:

  • #method_defined?(symbol) ⇒ Boolean

    Returns:

    • (Boolean)
  • #method_defined?(string) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
# File 'vm_method.c', line 1285

static VALUE
rb_mod_method_defined(VALUE mod, VALUE mid)
{
    ID id = rb_check_id(&mid);
    if (!id || !rb_method_boundp(mod, id, 1)) {
	return Qfalse;
    }
    return Qtrue;

}

#method_removedObject (private)

Not documented



924
925
926
927
928
# File 'object.c', line 924

static VALUE
rb_obj_dummy(void)
{
    return Qnil;
}

#method_undefinedObject (private)

Not documented



924
925
926
927
928
# File 'object.c', line 924

static VALUE
rb_obj_dummy(void)
{
    return Qnil;
}

#class_eval(string[, filename [, lineno]]) ⇒ Object #module_eval { ... } ⇒ Object

Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.

class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)

produces:

Hello there!
dummy:123:in `module_eval': undefined local variable
    or method `code' for Thing:Class

Overloads:

  • #class_eval(string[, filename [, lineno]]) ⇒ Object

    Returns:

  • #module_eval { ... } ⇒ Object

    Yields:

    Returns:



1762
1763
1764
1765
1766
# File 'vm_eval.c', line 1762

VALUE
rb_mod_module_eval(int argc, const VALUE *argv, VALUE mod)
{
    return specific_eval(argc, argv, mod, mod);
}

#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object

Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.

class Thing
end
Thing.class_exec{
  def hello() "Hello there!" end
}
puts Thing.new.hello()

produces:

Hello there!

Overloads:

  • #module_exec(arg...) {|var...| ... } ⇒ Object

    Yields:

    • (var...)

    Returns:

  • #class_exec(arg...) {|var...| ... } ⇒ Object

    Yields:

    • (var...)

    Returns:



1790
1791
1792
1793
1794
# File 'vm_eval.c', line 1790

VALUE
rb_mod_module_exec(int argc, const VALUE *argv, VALUE mod)
{
    return yield_under(mod, mod, rb_ary_new4(argc, argv));
}

#module_function(symbol, ...) ⇒ self (private) #module_function(string, ...) ⇒ self (private)

Creates module functions for the named methods. These functions may be called with the module as a receiver, and also become available as instance methods to classes that mix in the module. Module functions are copies of the original, and so may be changed independently. The instance-method versions are made private. If used with no arguments, subsequently defined methods become module functions. String arguments are converted to symbols.

module Mod
  def one
    "This is one"
  end
  module_function :one
end
class Cls
  include Mod
  def call_one
    one
  end
end
Mod.one     #=> "This is one"
c = Cls.new
c.call_one  #=> "This is one"
module Mod
  def one
    "This is the new one"
  end
end
Mod.one     #=> "This is one"
c.call_one  #=> "This is the new one"

Overloads:

  • #module_function(symbol, ...) ⇒ self

    Returns:

    • (self)
  • #module_function(string, ...) ⇒ self

    Returns:

    • (self)


1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
# File 'vm_method.c', line 1817

static VALUE
rb_mod_modfunc(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id;
    const rb_method_entry_t *me;

    if (!RB_TYPE_P(module, T_MODULE)) {
	rb_raise(rb_eTypeError, "module_function must be called for modules");
    }

    if (argc == 0) {
	rb_scope_module_func_set();
	return module;
    }

    set_method_visibility(module, argc, argv, METHOD_VISI_PRIVATE);

    for (i = 0; i < argc; i++) {
	VALUE m = module;

	id = rb_to_id(argv[i]);
	for (;;) {
	    me = search_method(m, id, 0);
	    if (me == 0) {
		me = search_method(rb_cObject, id, 0);
	    }
	    if (UNDEFINED_METHOD_ENTRY_P(me)) {
		rb_print_undef(module, id, 0);
	    }
	    if (me->def->type != VM_METHOD_TYPE_ZSUPER) {
		break; /* normal case: need not to follow 'super' link */
	    }
	    m = RCLASS_SUPER(m);
	    if (!m)
		break;
	}
	rb_method_entry_set(rb_singleton_class(module), id, me, METHOD_VISI_PUBLIC);
    }
    return module;
}

#nameString

Returns the name of the module mod. Returns nil for anonymous modules.

Returns:



227
228
229
230
231
232
233
234
235
# File 'variable.c', line 227

VALUE
rb_mod_name(VALUE mod)
{
    int permanent;
    VALUE path = classname(mod, &permanent);

    if (!NIL_P(path)) return rb_str_dup(path);
    return path;
}

#prependself

Invokes Module.prepend_features on each parameter in reverse order.

Returns:

  • (self)


1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
# File 'eval.c', line 1069

static VALUE
rb_mod_prepend(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id_prepend_features, id_prepended;

    CONST_ID(id_prepend_features, "prepend_features");
    CONST_ID(id_prepended, "prepended");
    for (i = 0; i < argc; i++)
	Check_Type(argv[i], T_MODULE);
    while (argc--) {
	rb_funcall(argv[argc], id_prepend_features, 1, module);
	rb_funcall(argv[argc], id_prepended, 1, module);
    }
    return module;
}

#prepend_features(mod) ⇒ Object (private)

When this module is prepended in another, Ruby calls prepend_features in this module, passing it the receiving module in mod. Ruby's default implementation is to overlay the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#prepend.



1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
# File 'eval.c', line 1051

static VALUE
rb_mod_prepend_features(VALUE module, VALUE prepend)
{
    if (!CLASS_OR_MODULE_P(prepend)) {
	Check_Type(prepend, T_CLASS);
    }
    rb_prepend_module(prepend, module);

    return module;
}

#prependedObject (private)

Not documented



924
925
926
927
928
# File 'object.c', line 924

static VALUE
rb_obj_dummy(void)
{
    return Qnil;
}

#privateself (private) #private(symbol, ...) ⇒ self (private) #private(string, ...) ⇒ self (private)

With no arguments, sets the default visibility for subsequently defined methods to private. With arguments, sets the named methods to have private visibility. String arguments are converted to symbols.

module Mod
  def a()  end
  def b()  end
  private
  def c()  end
  private :a
end
Mod.private_instance_methods   #=> [:a, :c]

Overloads:

  • #privateself

    Returns:

    • (self)
  • #private(symbol, ...) ⇒ self

    Returns:

    • (self)
  • #private(string, ...) ⇒ self

    Returns:

    • (self)


1693
1694
1695
1696
1697
# File 'vm_method.c', line 1693

static VALUE
rb_mod_private(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, METHOD_VISI_PRIVATE);
}

#private_class_method(symbol, ...) ⇒ Object #private_class_method(string, ...) ⇒ Object

Makes existing class methods private. Often used to hide the default constructor new.

String arguments are converted to symbols.

class SimpleSingleton  # Not thread safe
  private_class_method :new
  def SimpleSingleton.create(*args, &block)
    @me = new(*args, &block) if ! @me
    @me
  end
end


1735
1736
1737
1738
1739
1740
# File 'vm_method.c', line 1735

static VALUE
rb_mod_private_method(int argc, VALUE *argv, VALUE obj)
{
    set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PRIVATE);
    return obj;
}

#private_constant(symbol, ...) ⇒ Object

Makes a list of existing constants private.



2707
2708
2709
2710
2711
2712
# File 'variable.c', line 2707

VALUE
rb_mod_private_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_PRIVATE, CONST_VISIBILITY_MASK);
    return obj;
}

#private_instance_methods(include_super = true) ⇒ Array

Returns a list of the private instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

module Mod
  def method1()  end
  private :method1
  def method2()  end
end
Mod.instance_methods           #=> [:method2]
Mod.private_instance_methods   #=> [:method1]

Returns:



1264
1265
1266
1267
1268
# File 'class.c', line 1264

VALUE
rb_class_private_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i);
}

#private_method_defined?(symbol) ⇒ Boolean #private_method_defined?(string) ⇒ Boolean

Returns true if the named private method is defined by _ mod_ (or its included modules and, if mod is a class, its ancestors). String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  private
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1            #=> true
C.private_method_defined? "method1"   #=> false
C.private_method_defined? "method2"   #=> true
C.method_defined? "method2"           #=> false

Overloads:

  • #private_method_defined?(symbol) ⇒ Boolean

    Returns:

    • (Boolean)
  • #private_method_defined?(string) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


1371
1372
1373
1374
1375
# File 'vm_method.c', line 1371

static VALUE
rb_mod_private_method_defined(VALUE mod, VALUE mid)
{
    return check_definition(mod, mid, METHOD_VISI_PRIVATE);
}

#protectedself (private) #protected(symbol, ...) ⇒ self (private) #protected(string, ...) ⇒ self (private)

With no arguments, sets the default visibility for subsequently defined methods to protected. With arguments, sets the named methods to have protected visibility. String arguments are converted to symbols.

Overloads:

  • #protectedself

    Returns:

    • (self)
  • #protected(symbol, ...) ⇒ self

    Returns:

    • (self)
  • #protected(string, ...) ⇒ self

    Returns:

    • (self)


1666
1667
1668
1669
1670
# File 'vm_method.c', line 1666

static VALUE
rb_mod_protected(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, METHOD_VISI_PROTECTED);
}

#protected_instance_methods(include_super = true) ⇒ Array

Returns a list of the protected instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

Returns:



1241
1242
1243
1244
1245
# File 'class.c', line 1241

VALUE
rb_class_protected_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i);
}

#protected_method_defined?(symbol) ⇒ Boolean #protected_method_defined?(string) ⇒ Boolean

Returns true if the named protected method is defined by mod (or its included modules and, if mod is a class, its ancestors). String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  protected
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1              #=> true
C.protected_method_defined? "method1"   #=> false
C.protected_method_defined? "method2"   #=> true
C.method_defined? "method2"             #=> true

Overloads:

  • #protected_method_defined?(symbol) ⇒ Boolean

    Returns:

    • (Boolean)
  • #protected_method_defined?(string) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


1405
1406
1407
1408
1409
# File 'vm_method.c', line 1405

static VALUE
rb_mod_protected_method_defined(VALUE mod, VALUE mid)
{
    return check_definition(mod, mid, METHOD_VISI_PROTECTED);
}

#publicself (private) #public(symbol, ...) ⇒ self (private) #public(string, ...) ⇒ self (private)

With no arguments, sets the default visibility for subsequently defined methods to public. With arguments, sets the named methods to have public visibility. String arguments are converted to symbols.

Overloads:

  • #publicself

    Returns:

    • (self)
  • #public(symbol, ...) ⇒ self

    Returns:

    • (self)
  • #public(string, ...) ⇒ self

    Returns:

    • (self)


1648
1649
1650
1651
1652
# File 'vm_method.c', line 1648

static VALUE
rb_mod_public(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, METHOD_VISI_PUBLIC);
}

#public_class_method(symbol, ...) ⇒ Object #public_class_method(string, ...) ⇒ Object

Makes a list of existing class methods public.

String arguments are converted to symbols.



1709
1710
1711
1712
1713
1714
# File 'vm_method.c', line 1709

static VALUE
rb_mod_public_method(int argc, VALUE *argv, VALUE obj)
{
    set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PUBLIC);
    return obj;
}

#public_constant(symbol, ...) ⇒ Object

Makes a list of existing constants public.



2721
2722
2723
2724
2725
2726
# File 'variable.c', line 2721

VALUE
rb_mod_public_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_PUBLIC, CONST_VISIBILITY_MASK);
    return obj;
}

#public_instance_method(symbol) ⇒ Object

Similar to instance_method, searches public method only.



1705
1706
1707
1708
1709
1710
1711
1712
1713
# File 'proc.c', line 1705

static VALUE
rb_mod_public_instance_method(VALUE mod, VALUE vid)
{
    ID id = rb_check_id(&vid);
    if (!id) {
	rb_method_name_error(mod, vid);
    }
    return mnew(mod, Qundef, id, rb_cUnboundMethod, TRUE);
}

#public_instance_methods(include_super = true) ⇒ Array

Returns a list of the public instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

Returns:



1279
1280
1281
1282
1283
# File 'class.c', line 1279

VALUE
rb_class_public_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i);
}

#public_method_defined?(symbol) ⇒ Boolean #public_method_defined?(string) ⇒ Boolean

Returns true if the named public method is defined by mod (or its included modules and, if mod is a class, its ancestors). String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  protected
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1           #=> true
C.public_method_defined? "method1"   #=> true
C.public_method_defined? "method2"   #=> false
C.method_defined? "method2"          #=> true

Overloads:

  • #public_method_defined?(symbol) ⇒ Boolean

    Returns:

    • (Boolean)
  • #public_method_defined?(string) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


1337
1338
1339
1340
1341
# File 'vm_method.c', line 1337

static VALUE
rb_mod_public_method_defined(VALUE mod, VALUE mid)
{
    return check_definition(mod, mid, METHOD_VISI_PUBLIC);
}

#refine(klass) { ... } ⇒ Object (private)

Refine klass in the receiver.

Returns an overlaid module.

Yields:



1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
# File 'eval.c', line 1232

static VALUE
rb_mod_refine(VALUE module, VALUE klass)
{
    VALUE refinement;
    ID id_refinements, id_activated_refinements,
       id_refined_class, id_defined_at;
    VALUE refinements, activated_refinements;
    rb_thread_t *th = GET_THREAD();
    rb_block_t *block = rb_vm_control_frame_block_ptr(th->cfp);

    if (!block) {
        rb_raise(rb_eArgError, "no block given");
    }
    if (block->proc) {
        rb_raise(rb_eArgError,
		 "can't pass a Proc as a block to Module#refine");
    }
    Check_Type(klass, T_CLASS);
    CONST_ID(id_refinements, "__refinements__");
    refinements = rb_attr_get(module, id_refinements);
    if (NIL_P(refinements)) {
	refinements = hidden_identity_hash_new();
	rb_ivar_set(module, id_refinements, refinements);
    }
    CONST_ID(id_activated_refinements, "__activated_refinements__");
    activated_refinements = rb_attr_get(module, id_activated_refinements);
    if (NIL_P(activated_refinements)) {
	activated_refinements = hidden_identity_hash_new();
	rb_ivar_set(module, id_activated_refinements,
		    activated_refinements);
    }
    refinement = rb_hash_lookup(refinements, klass);
    if (NIL_P(refinement)) {
	refinement = rb_module_new();
	RCLASS_SET_SUPER(refinement, klass);
	FL_SET(refinement, RMODULE_IS_REFINEMENT);
	CONST_ID(id_refined_class, "__refined_class__");
	rb_ivar_set(refinement, id_refined_class, klass);
	CONST_ID(id_defined_at, "__defined_at__");
	rb_ivar_set(refinement, id_defined_at, module);
	rb_hash_aset(refinements, klass, refinement);
	add_activated_refinement(activated_refinements, klass, refinement);
    }
    rb_yield_refine_block(refinement, activated_refinements);
    return refinement;
}

#remove_class_variable(sym) ⇒ Object

Removes the definition of the sym, returning that constant's value.

class Dummy
  @@var = 99
  puts @@var
  remove_class_variable(:@@var)
  p(defined? @@var)
end

produces:

99
nil

Returns:



2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
# File 'variable.c', line 2994

VALUE
rb_mod_remove_cvar(VALUE mod, VALUE name)
{
    const ID id = id_for_var_message(mod, name, class, "wrong class variable name %1$s");
    st_data_t val, n = id;

    if (!id) {
      not_defined:
	rb_name_err_raise("class variable %1$s not defined for %2$s",
			  mod, name);
    }
    rb_check_frozen(mod);
    if (RCLASS_IV_TBL(mod) && st_delete(RCLASS_IV_TBL(mod), &n, &val)) {
	return (VALUE)val;
    }
    if (rb_cvar_defined(mod, id)) {
	rb_name_err_raise("cannot remove %1$s for %2$s", mod, ID2SYM(id));
    }
    goto not_defined;
}

#remove_const(sym) ⇒ Object (private)

Removes the definition of the given constant, returning that constant's previous value. If that constant referred to a module, this will not change that module's name and can lead to confusion.

Returns:



2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
# File 'variable.c', line 2310

VALUE
rb_mod_remove_const(VALUE mod, VALUE name)
{
    const ID id = id_for_var(mod, name, a, constant);

    if (!id) {
	rb_name_err_raise("constant %2$s::%1$s not defined",
			  mod, name);
    }
    return rb_const_remove(mod, id);
}

#remove_method(symbol) ⇒ self (private) #remove_method(string) ⇒ self (private)

Removes the method identified by symbol from the current class. For an example, see Module.undef_method. String arguments are converted to symbols.

Overloads:

  • #remove_method(symbol) ⇒ self

    Returns:

    • (self)
  • #remove_method(string) ⇒ self

    Returns:

    • (self)


1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
# File 'vm_method.c', line 1009

static VALUE
rb_mod_remove_method(int argc, VALUE *argv, VALUE mod)
{
    int i;

    for (i = 0; i < argc; i++) {
	VALUE v = argv[i];
	ID id = rb_check_id(&v);
	if (!id) {
	    rb_name_err_raise("method `%1$s' not defined in %2$s",
			      mod, v);
	}
	remove_method(mod, id);
    }
    return mod;
}

#singleton_class?Boolean

Returns true if mod is a singleton class or false if it is an ordinary class or module.

class C
end
C.singleton_class?                  #=> false
C.singleton_class.singleton_class?  #=> true

Returns:

  • (Boolean)

Returns:

  • (Boolean)


2512
2513
2514
2515
2516
2517
2518
# File 'object.c', line 2512

static VALUE
rb_mod_singleton_p(VALUE klass)
{
    if (RB_TYPE_P(klass, T_CLASS) && FL_TEST(klass, FL_SINGLETON))
	return Qtrue;
    return Qfalse;
}

#to_sString Also known as: inspect

Returns a string representing this module or class. For basic classes and modules, this is the name. For singletons, we show information on the thing we're attached to as well.

Returns:



1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
# File 'object.c', line 1470

static VALUE
rb_mod_to_s(VALUE klass)
{
    ID id_defined_at;
    VALUE refined_class, defined_at;

    if (FL_TEST(klass, FL_SINGLETON)) {
	VALUE s = rb_usascii_str_new2("#<Class:");
	VALUE v = rb_ivar_get(klass, id__attached__);

	if (CLASS_OR_MODULE_P(v)) {
	    rb_str_append(s, rb_inspect(v));
	}
	else {
	    rb_str_append(s, rb_any_to_s(v));
	}
	rb_str_cat2(s, ">");

	return s;
    }
    refined_class = rb_refinement_module_get_refined_class(klass);
    if (!NIL_P(refined_class)) {
	VALUE s = rb_usascii_str_new2("#<refinement:");

	rb_str_concat(s, rb_inspect(refined_class));
	rb_str_cat2(s, "@");
	CONST_ID(id_defined_at, "__defined_at__");
	defined_at = rb_attr_get(klass, id_defined_at);
	rb_str_concat(s, rb_inspect(defined_at));
	rb_str_cat2(s, ">");
	return s;
    }
    return rb_str_dup(rb_class_name(klass));
}

#undef_method(symbol) ⇒ self (private) #undef_method(string) ⇒ self (private)

Prevents the current class from responding to calls to the named method. Contrast this with remove_method, which deletes the method from the particular class; Ruby will still search superclasses and mixed-in modules for a possible receiver. String arguments are converted to symbols.

class Parent
  def hello
    puts "In parent"
  end
end
class Child < Parent
  def hello
    puts "In child"
  end
end

c = Child.new
c.hello

class Child
  remove_method :hello  # remove from child, still in parent
end
c.hello

class Child
  undef_method :hello   # prevent any calls to 'hello'
end
c.hello

produces:

In child
In parent
prog.rb:23: undefined method `hello' for #<Child:0x401b3bb4> (NoMethodError)

Overloads:

  • #undef_method(symbol) ⇒ self

    Returns:

    • (self)
  • #undef_method(string) ⇒ self

    Returns:

    • (self)


1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
# File 'vm_method.c', line 1236

static VALUE
rb_mod_undef_method(int argc, VALUE *argv, VALUE mod)
{
    int i;
    for (i = 0; i < argc; i++) {
	VALUE v = argv[i];
	ID id = rb_check_id(&v);
	if (!id) {
	    rb_method_name_error(mod, v);
	}
	rb_undef(mod, id);
    }
    return mod;
}

#usingself (private)

Import class refinements from module into the current class or module definition.

Returns:

  • (self)


1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
# File 'eval.c', line 1287

static VALUE
mod_using(VALUE self, VALUE module)
{
    rb_control_frame_t *prev_cfp = previous_frame(GET_THREAD());

    if (prev_frame_func()) {
	rb_raise(rb_eRuntimeError,
		 "Module#using is not permitted in methods");
    }
    if (prev_cfp && prev_cfp->self != self) {
	rb_raise(rb_eRuntimeError, "Module#using is not called on self");
    }
    rb_using_module(rb_vm_cref_replace_with_duplicated_cref(), module);
    return self;
}