Class: Module

Inherits:
Object show all
Defined in:
object.c,
class.c,
object.c

Overview

*********************************************************************

A Module is a collection of methods and constants. The
methods in a module may be instance methods or module methods.
Instance methods appear as methods in a class when the module is
included, module methods do not. Conversely, module methods may be
called without creating an encapsulating object, while instance
methods may not. (See Module#module_function.)

In the descriptions that follow, the parameter <i>sym</i> refers
to a symbol, which is either a quoted string or a
Symbol (such as <code>:name</code>).

   module Mod
     include Math
     CONST = 1
     def meth
       #  ...
     end
   end
   Mod.class              #=> Module
   Mod.constants          #=> [:CONST, :PI, :E]
   Mod.instance_methods   #=> [:meth]

Direct Known Subclasses

Class

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#newObject #new {|mod| ... } ⇒ Object

Creates a new anonymous module. If a block is given, it is passed the module object, and the block is evaluated in the context of this module like #module_eval.

fred = Module.new do
  def meth1
    "hello"
  end
  def meth2
    "bye"
  end
end
a = "my string"
a.extend(fred)   #=> "my string"
a.meth1          #=> "hello"
a.meth2          #=> "bye"

Assign the module to a constant (name starting uppercase) if you want to treat it like a regular module.

Overloads:

  • #new {|mod| ... } ⇒ Object

    Yields:

    • (mod)


1911
1912
1913
1914
1915
1916
1917
1918
# File 'object.c', line 1911

static VALUE
rb_mod_initialize(VALUE module)
{
    if (rb_block_given_p()) {
	rb_mod_module_exec(1, &module, module);
    }
    return Qnil;
}

Class Method Details

.constantsArray .constants(inherited) ⇒ Array

In the first form, returns an array of the names of all constants accessible from the point of call. This list includes the names of all modules and classes defined in the global scope.

Module.constants.first(4)
   # => [:ARGF, :ARGV, :ArgumentError, :Array]

Module.constants.include?(:SEEK_SET)   # => false

class IO
  Module.constants.include?(:SEEK_SET) # => true
end

The second form calls the instance method constants.

Overloads:



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# File 'eval.c', line 440

static VALUE
rb_mod_s_constants(int argc, VALUE *argv, VALUE mod)
{
    const rb_cref_t *cref = rb_vm_cref();
    VALUE klass;
    VALUE cbase = 0;
    void *data = 0;

    if (argc > 0 || mod != rb_cModule) {
	return rb_mod_constants(argc, argv, mod);
    }

    while (cref) {
	klass = CREF_CLASS(cref);
	if (!CREF_PUSHED_BY_EVAL(cref) &&
	    !NIL_P(klass)) {
	    data = rb_mod_const_at(CREF_CLASS(cref), data);
	    if (!cbase) {
		cbase = klass;
	    }
	}
	cref = CREF_NEXT(cref);
    }

    if (cbase) {
	data = rb_mod_const_of(cbase, data);
    }
    return rb_const_list(data);
}

.nestingArray

Returns the list of Modules nested at the point of call.

module M1
  module M2
    $a = Module.nesting
  end
end
$a           #=> [M1::M2, M1]
$a[0].name   #=> "M1::M2"

Returns:



401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
# File 'eval.c', line 401

static VALUE
rb_mod_nesting(VALUE _)
{
    VALUE ary = rb_ary_new();
    const rb_cref_t *cref = rb_vm_cref();

    while (cref && CREF_NEXT(cref)) {
	VALUE klass = CREF_CLASS(cref);
	if (!CREF_PUSHED_BY_EVAL(cref) &&
	    !NIL_P(klass)) {
	    rb_ary_push(ary, klass);
	}
	cref = CREF_NEXT(cref);
    }
    return ary;
}

.used_modulesArray

Returns an array of all modules used in the current scope. The ordering of modules in the resulting array is not defined.

module A
  refine Object do
  end
end

module B
  refine Object do
  end
end

using A
using B
p Module.used_modules

produces:

[B, A]

Returns:



1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
# File 'eval.c', line 1683

static VALUE
rb_mod_s_used_modules(VALUE _)
{
    const rb_cref_t *cref = rb_vm_cref();
    VALUE ary = rb_ary_new();

    while (cref) {
	if (!NIL_P(CREF_REFINEMENTS(cref))) {
	    rb_hash_foreach(CREF_REFINEMENTS(cref), used_modules_i, ary);
	}
	cref = CREF_NEXT(cref);
    }

    return rb_funcall(ary, rb_intern("uniq"), 0);
}

Instance Method Details

#<(other) ⇒ true, ...

Returns true if mod is a subclass of other. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “A < B”.)

Returns:

  • (true, false, nil)


1792
1793
1794
1795
1796
1797
# File 'object.c', line 1792

static VALUE
rb_mod_lt(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qfalse;
    return rb_class_inherited_p(mod, arg);
}

#<=(other) ⇒ true, ...

Returns true if mod is a subclass of other or is the same as other. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “A < B”.)

Returns:

  • (true, false, nil)


1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
# File 'object.c', line 1764

VALUE
rb_class_inherited_p(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qtrue;
    if (!CLASS_OR_MODULE_P(arg) && !RB_TYPE_P(arg, T_ICLASS)) {
	rb_raise(rb_eTypeError, "compared with non class/module");
    }
    if (class_search_ancestor(mod, RCLASS_ORIGIN(arg))) {
	return Qtrue;
    }
    /* not mod < arg; check if mod > arg */
    if (class_search_ancestor(arg, mod)) {
	return Qfalse;
    }
    return Qnil;
}

#<=>(other_module) ⇒ -1, ...

Comparison—Returns -1, 0, +1 or nil depending on whether module includes other_module, they are the same, or if module is included by other_module.

Returns nil if module has no relationship with other_module, if other_module is not a module, or if the two values are incomparable.

Returns:

  • (-1, 0, +1, nil)


1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
# File 'object.c', line 1852

static VALUE
rb_mod_cmp(VALUE mod, VALUE arg)
{
    VALUE cmp;

    if (mod == arg) return INT2FIX(0);
    if (!CLASS_OR_MODULE_P(arg)) {
	return Qnil;
    }

    cmp = rb_class_inherited_p(mod, arg);
    if (NIL_P(cmp)) return Qnil;
    if (cmp) {
	return INT2FIX(-1);
    }
    return INT2FIX(1);
}

#==(other) ⇒ Boolean #equal?(other) ⇒ Boolean #eql?(other) ⇒ Boolean

Equality — At the Object level, #== returns true only if obj and other are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.

Unlike #==, the #equal? method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b) if and only if a is the same object as b):

obj = "a"
other = obj.dup

obj == other      #=> true
obj.equal? other  #=> false
obj.equal? obj    #=> true

The #eql? method returns true if obj and other refer to the same hash key. This is used by Hash to test members for equality. For any pair of objects where #eql? returns true, the #hash value of both objects must be equal. So any subclass that overrides #eql? should also override #hash appropriately.

For objects of class Object, #eql? is synonymous with #==. Subclasses normally continue this tradition by aliasing #eql? to their overridden #== method, but there are exceptions. Numeric types, for example, perform type conversion across #==, but not across #eql?, so:

1 == 1.0     #=> true
1.eql? 1.0   #=> false

Overloads:

  • #==(other) ⇒ Boolean

    Returns:

    • (Boolean)
  • #equal?(other) ⇒ Boolean

    Returns:

    • (Boolean)
  • #eql?(other) ⇒ Boolean

    Returns:

    • (Boolean)


234
235
236
237
238
239
# File 'object.c', line 234

MJIT_FUNC_EXPORTED VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
    if (obj1 == obj2) return Qtrue;
    return Qfalse;
}

#===(obj) ⇒ Boolean

Case Equality—Returns true if obj is an instance of mod or an instance of one of mod’s descendants. Of limited use for modules, but can be used in case statements to classify objects by class.

Returns:

  • (Boolean)


1738
1739
1740
1741
1742
# File 'object.c', line 1738

static VALUE
rb_mod_eqq(VALUE mod, VALUE arg)
{
    return rb_obj_is_kind_of(arg, mod);
}

#>(other) ⇒ true, ...

Returns true if mod is an ancestor of other. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “B > A”.)

Returns:

  • (true, false, nil)


1833
1834
1835
1836
1837
1838
# File 'object.c', line 1833

static VALUE
rb_mod_gt(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qfalse;
    return rb_mod_ge(mod, arg);
}

#>=(other) ⇒ true, ...

Returns true if mod is an ancestor of other, or the two modules are the same. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “B > A”.)

Returns:

  • (true, false, nil)


1812
1813
1814
1815
1816
1817
1818
1819
1820
# File 'object.c', line 1812

static VALUE
rb_mod_ge(VALUE mod, VALUE arg)
{
    if (!CLASS_OR_MODULE_P(arg)) {
	rb_raise(rb_eTypeError, "compared with non class/module");
    }

    return rb_class_inherited_p(arg, mod);
}

#alias_method(new_name, old_name) ⇒ Object

Makes new_name a new copy of the method old_name. This can be used to retain access to methods that are overridden.

module Mod
  alias_method :orig_exit, :exit #=> :orig_exit
  def exit(code=0)
    puts "Exiting with code #{code}"
    orig_exit(code)
  end
end
include Mod
exit(99)

produces:

Exiting with code 99


1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
# File 'vm_method.c', line 1994

static VALUE
rb_mod_alias_method(VALUE mod, VALUE newname, VALUE oldname)
{
    ID oldid = rb_check_id(&oldname);
    if (!oldid) {
	rb_print_undef_str(mod, oldname);
    }
    VALUE id = rb_to_id(newname);
    rb_alias(mod, id, oldid);
    return ID2SYM(id);
}

#ancestorsArray

Returns a list of modules included/prepended in mod (including mod itself).

module Mod
  include Math
  include Comparable
  prepend Enumerable
end

Mod.ancestors        #=> [Enumerable, Mod, Comparable, Math]
Math.ancestors       #=> [Math]
Enumerable.ancestors #=> [Enumerable]

Returns:



1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
# File 'class.c', line 1289

VALUE
rb_mod_ancestors(VALUE mod)
{
    VALUE p, ary = rb_ary_new();

    for (p = mod; p; p = RCLASS_SUPER(p)) {
        if (p != RCLASS_ORIGIN(p)) continue;
	if (BUILTIN_TYPE(p) == T_ICLASS) {
	    rb_ary_push(ary, RBASIC(p)->klass);
	}
        else {
	    rb_ary_push(ary, p);
	}
    }
    return ary;
}

#append_features(mod) ⇒ Object (private)

When this module is included in another, Ruby calls #append_features in this module, passing it the receiving module in mod. Ruby’s default implementation is to add the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#include.



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
# File 'eval.c', line 1296

static VALUE
rb_mod_append_features(VALUE module, VALUE include)
{
    if (!CLASS_OR_MODULE_P(include)) {
	Check_Type(include, T_CLASS);
    }
    rb_include_module(include, module);

    return module;
}

#attr(name, ...) ⇒ Array #attr(name, true) ⇒ Array #attr(name, false) ⇒ Array

The first form is equivalent to #attr_reader. The second form is equivalent to attr_accessor(name) but deprecated. The last form is equivalent to attr_reader(name) but deprecated. Returns an array of defined method names as symbols.

Overloads:



2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
# File 'object.c', line 2298

VALUE
rb_mod_attr(int argc, VALUE *argv, VALUE klass)
{
    if (argc == 2 && (argv[1] == Qtrue || argv[1] == Qfalse)) {
	ID id = id_for_attr(klass, argv[0]);
	VALUE names = rb_ary_new();

	rb_category_warning(RB_WARN_CATEGORY_DEPRECATED, "optional boolean argument is obsoleted");
	rb_attr(klass, id, 1, RTEST(argv[1]), TRUE);
	rb_ary_push(names, ID2SYM(id));
	if (argv[1] == Qtrue) rb_ary_push(names, ID2SYM(rb_id_attrset(id)));
	return names;
    }
    return rb_mod_attr_reader(argc, argv, klass);
}

#attr_accessor(symbol, ...) ⇒ Array #attr_accessor(string, ...) ⇒ Array

Defines a named attribute for this module, where the name is symbol.id2name, creating an instance variable (@name) and a corresponding access method to read it. Also creates a method called name= to set the attribute. String arguments are converted to symbols. Returns an array of defined method names as symbols.

module Mod
  attr_accessor(:one, :two) #=> [:one, :one=, :two, :two=]
end
Mod.instance_methods.sort   #=> [:one, :one=, :two, :two=]

Overloads:

  • #attr_accessor(symbol, ...) ⇒ Array

    Returns:

  • #attr_accessor(string, ...) ⇒ Array

    Returns:



2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
# File 'object.c', line 2357

static VALUE
rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass)
{
    int i;
    VALUE names = rb_ary_new2(argc * 2);

    for (i=0; i<argc; i++) {
	ID id = id_for_attr(klass, argv[i]);

	rb_attr(klass, id, TRUE, TRUE, TRUE);
	rb_ary_push(names, ID2SYM(id));
	rb_ary_push(names, ID2SYM(rb_id_attrset(id)));
    }
    return names;
}

#attr_reader(symbol, ...) ⇒ Array #attr(symbol, ...) ⇒ Array #attr_reader(string, ...) ⇒ Array #attr(string, ...) ⇒ Array

Creates instance variables and corresponding methods that return the value of each instance variable. Equivalent to calling “attr:name” on each name in turn. String arguments are converted to symbols. Returns an array of defined method names as symbols.

Overloads:



2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
# File 'object.c', line 2269

static VALUE
rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass)
{
    int i;
    VALUE names = rb_ary_new2(argc);

    for (i=0; i<argc; i++) {
	ID id = id_for_attr(klass, argv[i]);
	rb_attr(klass, id, TRUE, FALSE, TRUE);
	rb_ary_push(names, ID2SYM(id));
    }
    return names;
}

#attr_writer(symbol, ...) ⇒ Array #attr_writer(string, ...) ⇒ Array

Creates an accessor method to allow assignment to the attribute symbol.id2name. String arguments are converted to symbols. Returns an array of defined method names as symbols.

Overloads:

  • #attr_writer(symbol, ...) ⇒ Array

    Returns:

  • #attr_writer(string, ...) ⇒ Array

    Returns:



2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
# File 'object.c', line 2325

static VALUE
rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass)
{
    int i;
    VALUE names = rb_ary_new2(argc);

    for (i=0; i<argc; i++) {
	ID id = id_for_attr(klass, argv[i]);
	rb_attr(klass, id, FALSE, TRUE, TRUE);
	rb_ary_push(names, ID2SYM(rb_id_attrset(id)));
    }
    return names;
}

#autoloadnil

Registers filename to be loaded (using Kernel::require) the first time that module (which may be a String or a symbol) is accessed in the namespace of mod.

module A
end
A.autoload(:B, "b")
A::B.doit            # autoloads "b"

Returns:

  • (nil)


1199
1200
1201
1202
1203
1204
1205
1206
1207
# File 'load.c', line 1199

static VALUE
rb_mod_autoload(VALUE mod, VALUE sym, VALUE file)
{
    ID id = rb_to_id(sym);

    FilePathValue(file);
    rb_autoload_str(mod, id, file);
    return Qnil;
}

#autoload?(name, inherit = true) ⇒ String?

Returns filename to be loaded if name is registered as autoload in the namespace of mod or one of its ancestors.

module A
end
A.autoload(:B, "b")
A.autoload?(:B)            #=> "b"

If inherit is false, the lookup only checks the autoloads in the receiver:

class A
  autoload :CONST, "const.rb"
end

class B < A
end

B.autoload?(:CONST)          #=> "const.rb", found in A (ancestor)
B.autoload?(:CONST, false)   #=> nil, not found in B itself

Returns:



1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
# File 'load.c', line 1235

static VALUE
rb_mod_autoload_p(int argc, VALUE *argv, VALUE mod)
{
    int recur = (rb_check_arity(argc, 1, 2) == 1) ? TRUE : RTEST(argv[1]);
    VALUE sym = argv[0];

    ID id = rb_check_id(&sym);
    if (!id) {
	return Qnil;
    }
    return rb_autoload_at_p(mod, id, recur);
}

#class_eval(string[, filename [, lineno]]) ⇒ Object #class_eval {|mod| ... } ⇒ Object #module_eval(string[, filename [, lineno]]) ⇒ Object #module_eval {|mod| ... } ⇒ Object

Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.

class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)

produces:

Hello there!
dummy:123:in `module_eval': undefined local variable
    or method `code' for Thing:Class

Overloads:

  • #class_eval(string[, filename [, lineno]]) ⇒ Object

    Returns:

  • #class_eval {|mod| ... } ⇒ Object

    Yields:

    • (mod)

    Returns:

  • #module_eval(string[, filename [, lineno]]) ⇒ Object

    Returns:

  • #module_eval {|mod| ... } ⇒ Object

    Yields:

    • (mod)

    Returns:



2157
2158
2159
2160
2161
# File 'vm_eval.c', line 2157

static VALUE
rb_mod_module_eval_internal(int argc, const VALUE *argv, VALUE mod)
{
    return specific_eval(argc, argv, mod, mod, RB_PASS_CALLED_KEYWORDS);
}

#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object

Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.

class Thing
end
Thing.class_exec{
  def hello() "Hello there!" end
}
puts Thing.new.hello()

produces:

Hello there!

Overloads:

  • #module_exec(arg...) {|var...| ... } ⇒ Object

    Yields:

    • (var...)

    Returns:

  • #class_exec(arg...) {|var...| ... } ⇒ Object

    Yields:

    • (var...)

    Returns:



2191
2192
2193
2194
2195
# File 'vm_eval.c', line 2191

static VALUE
rb_mod_module_exec_internal(int argc, const VALUE *argv, VALUE mod)
{
    return yield_under(mod, mod, argc, argv, RB_PASS_CALLED_KEYWORDS);
}

#class_variable_defined?(symbol) ⇒ Boolean #class_variable_defined?(string) ⇒ Boolean

Returns true if the given class variable is defined in obj. String arguments are converted to symbols.

class Fred
  @@foo = 99
end
Fred.class_variable_defined?(:@@foo)    #=> true
Fred.class_variable_defined?(:@@bar)    #=> false

Overloads:

  • #class_variable_defined?(symbol) ⇒ Boolean

    Returns:

    • (Boolean)
  • #class_variable_defined?(string) ⇒ Boolean

    Returns:

    • (Boolean)


3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
# File 'object.c', line 3016

static VALUE
rb_mod_cvar_defined(VALUE obj, VALUE iv)
{
    ID id = id_for_var(obj, iv, class);

    if (!id) {
	return Qfalse;
    }
    return rb_cvar_defined(obj, id);
}

#class_variable_get(symbol) ⇒ Object #class_variable_get(string) ⇒ Object

Returns the value of the given class variable (or throws a NameError exception). The @@ part of the variable name should be included for regular class variables. String arguments are converted to symbols.

class Fred
  @@foo = 99
end
Fred.class_variable_get(:@@foo)     #=> 99

Overloads:



2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
# File 'object.c', line 2959

static VALUE
rb_mod_cvar_get(VALUE obj, VALUE iv)
{
    ID id = id_for_var(obj, iv, class);

    if (!id) {
	rb_name_err_raise("uninitialized class variable %1$s in %2$s",
			  obj, iv);
    }
    return rb_cvar_get(obj, id);
}

#class_variable_set(symbol, obj) ⇒ Object #class_variable_set(string, obj) ⇒ Object

Sets the class variable named by symbol to the given object. If the class variable name is passed as a string, that string is converted to a symbol.

class Fred
  @@foo = 99
  def foo
    @@foo
  end
end
Fred.class_variable_set(:@@foo, 101)     #=> 101
Fred.new.foo                             #=> 101

Overloads:

  • #class_variable_set(symbol, obj) ⇒ Object

    Returns:

  • #class_variable_set(string, obj) ⇒ Object

    Returns:



2991
2992
2993
2994
2995
2996
2997
2998
# File 'object.c', line 2991

static VALUE
rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val)
{
    ID id = id_for_var(obj, iv, class);
    if (!id) id = rb_intern_str(iv);
    rb_cvar_set(obj, id, val);
    return val;
}

#class_variables(inherit = true) ⇒ Array

Returns an array of the names of class variables in mod. This includes the names of class variables in any included modules, unless the inherit parameter is set to false.

class One
  @@var1 = 1
end
class Two < One
  @@var2 = 2
end
One.class_variables          #=> [:@@var1]
Two.class_variables          #=> [:@@var2, :@@var1]
Two.class_variables(false)   #=> [:@@var2]

Returns:



3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
# File 'variable.c', line 3511

VALUE
rb_mod_class_variables(int argc, const VALUE *argv, VALUE mod)
{
    bool inherit = true;
    st_table *tbl;

    if (rb_check_arity(argc, 0, 1)) inherit = RTEST(argv[0]);
    if (inherit) {
	tbl = mod_cvar_of(mod, 0);
    }
    else {
	tbl = mod_cvar_at(mod, 0);
    }
    return cvar_list(tbl);
}

#const_defined?(sym, inherit = true) ⇒ Boolean #const_defined?(str, inherit = true) ⇒ Boolean

Says whether mod or its ancestors have a constant with the given name:

Float.const_defined?(:EPSILON)      #=> true, found in Float itself
Float.const_defined?("String")      #=> true, found in Object (ancestor)
BasicObject.const_defined?(:Hash)   #=> false

If mod is a Module, additionally Object and its ancestors are checked:

Math.const_defined?(:String)   #=> true, found in Object

In each of the checked classes or modules, if the constant is not present but there is an autoload for it, true is returned directly without autoloading:

module Admin
  autoload :User, 'admin/user'
end
Admin.const_defined?(:User)   #=> true

If the constant is not found the callback const_missing is not called and the method returns false.

If inherit is false, the lookup only checks the constants in the receiver:

IO.const_defined?(:SYNC)          #=> true, found in File::Constants (ancestor)
IO.const_defined?(:SYNC, false)   #=> false, not found in IO itself

In this case, the same logic for autoloading applies.

If the argument is not a valid constant name a NameError is raised with the message “wrong constant name name”:

Hash.const_defined? 'foobar'   #=> NameError: wrong constant name foobar

Overloads:

  • #const_defined?(sym, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)
  • #const_defined?(str, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)


2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
# File 'object.c', line 2586

static VALUE
rb_mod_const_defined(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    recur = (argc == 1) ? Qtrue : argv[1];

    if (SYMBOL_P(name)) {
	if (!rb_is_const_sym(name)) goto wrong_name;
	id = rb_check_id(&name);
	if (!id) return Qfalse;
	return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
	rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
        goto wrong_name;
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
	mod = rb_cObject;
	p += 2;
	pbeg = p;
    }

    while (p < pend) {
	VALUE part;
	long len, beglen;

	while (p < pend && *p != ':') p++;

	if (pbeg == p) goto wrong_name;

	id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
	beglen = pbeg-path;

	if (p < pend && p[0] == ':') {
	    if (p + 2 >= pend || p[1] != ':') goto wrong_name;
	    p += 2;
	    pbeg = p;
	}

	if (!id) {
	    part = rb_str_subseq(name, beglen, len);
	    OBJ_FREEZE(part);
	    if (!rb_is_const_name(part)) {
		name = part;
		goto wrong_name;
	    }
	    else {
		return Qfalse;
	    }
	}
	if (!rb_is_const_id(id)) {
	    name = ID2SYM(id);
	    goto wrong_name;
	}

#if 0
        mod = rb_const_search(mod, id, beglen > 0 || !RTEST(recur), RTEST(recur), FALSE);
        if (mod == Qundef) return Qfalse;
#else
        if (!RTEST(recur)) {
	    if (!rb_const_defined_at(mod, id))
		return Qfalse;
            if (p == pend) return Qtrue;
	    mod = rb_const_get_at(mod, id);
	}
        else if (beglen == 0) {
            if (!rb_const_defined(mod, id))
                return Qfalse;
            if (p == pend) return Qtrue;
            mod = rb_const_get(mod, id);
        }
        else {
            if (!rb_const_defined_from(mod, id))
                return Qfalse;
            if (p == pend) return Qtrue;
            mod = rb_const_get_from(mod, id);
        }
#endif

	if (p < pend && !RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
	    rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
		     QUOTE(name));
	}
    }

    return Qtrue;

  wrong_name:
    rb_name_err_raise(wrong_constant_name, mod, name);
    UNREACHABLE_RETURN(Qundef);
}

#const_get(sym, inherit = true) ⇒ Object #const_get(str, inherit = true) ⇒ Object

Checks for a constant with the given name in mod. If inherit is set, the lookup will also search the ancestors (and Object if mod is a Module).

The value of the constant is returned if a definition is found, otherwise a NameError is raised.

Math.const_get(:PI)   #=> 3.14159265358979

This method will recursively look up constant names if a namespaced class name is provided. For example:

module Foo; class Bar; end end
Object.const_get 'Foo::Bar'

The inherit flag is respected on each lookup. For example:

module Foo
  class Bar
    VAL = 10
  end

  class Baz < Bar; end
end

Object.const_get 'Foo::Baz::VAL'         # => 10
Object.const_get 'Foo::Baz::VAL', false  # => NameError

If the argument is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_get ‘foobar’ #=> NameError: wrong constant name foobar

Overloads:

  • #const_get(sym, inherit = true) ⇒ Object

    Returns:

  • #const_get(str, inherit = true) ⇒ Object

    Returns:



2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
# File 'object.c', line 2413

static VALUE
rb_mod_const_get(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    recur = (argc == 1) ? Qtrue : argv[1];

    if (SYMBOL_P(name)) {
	if (!rb_is_const_sym(name)) goto wrong_name;
	id = rb_check_id(&name);
	if (!id) return rb_const_missing(mod, name);
	return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
	rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
        goto wrong_name;
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
	mod = rb_cObject;
	p += 2;
	pbeg = p;
    }

    while (p < pend) {
	VALUE part;
	long len, beglen;

	while (p < pend && *p != ':') p++;

	if (pbeg == p) goto wrong_name;

	id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
	beglen = pbeg-path;

	if (p < pend && p[0] == ':') {
	    if (p + 2 >= pend || p[1] != ':') goto wrong_name;
	    p += 2;
	    pbeg = p;
	}

	if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
	    rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
		     QUOTE(name));
	}

	if (!id) {
	    part = rb_str_subseq(name, beglen, len);
	    OBJ_FREEZE(part);
	    if (!rb_is_const_name(part)) {
		name = part;
		goto wrong_name;
	    }
	    else if (!rb_method_basic_definition_p(CLASS_OF(mod), id_const_missing)) {
		part = rb_str_intern(part);
		mod = rb_const_missing(mod, part);
		continue;
	    }
	    else {
		rb_mod_const_missing(mod, part);
	    }
	}
	if (!rb_is_const_id(id)) {
	    name = ID2SYM(id);
	    goto wrong_name;
	}
#if 0
        mod = rb_const_get_0(mod, id, beglen > 0 || !RTEST(recur), RTEST(recur), FALSE);
#else
        if (!RTEST(recur)) {
            mod = rb_const_get_at(mod, id);
        }
        else if (beglen == 0) {
            mod = rb_const_get(mod, id);
        }
        else {
            mod = rb_const_get_from(mod, id);
        }
#endif
    }

    return mod;

  wrong_name:
    rb_name_err_raise(wrong_constant_name, mod, name);
    UNREACHABLE_RETURN(Qundef);
}

#const_missing(sym) ⇒ Object

Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. The following code is an example of the same:

def Foo.const_missing(name)
  name # return the constant name as Symbol
end

Foo::UNDEFINED_CONST    #=> :UNDEFINED_CONST: symbol returned

In the next example when a reference is made to an undefined constant, it attempts to load a file whose name is the lowercase version of the constant (thus class Fred is assumed to be in file fred.rb). If found, it returns the loaded class. It therefore implements an autoload feature similar to Kernel#autoload and Module#autoload.

def Object.const_missing(name)
  @looked_for ||= {}
  str_name = name.to_s
  raise "Class not found: #{name}" if @looked_for[str_name]
  @looked_for[str_name] = 1
  file = str_name.downcase
  require file
  klass = const_get(name)
  return klass if klass
  raise "Class not found: #{name}"
end

Returns:



1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
# File 'variable.c', line 1959

VALUE
rb_mod_const_missing(VALUE klass, VALUE name)
{
    VALUE ref = GET_EC()->private_const_reference;
    rb_vm_pop_cfunc_frame();
    if (ref) {
	rb_name_err_raise("private constant %2$s::%1$s referenced",
			  ref, name);
    }
    uninitialized_constant(klass, name);

    UNREACHABLE_RETURN(Qnil);
}

#const_set(sym, obj) ⇒ Object #const_set(str, obj) ⇒ Object

Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.

Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0)   #=> 3.14285714285714
Math::HIGH_SCHOOL_PI - Math::PI              #=> 0.00126448926734968

If sym or str is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_set(‘foobar’, 42) #=> NameError: wrong constant name foobar

Overloads:



2535
2536
2537
2538
2539
2540
2541
2542
2543
# File 'object.c', line 2535

static VALUE
rb_mod_const_set(VALUE mod, VALUE name, VALUE value)
{
    ID id = id_for_var(mod, name, const);
    if (!id) id = rb_intern_str(name);
    rb_const_set(mod, id, value);

    return value;
}

#const_source_location(sym, inherit = true) ⇒ Array, Integer #const_source_location(str, inherit = true) ⇒ Array, Integer

Returns the Ruby source filename and line number containing the definition of the constant specified. If the named constant is not found, nil is returned. If the constant is found, but its source location can not be extracted (constant is defined in C code), empty array is returned.

inherit specifies whether to lookup in mod.ancestors (true by default).

# test.rb:
class A         # line 1
  C1 = 1
  C2 = 2
end

module M        # line 6
  C3 = 3
end

class B < A     # line 10
  include M
  C4 = 4
end

class A # continuation of A definition
  C2 = 8 # constant redefinition; warned yet allowed
end

p B.const_source_location('C4')           # => ["test.rb", 12]
p B.const_source_location('C3')           # => ["test.rb", 7]
p B.const_source_location('C1')           # => ["test.rb", 2]

p B.const_source_location('C3', false)    # => nil  -- don't lookup in ancestors

p A.const_source_location('C2')           # => ["test.rb", 16] -- actual (last) definition place

p Object.const_source_location('B')       # => ["test.rb", 10] -- top-level constant could be looked through Object
p Object.const_source_location('A')       # => ["test.rb", 1] -- class reopening is NOT considered new definition

p B.const_source_location('A')            # => ["test.rb", 1]  -- because Object is in ancestors
p M.const_source_location('A')            # => ["test.rb", 1]  -- Object is not ancestor, but additionally checked for modules

p Object.const_source_location('A::C1')   # => ["test.rb", 2]  -- nesting is supported
p Object.const_source_location('String')  # => []  -- constant is defined in C code

Overloads:



2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
# File 'object.c', line 2746

static VALUE
rb_mod_const_source_location(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur, loc = Qnil;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    recur = (argc == 1) ? Qtrue : argv[1];

    if (SYMBOL_P(name)) {
        if (!rb_is_const_sym(name)) goto wrong_name;
        id = rb_check_id(&name);
        if (!id) return Qnil;
        return RTEST(recur) ? rb_const_source_location(mod, id) : rb_const_source_location_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
        rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
        goto wrong_name;
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
        mod = rb_cObject;
        p += 2;
        pbeg = p;
    }

    while (p < pend) {
        VALUE part;
        long len, beglen;

        while (p < pend && *p != ':') p++;

        if (pbeg == p) goto wrong_name;

        id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
        beglen = pbeg-path;

        if (p < pend && p[0] == ':') {
            if (p + 2 >= pend || p[1] != ':') goto wrong_name;
            p += 2;
            pbeg = p;
        }

        if (!id) {
            part = rb_str_subseq(name, beglen, len);
            OBJ_FREEZE(part);
            if (!rb_is_const_name(part)) {
                name = part;
                goto wrong_name;
            }
            else {
                return Qnil;
            }
        }
        if (!rb_is_const_id(id)) {
            name = ID2SYM(id);
            goto wrong_name;
        }
        if (p < pend) {
            if (RTEST(recur)) {
                mod = rb_const_get(mod, id);
            }
            else {
                mod = rb_const_get_at(mod, id);
            }
            if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
                rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
                         QUOTE(name));
            }
        }
        else {
            if (RTEST(recur)) {
                loc = rb_const_source_location(mod, id);
            }
            else {
                loc = rb_const_source_location_at(mod, id);
            }
            break;
        }
        recur = Qfalse;
    }

    return loc;

  wrong_name:
    rb_name_err_raise(wrong_constant_name, mod, name);
    UNREACHABLE_RETURN(Qundef);
}

#constants(inherit = true) ⇒ Array

Returns an array of the names of the constants accessible in mod. This includes the names of constants in any included modules (example at start of section), unless the inherit parameter is set to false.

The implementation makes no guarantees about the order in which the constants are yielded.

IO.constants.include?(:SYNC)        #=> true
IO.constants(false).include?(:SYNC) #=> false

Also see Module#const_defined?.

Returns:



2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
# File 'variable.c', line 2871

VALUE
rb_mod_constants(int argc, const VALUE *argv, VALUE mod)
{
    bool inherit = true;

    if (rb_check_arity(argc, 0, 1)) inherit = RTEST(argv[0]);

    if (inherit) {
	return rb_const_list(rb_mod_const_of(mod, 0));
    }
    else {
	return rb_local_constants(mod);
    }
}

#define_method(symbol, method) ⇒ Object #define_method(symbol) { ... } ⇒ Object

Defines an instance method in the receiver. The method parameter can be a Proc, a Method or an UnboundMethod object. If a block is specified, it is used as the method body. If a block or the method parameter has parameters, they’re used as method parameters. This block is evaluated using #instance_eval.

class A
  def fred
    puts "In Fred"
  end
  def create_method(name, &block)
    self.class.define_method(name, &block)
  end
  define_method(:wilma) { puts "Charge it!" }
  define_method(:flint) {|name| puts "I'm #{name}!"}
end
class B < A
  define_method(:barney, instance_method(:fred))
end
a = B.new
a.barney
a.wilma
a.flint('Dino')
a.create_method(:betty) { p self }
a.betty

produces:

In Fred
Charge it!
I'm Dino!
#<B:0x401b39e8>

Overloads:

  • #define_method(symbol) { ... } ⇒ Object

    Yields:



2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
# File 'proc.c', line 2170

static VALUE
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
{
    ID id;
    VALUE body;
    VALUE name;
    const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod);
    const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE};
    const rb_scope_visibility_t *scope_visi = &default_scope_visi;
    int is_method = FALSE;

    if (cref) {
	scope_visi = CREF_SCOPE_VISI(cref);
    }

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    id = rb_check_id(&name);
    if (argc == 1) {
	body = rb_block_lambda();
    }
    else {
	body = argv[1];

	if (rb_obj_is_method(body)) {
	    is_method = TRUE;
	}
	else if (rb_obj_is_proc(body)) {
	    is_method = FALSE;
	}
	else {
	    rb_raise(rb_eTypeError,
		     "wrong argument type %s (expected Proc/Method/UnboundMethod)",
		     rb_obj_classname(body));
	}
    }
    if (!id) id = rb_to_id(name);

    if (is_method) {
	struct METHOD *method = (struct METHOD *)DATA_PTR(body);
	if (method->me->owner != mod && !RB_TYPE_P(method->me->owner, T_MODULE) &&
	    !RTEST(rb_class_inherited_p(mod, method->me->owner))) {
	    if (FL_TEST(method->me->owner, FL_SINGLETON)) {
		rb_raise(rb_eTypeError,
			 "can't bind singleton method to a different class");
	    }
	    else {
		rb_raise(rb_eTypeError,
			 "bind argument must be a subclass of % "PRIsVALUE,
			 method->me->owner);
	    }
	}
	rb_method_entry_set(mod, id, method->me, scope_visi->method_visi);
	if (scope_visi->module_func) {
	    rb_method_entry_set(rb_singleton_class(mod), id, method->me, METHOD_VISI_PUBLIC);
	}
	RB_GC_GUARD(body);
    }
    else {
	VALUE procval = rb_proc_dup(body);
	if (vm_proc_iseq(procval) != NULL) {
	    rb_proc_t *proc;
	    GetProcPtr(procval, proc);
	    proc->is_lambda = TRUE;
	    proc->is_from_method = TRUE;
	}
	rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)procval, scope_visi->method_visi);
	if (scope_visi->module_func) {
	    rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, METHOD_VISI_PUBLIC);
	}
    }

    return ID2SYM(id);
}

#deprecate_constant(symbol, ...) ⇒ Object

Makes a list of existing constants deprecated. Attempt to refer to them will produce a warning.

module HTTP
  NotFound = Exception.new
  NOT_FOUND = NotFound # previous version of the library used this name

  deprecate_constant :NOT_FOUND
end

HTTP::NOT_FOUND
# warning: constant HTTP::NOT_FOUND is deprecated


3280
3281
3282
3283
3284
3285
# File 'variable.c', line 3280

VALUE
rb_mod_deprecate_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_DEPRECATED, CONST_DEPRECATED);
    return obj;
}

#extend_object(obj) ⇒ Object (private)

Extends the specified object by adding this module’s constants and methods (which are added as singleton methods). This is the callback method used by Object#extend.

module Picky
  def Picky.extend_object(o)
    if String === o
      puts "Can't add Picky to a String"
    else
      puts "Picky added to #{o.class}"
      super
    end
  end
end
(s = Array.new).extend Picky  # Call Object.extend
(s = "quick brown fox").extend Picky

produces:

Picky added to Array
Can't add Picky to a String

Returns:



1762
1763
1764
1765
1766
1767
# File 'eval.c', line 1762

static VALUE
rb_mod_extend_object(VALUE mod, VALUE obj)
{
    rb_extend_object(obj, mod);
    return obj;
}

#extended(_y) ⇒ Object (private)

call-seq:

extended(othermod)

The equivalent of included, but for extended modules.

module A
  def self.extended(mod)
    puts "#{self} extended in #{mod}"
  end
end
module Enumerable
  extend A
end
 # => prints "A extended in Enumerable"


1146
1147
1148
1149
1150
# File 'object.c', line 1146

static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}

#freezeObject

Prevents further modifications to mod.

This method returns self.



1721
1722
1723
1724
1725
1726
# File 'object.c', line 1721

static VALUE
rb_mod_freeze(VALUE mod)
{
    rb_class_name(mod);
    return rb_obj_freeze(mod);
}

#includeself

Invokes Module.append_features on each parameter in reverse order.

Returns:

  • (self)


1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
# File 'eval.c', line 1314

static VALUE
rb_mod_include(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id_append_features, id_included;

    CONST_ID(id_append_features, "append_features");
    CONST_ID(id_included, "included");

    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    for (i = 0; i < argc; i++)
	Check_Type(argv[i], T_MODULE);
    while (argc--) {
	rb_funcall(argv[argc], id_append_features, 1, module);
	rb_funcall(argv[argc], id_included, 1, module);
    }
    return module;
}

#include?Boolean

Returns true if module is included or prepended in mod or one of mod’s ancestors.

module A
end
class B
  include A
end
class C < B
end
B.include?(A)   #=> true
C.include?(A)   #=> true
A.include?(A)   #=> false

Returns:

  • (Boolean)


1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
# File 'class.c', line 1257

VALUE
rb_mod_include_p(VALUE mod, VALUE mod2)
{
    VALUE p;

    Check_Type(mod2, T_MODULE);
    for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
        if (BUILTIN_TYPE(p) == T_ICLASS && !FL_TEST(p, RICLASS_IS_ORIGIN)) {
	    if (RBASIC(p)->klass == mod2) return Qtrue;
	}
    }
    return Qfalse;
}

#included(_y) ⇒ Object (private)

call-seq:

included(othermod)

Callback invoked whenever the receiver is included in another module or class. This should be used in preference to Module.append_features if your code wants to perform some action when a module is included in another.

module A
  def A.included(mod)
    puts "#{self} included in #{mod}"
  end
end
module Enumerable
  include A
end
 # => prints "A included in Enumerable"


1146
1147
1148
1149
1150
# File 'object.c', line 1146

static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}

#included_modulesArray

Returns the list of modules included or prepended in mod or one of mod’s ancestors.

module Sub
end

module Mixin
  prepend Sub
end

module Outer
  include Mixin
end

Mixin.included_modules   #=> [Sub]
Outer.included_modules   #=> [Sub, Mixin]

Returns:



1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
# File 'class.c', line 1221

VALUE
rb_mod_included_modules(VALUE mod)
{
    VALUE ary = rb_ary_new();
    VALUE p;
    VALUE origin = RCLASS_ORIGIN(mod);

    for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
        if (p != origin && RCLASS_ORIGIN(p) == p && BUILTIN_TYPE(p) == T_ICLASS) {
	    VALUE m = RBASIC(p)->klass;
	    if (RB_TYPE_P(m, T_MODULE))
		rb_ary_push(ary, m);
	}
    }
    return ary;
}

#initialize_clone(*args) ⇒ Object

:nodoc:



1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
# File 'object.c', line 1921

static VALUE
rb_mod_initialize_clone(int argc, VALUE* argv, VALUE clone)
{
    VALUE ret, orig, opts;
    rb_scan_args(argc, argv, "1:", &orig, &opts);
    ret = rb_obj_init_clone(argc, argv, clone);
    if (OBJ_FROZEN(orig))
        rb_class_name(clone);
    return ret;
}

#initialize_copy(orig) ⇒ Object

:nodoc:



357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# File 'class.c', line 357

VALUE
rb_mod_init_copy(VALUE clone, VALUE orig)
{
    if (RB_TYPE_P(clone, T_CLASS)) {
        class_init_copy_check(clone, orig);
    }
    if (!OBJ_INIT_COPY(clone, orig)) return clone;

    /* cloned flag is refer at constant inline cache
     * see vm_get_const_key_cref() in vm_insnhelper.c
     */
    FL_SET(clone, RCLASS_CLONED);
    FL_SET(orig , RCLASS_CLONED);

    if (!FL_TEST(CLASS_OF(clone), FL_SINGLETON)) {
        RBASIC_SET_CLASS(clone, rb_singleton_class_clone(orig));
        rb_singleton_class_attached(RBASIC(clone)->klass, (VALUE)clone);
    }
    RCLASS_EXT(clone)->allocator = RCLASS_EXT(orig)->allocator;
    copy_tables(clone, orig);
    if (RCLASS_M_TBL(orig)) {
	struct clone_method_arg arg;
	arg.old_klass = orig;
	arg.new_klass = clone;
	RCLASS_M_TBL_INIT(clone);
	rb_id_table_foreach(RCLASS_M_TBL(orig), clone_method_i, &arg);
    }

    if (RCLASS_ORIGIN(orig) == orig) {
        RCLASS_SET_SUPER(clone, RCLASS_SUPER(orig));
    }
    else {
        VALUE p = RCLASS_SUPER(orig);
        VALUE orig_origin = RCLASS_ORIGIN(orig);
        VALUE prev_clone_p = clone;
        VALUE origin_stack = rb_ary_tmp_new(2);
        VALUE origin[2];
        VALUE clone_p = 0;
        long origin_len;
        int add_subclass;
        VALUE clone_origin;

        ensure_origin(clone);
        clone_origin = RCLASS_ORIGIN(clone);

        while (p && p != orig_origin) {
            if (BUILTIN_TYPE(p) != T_ICLASS) {
                rb_bug("non iclass between module/class and origin");
            }
            clone_p = class_alloc(RBASIC(p)->flags, RBASIC(p)->klass);
            RCLASS_SET_SUPER(prev_clone_p, clone_p);
            prev_clone_p = clone_p;
            RCLASS_M_TBL(clone_p) = RCLASS_M_TBL(p);
            RCLASS_CONST_TBL(clone_p) = RCLASS_CONST_TBL(p);
            RCLASS_IV_TBL(clone_p) = RCLASS_IV_TBL(p);
            RCLASS_EXT(clone_p)->allocator = RCLASS_EXT(p)->allocator;
            if (RB_TYPE_P(clone, T_CLASS)) {
                RCLASS_SET_INCLUDER(clone_p, clone);
            }
            add_subclass = TRUE;
            if (p != RCLASS_ORIGIN(p)) {
                origin[0] = clone_p;
                origin[1] = RCLASS_ORIGIN(p);
                rb_ary_cat(origin_stack, origin, 2);
            }
            else if ((origin_len = RARRAY_LEN(origin_stack)) > 1 &&
                     RARRAY_AREF(origin_stack, origin_len - 1) == p) {
                RCLASS_SET_ORIGIN(RARRAY_AREF(origin_stack, (origin_len -= 2)), clone_p);
                RICLASS_SET_ORIGIN_SHARED_MTBL(clone_p);
                rb_ary_resize(origin_stack, origin_len);
                add_subclass = FALSE;
            }
            if (add_subclass) {
                rb_module_add_to_subclasses_list(RBASIC(p)->klass, clone_p);
            }
            p = RCLASS_SUPER(p);
        }

        if (p == orig_origin) {
            if (clone_p) {
                RCLASS_SET_SUPER(clone_p, clone_origin);
                RCLASS_SET_SUPER(clone_origin, RCLASS_SUPER(orig_origin));
            }
            copy_tables(clone_origin, orig_origin);
            if (RCLASS_M_TBL(orig_origin)) {
                struct clone_method_arg arg;
                arg.old_klass = orig;
                arg.new_klass = clone;
                RCLASS_M_TBL_INIT(clone_origin);
                rb_id_table_foreach(RCLASS_M_TBL(orig_origin), clone_method_i, &arg);
            }
        }
        else {
            rb_bug("no origin for class that has origin");
        }
    }

    return clone;
}

#instance_method(symbol) ⇒ Object

Returns an UnboundMethod representing the given instance method in mod.

class Interpreter
  def do_a() print "there, "; end
  def do_d() print "Hello ";  end
  def do_e() print "!\n";     end
  def do_v() print "Dave";    end
  Dispatcher = {
    "a" => instance_method(:do_a),
    "d" => instance_method(:do_d),
    "e" => instance_method(:do_e),
    "v" => instance_method(:do_v)
  }
  def interpret(string)
    string.each_char {|b| Dispatcher[b].bind(self).call }
  end
end

interpreter = Interpreter.new
interpreter.interpret('dave')

produces:

Hello there, Dave!


2103
2104
2105
2106
2107
2108
2109
2110
2111
# File 'proc.c', line 2103

static VALUE
rb_mod_instance_method(VALUE mod, VALUE vid)
{
    ID id = rb_check_id(&vid);
    if (!id) {
	rb_method_name_error(mod, vid);
    }
    return mnew(mod, Qundef, id, rb_cUnboundMethod, FALSE);
}

#instance_methods(include_super = true) ⇒ Array

Returns an array containing the names of the public and protected instance methods in the receiver. For a module, these are the public and protected methods; for a class, they are the instance (not singleton) methods. If the optional parameter is false, the methods of any ancestors are not included.

module A
  def method1()  end
end
class B
  include A
  def method2()  end
end
class C < B
  def method3()  end
end

A.instance_methods(false)                   #=> [:method1]
B.instance_methods(false)                   #=> [:method2]
B.instance_methods(true).include?(:method1) #=> true
C.instance_methods(false)                   #=> [:method3]
C.instance_methods.include?(:method2)       #=> true

Returns:



1462
1463
1464
1465
1466
# File 'class.c', line 1462

VALUE
rb_class_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_i);
}

#method_added(_y) ⇒ Object (private)

call-seq:

method_added(method_name)

Invoked as a callback whenever an instance method is added to the receiver.

module Chatty
  def self.method_added(method_name)
    puts "Adding #{method_name.inspect}"
  end
  def self.some_class_method() end
  def some_instance_method() end
end

produces:

Adding :some_instance_method


1146
1147
1148
1149
1150
# File 'object.c', line 1146

static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}

#method_defined?(symbol, inherit = true) ⇒ Boolean #method_defined?(string, inherit = true) ⇒ Boolean

Returns true if the named method is defined by mod. If inherit is set, the lookup will also search mod’s ancestors. Public and protected methods are matched. String arguments are converted to symbols.

module A
  def method1()  end
  def protected_method1()  end
  protected :protected_method1
end
class B
  def method2()  end
  def private_method2()  end
  private :private_method2
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1              #=> true
C.method_defined? "method1"             #=> true
C.method_defined? "method2"             #=> true
C.method_defined? "method2", true       #=> true
C.method_defined? "method2", false      #=> false
C.method_defined? "method3"             #=> true
C.method_defined? "protected_method1"   #=> true
C.method_defined? "method4"             #=> false
C.method_defined? "private_method2"     #=> false

Overloads:

  • #method_defined?(symbol, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)
  • #method_defined?(string, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)


1692
1693
1694
1695
1696
1697
# File 'vm_method.c', line 1692

static VALUE
rb_mod_method_defined(int argc, VALUE *argv, VALUE mod)
{
    rb_method_visibility_t visi = check_definition_visibility(mod, argc, argv);
    return (visi == METHOD_VISI_PUBLIC || visi == METHOD_VISI_PROTECTED) ? Qtrue : Qfalse;
}

#method_removed(_y) ⇒ Object (private)

call-seq:

method_removed(method_name)

Invoked as a callback whenever an instance method is removed from the receiver.

module Chatty
  def self.method_removed(method_name)
    puts "Removing #{method_name.inspect}"
  end
  def self.some_class_method() end
  def some_instance_method() end
  class << self
    remove_method :some_class_method
  end
  remove_method :some_instance_method
end

produces:

Removing :some_instance_method


1146
1147
1148
1149
1150
# File 'object.c', line 1146

static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}

#method_undefined(_y) ⇒ Object (private)



1146
1147
1148
1149
1150
# File 'object.c', line 1146

static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}

#class_eval(string[, filename [, lineno]]) ⇒ Object #class_eval {|mod| ... } ⇒ Object #module_eval(string[, filename [, lineno]]) ⇒ Object #module_eval {|mod| ... } ⇒ Object

Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.

class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)

produces:

Hello there!
dummy:123:in `module_eval': undefined local variable
    or method `code' for Thing:Class

Overloads:

  • #class_eval(string[, filename [, lineno]]) ⇒ Object

    Returns:

  • #class_eval {|mod| ... } ⇒ Object

    Yields:

    • (mod)

    Returns:

  • #module_eval(string[, filename [, lineno]]) ⇒ Object

    Returns:

  • #module_eval {|mod| ... } ⇒ Object

    Yields:

    • (mod)

    Returns:



2157
2158
2159
2160
2161
# File 'vm_eval.c', line 2157

static VALUE
rb_mod_module_eval_internal(int argc, const VALUE *argv, VALUE mod)
{
    return specific_eval(argc, argv, mod, mod, RB_PASS_CALLED_KEYWORDS);
}

#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object

Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.

class Thing
end
Thing.class_exec{
  def hello() "Hello there!" end
}
puts Thing.new.hello()

produces:

Hello there!

Overloads:

  • #module_exec(arg...) {|var...| ... } ⇒ Object

    Yields:

    • (var...)

    Returns:

  • #class_exec(arg...) {|var...| ... } ⇒ Object

    Yields:

    • (var...)

    Returns:



2191
2192
2193
2194
2195
# File 'vm_eval.c', line 2191

static VALUE
rb_mod_module_exec_internal(int argc, const VALUE *argv, VALUE mod)
{
    return yield_under(mod, mod, argc, argv, RB_PASS_CALLED_KEYWORDS);
}

#module_function(symbol, ...) ⇒ self (private) #module_function(string, ...) ⇒ self (private)

Creates module functions for the named methods. These functions may be called with the module as a receiver, and also become available as instance methods to classes that mix in the module. Module functions are copies of the original, and so may be changed independently. The instance-method versions are made private. If used with no arguments, subsequently defined methods become module functions. String arguments are converted to symbols.

module Mod
  def one
    "This is one"
  end
  module_function :one
end
class Cls
  include Mod
  def call_one
    one
  end
end
Mod.one     #=> "This is one"
c = Cls.new
c.call_one  #=> "This is one"
module Mod
  def one
    "This is the new one"
  end
end
Mod.one     #=> "This is one"
c.call_one  #=> "This is the new one"

Overloads:

  • #module_function(symbol, ...) ⇒ self

    Returns:

    • (self)
  • #module_function(string, ...) ⇒ self

    Returns:

    • (self)


2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
# File 'vm_method.c', line 2385

static VALUE
rb_mod_modfunc(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id;
    const rb_method_entry_t *me;

    if (!RB_TYPE_P(module, T_MODULE)) {
	rb_raise(rb_eTypeError, "module_function must be called for modules");
    }

    if (argc == 0) {
	rb_scope_module_func_set();
	return module;
    }

    set_method_visibility(module, argc, argv, METHOD_VISI_PRIVATE);

    for (i = 0; i < argc; i++) {
	VALUE m = module;

	id = rb_to_id(argv[i]);
	for (;;) {
	    me = search_method(m, id, 0);
	    if (me == 0) {
		me = search_method(rb_cObject, id, 0);
	    }
	    if (UNDEFINED_METHOD_ENTRY_P(me)) {
		rb_print_undef(module, id, METHOD_VISI_UNDEF);
	    }
	    if (me->def->type != VM_METHOD_TYPE_ZSUPER) {
		break; /* normal case: need not to follow 'super' link */
	    }
	    m = RCLASS_SUPER(m);
	    if (!m)
		break;
	}
	rb_method_entry_set(rb_singleton_class(module), id, me, METHOD_VISI_PUBLIC);
    }
    return module;
}

#nameString

Returns the name of the module mod. Returns nil for anonymous modules.

Returns:



117
118
119
120
121
122
# File 'variable.c', line 117

VALUE
rb_mod_name(VALUE mod)
{
    int permanent;
    return classname(mod, &permanent);
}

#prependself

Invokes Module.prepend_features on each parameter in reverse order.

Returns:

  • (self)


1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
# File 'eval.c', line 1363

static VALUE
rb_mod_prepend(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id_prepend_features, id_prepended;

    CONST_ID(id_prepend_features, "prepend_features");
    CONST_ID(id_prepended, "prepended");

    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    for (i = 0; i < argc; i++)
	Check_Type(argv[i], T_MODULE);
    while (argc--) {
	rb_funcall(argv[argc], id_prepend_features, 1, module);
	rb_funcall(argv[argc], id_prepended, 1, module);
    }
    return module;
}

#prepend_features(mod) ⇒ Object (private)

When this module is prepended in another, Ruby calls #prepend_features in this module, passing it the receiving module in mod. Ruby’s default implementation is to overlay the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#prepend.



1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
# File 'eval.c', line 1345

static VALUE
rb_mod_prepend_features(VALUE module, VALUE prepend)
{
    if (!CLASS_OR_MODULE_P(prepend)) {
	Check_Type(prepend, T_CLASS);
    }
    rb_prepend_module(prepend, module);

    return module;
}

#prepended(_y) ⇒ Object (private)

call-seq:

prepended(othermod)

The equivalent of included, but for prepended modules.

module A
  def self.prepended(mod)
    puts "#{self} prepended to #{mod}"
  end
end
module Enumerable
  prepend A
end
 # => prints "A prepended to Enumerable"


1146
1147
1148
1149
1150
# File 'object.c', line 1146

static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}

#privateself (private) #private(symbol, ...) ⇒ self (private) #private(string, ...) ⇒ self (private) #private(array) ⇒ self (private)

With no arguments, sets the default visibility for subsequently defined methods to private. With arguments, sets the named methods to have private visibility. String arguments are converted to symbols. An Array of Symbols and/or Strings are also accepted.

module Mod
  def a()  end
  def b()  end
  private
  def c()  end
  private :a
end
Mod.private_instance_methods   #=> [:a, :c]

Note that to show a private method on RDoc, use :doc:.

Overloads:

  • #privateself

    Returns:

    • (self)
  • #private(symbol, ...) ⇒ self

    Returns:

    • (self)
  • #private(string, ...) ⇒ self

    Returns:

    • (self)
  • #private(array) ⇒ self

    Returns:

    • (self)


2131
2132
2133
2134
2135
# File 'vm_method.c', line 2131

static VALUE
rb_mod_private(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, METHOD_VISI_PRIVATE);
}

#private_class_method(symbol, ...) ⇒ Object #private_class_method(string, ...) ⇒ Object #private_class_method(array) ⇒ Object

Makes existing class methods private. Often used to hide the default constructor new.

String arguments are converted to symbols. An Array of Symbols and/or Strings are also accepted.

class SimpleSingleton  # Not thread safe
  private_class_method :new
  def SimpleSingleton.create(*args, &block)
    @me = new(*args, &block) if ! @me
    @me
  end
end


2286
2287
2288
2289
2290
2291
# File 'vm_method.c', line 2286

static VALUE
rb_mod_private_method(int argc, VALUE *argv, VALUE obj)
{
    set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PRIVATE);
    return obj;
}

#private_constant(symbol, ...) ⇒ Object

Makes a list of existing constants private.



3240
3241
3242
3243
3244
3245
# File 'variable.c', line 3240

VALUE
rb_mod_private_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_PRIVATE, CONST_VISIBILITY_MASK);
    return obj;
}

#private_instance_methods(include_super = true) ⇒ Array

Returns a list of the private instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

module Mod
  def method1()  end
  private :method1
  def method2()  end
end
Mod.instance_methods           #=> [:method2]
Mod.private_instance_methods   #=> [:method1]

Returns:



1500
1501
1502
1503
1504
# File 'class.c', line 1500

VALUE
rb_class_private_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i);
}

#private_method_defined?(symbol, inherit = true) ⇒ Boolean #private_method_defined?(string, inherit = true) ⇒ Boolean

Returns true if the named private method is defined by mod. If inherit is set, the lookup will also search mod’s ancestors. String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  private
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1                   #=> true
C.private_method_defined? "method1"          #=> false
C.private_method_defined? "method2"          #=> true
C.private_method_defined? "method2", true    #=> true
C.private_method_defined? "method2", false   #=> false
C.method_defined? "method2"                  #=> false

Overloads:

  • #private_method_defined?(symbol, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)
  • #private_method_defined?(string, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)


1771
1772
1773
1774
1775
# File 'vm_method.c', line 1771

static VALUE
rb_mod_private_method_defined(int argc, VALUE *argv, VALUE mod)
{
    return check_definition(mod, argc, argv, METHOD_VISI_PRIVATE);
}

#protectedself (private) #protected(symbol, ...) ⇒ self (private) #protected(string, ...) ⇒ self (private) #protected(array) ⇒ self (private)

With no arguments, sets the default visibility for subsequently defined methods to protected. With arguments, sets the named methods to have protected visibility. String arguments are converted to symbols. An Array of Symbols and/or Strings are also accepted.

If a method has protected visibility, it is callable only where self of the context is the same as the method. (method definition or instance_eval). This behavior is different from Java’s protected method. Usually private should be used.

Note that a protected method is slow because it can’t use inline cache.

To show a private method on RDoc, use :doc: instead of this.

Overloads:

  • #protectedself

    Returns:

    • (self)
  • #protected(symbol, ...) ⇒ self

    Returns:

    • (self)
  • #protected(string, ...) ⇒ self

    Returns:

    • (self)
  • #protected(array) ⇒ self

    Returns:

    • (self)


2100
2101
2102
2103
2104
# File 'vm_method.c', line 2100

static VALUE
rb_mod_protected(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, METHOD_VISI_PROTECTED);
}

#protected_instance_methods(include_super = true) ⇒ Array

Returns a list of the protected instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

Returns:



1477
1478
1479
1480
1481
# File 'class.c', line 1477

VALUE
rb_class_protected_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i);
}

#protected_method_defined?(symbol, inherit = true) ⇒ Boolean #protected_method_defined?(string, inherit = true) ⇒ Boolean

Returns true if the named protected method is defined mod. If inherit is set, the lookup will also search mod’s ancestors. String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  protected
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1                    #=> true
C.protected_method_defined? "method1"         #=> false
C.protected_method_defined? "method2"         #=> true
C.protected_method_defined? "method2", true   #=> true
C.protected_method_defined? "method2", false  #=> false
C.method_defined? "method2"                   #=> true

Overloads:

  • #protected_method_defined?(symbol, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)
  • #protected_method_defined?(string, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)


1807
1808
1809
1810
1811
# File 'vm_method.c', line 1807

static VALUE
rb_mod_protected_method_defined(int argc, VALUE *argv, VALUE mod)
{
    return check_definition(mod, argc, argv, METHOD_VISI_PROTECTED);
}

#publicself (private) #public(symbol, ...) ⇒ self (private) #public(string, ...) ⇒ self (private) #public(array) ⇒ self (private)

With no arguments, sets the default visibility for subsequently defined methods to public. With arguments, sets the named methods to have public visibility. String arguments are converted to symbols. An Array of Symbols and/or Strings are also accepted.

Overloads:

  • #publicself

    Returns:

    • (self)
  • #public(symbol, ...) ⇒ self

    Returns:

    • (self)
  • #public(string, ...) ⇒ self

    Returns:

    • (self)
  • #public(array) ⇒ self

    Returns:

    • (self)


2071
2072
2073
2074
2075
# File 'vm_method.c', line 2071

static VALUE
rb_mod_public(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, METHOD_VISI_PUBLIC);
}

#public_class_method(symbol, ...) ⇒ Object #public_class_method(string, ...) ⇒ Object #public_class_method(array) ⇒ Object

Makes a list of existing class methods public.

String arguments are converted to symbols. An Array of Symbols and/or Strings are also accepted.



2258
2259
2260
2261
2262
2263
# File 'vm_method.c', line 2258

static VALUE
rb_mod_public_method(int argc, VALUE *argv, VALUE obj)
{
    set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PUBLIC);
    return obj;
}

#public_constant(symbol, ...) ⇒ Object

Makes a list of existing constants public.



3254
3255
3256
3257
3258
3259
# File 'variable.c', line 3254

VALUE
rb_mod_public_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_PUBLIC, CONST_VISIBILITY_MASK);
    return obj;
}

#public_instance_method(symbol) ⇒ Object

Similar to instance_method, searches public method only.



2120
2121
2122
2123
2124
2125
2126
2127
2128
# File 'proc.c', line 2120

static VALUE
rb_mod_public_instance_method(VALUE mod, VALUE vid)
{
    ID id = rb_check_id(&vid);
    if (!id) {
	rb_method_name_error(mod, vid);
    }
    return mnew(mod, Qundef, id, rb_cUnboundMethod, TRUE);
}

#public_instance_methods(include_super = true) ⇒ Array

Returns a list of the public instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

Returns:



1515
1516
1517
1518
1519
# File 'class.c', line 1515

VALUE
rb_class_public_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i);
}

#public_method_defined?(symbol, inherit = true) ⇒ Boolean #public_method_defined?(string, inherit = true) ⇒ Boolean

Returns true if the named public method is defined by mod. If inherit is set, the lookup will also search mod’s ancestors. String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  protected
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1                 #=> true
C.public_method_defined? "method1"         #=> true
C.public_method_defined? "method1", true   #=> true
C.public_method_defined? "method1", false  #=> true
C.public_method_defined? "method2"         #=> false
C.method_defined? "method2"                #=> true

Overloads:

  • #public_method_defined?(symbol, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)
  • #public_method_defined?(string, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)


1735
1736
1737
1738
1739
# File 'vm_method.c', line 1735

static VALUE
rb_mod_public_method_defined(int argc, VALUE *argv, VALUE mod)
{
    return check_definition(mod, argc, argv, METHOD_VISI_PUBLIC);
}

#refine(mod) { ... } ⇒ Object (private)

Refine mod in the receiver.

Returns a module, where refined methods are defined.

Yields:



1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
# File 'eval.c', line 1560

static VALUE
rb_mod_refine(VALUE module, VALUE klass)
{
    VALUE refinement;
    ID id_refinements, id_activated_refinements,
       id_refined_class, id_defined_at;
    VALUE refinements, activated_refinements;
    rb_thread_t *th = GET_THREAD();
    VALUE block_handler = rb_vm_frame_block_handler(th->ec->cfp);

    if (block_handler == VM_BLOCK_HANDLER_NONE) {
	rb_raise(rb_eArgError, "no block given");
    }
    if (vm_block_handler_type(block_handler) != block_handler_type_iseq) {
	rb_raise(rb_eArgError, "can't pass a Proc as a block to Module#refine");
    }

    ensure_class_or_module(klass);
    CONST_ID(id_refinements, "__refinements__");
    refinements = rb_attr_get(module, id_refinements);
    if (NIL_P(refinements)) {
	refinements = hidden_identity_hash_new();
	rb_ivar_set(module, id_refinements, refinements);
    }
    CONST_ID(id_activated_refinements, "__activated_refinements__");
    activated_refinements = rb_attr_get(module, id_activated_refinements);
    if (NIL_P(activated_refinements)) {
	activated_refinements = hidden_identity_hash_new();
	rb_ivar_set(module, id_activated_refinements,
		    activated_refinements);
    }
    refinement = rb_hash_lookup(refinements, klass);
    if (NIL_P(refinement)) {
	VALUE superclass = refinement_superclass(klass);
	refinement = rb_module_new();
	RCLASS_SET_SUPER(refinement, superclass);
	FL_SET(refinement, RMODULE_IS_REFINEMENT);
	CONST_ID(id_refined_class, "__refined_class__");
	rb_ivar_set(refinement, id_refined_class, klass);
	CONST_ID(id_defined_at, "__defined_at__");
	rb_ivar_set(refinement, id_defined_at, module);
	rb_hash_aset(refinements, klass, refinement);
	add_activated_refinement(activated_refinements, klass, refinement);
    }
    rb_yield_refine_block(refinement, activated_refinements);
    return refinement;
}

#remove_class_variable(sym) ⇒ Object

Removes the named class variable from the receiver, returning that variable’s value.

class Example
  @@var = 99
  puts remove_class_variable(:@@var)
  p(defined? @@var)
end

produces:

99
nil

Returns:



3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
# File 'variable.c', line 3546

VALUE
rb_mod_remove_cvar(VALUE mod, VALUE name)
{
    const ID id = id_for_var_message(mod, name, class, "wrong class variable name %1$s");
    st_data_t val, n = id;

    if (!id) {
        goto not_defined;
    }
    rb_check_frozen(mod);
    if (RCLASS_IV_TBL(mod) && st_delete(RCLASS_IV_TBL(mod), &n, &val)) {
	return (VALUE)val;
    }
    if (rb_cvar_defined(mod, id)) {
	rb_name_err_raise("cannot remove %1$s for %2$s", mod, ID2SYM(id));
    }
  not_defined:
    rb_name_err_raise("class variable %1$s not defined for %2$s",
                      mod, name);
    UNREACHABLE_RETURN(Qundef);
}

#remove_const(sym) ⇒ Object (private)

Removes the definition of the given constant, returning that constant’s previous value. If that constant referred to a module, this will not change that module’s name and can lead to confusion.

Returns:



2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
# File 'variable.c', line 2715

VALUE
rb_mod_remove_const(VALUE mod, VALUE name)
{
    const ID id = id_for_var(mod, name, a, constant);

    if (!id) {
        undefined_constant(mod, name);
    }
    return rb_const_remove(mod, id);
}

#remove_method(symbol) ⇒ self #remove_method(string) ⇒ self

Removes the method identified by symbol from the current class. For an example, see Module#undef_method. String arguments are converted to symbols.

Overloads:

  • #remove_method(symbol) ⇒ self

    Returns:

    • (self)
  • #remove_method(string) ⇒ self

    Returns:

    • (self)


1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
# File 'vm_method.c', line 1365

static VALUE
rb_mod_remove_method(int argc, VALUE *argv, VALUE mod)
{
    int i;

    for (i = 0; i < argc; i++) {
	VALUE v = argv[i];
	ID id = rb_check_id(&v);
	if (!id) {
	    rb_name_err_raise("method `%1$s' not defined in %2$s",
			      mod, v);
	}
	remove_method(mod, id);
    }
    return mod;
}

#ruby2_keywords(method_name, ...) ⇒ nil (private)

For the given method names, marks the method as passing keywords through a normal argument splat. This should only be called on methods that accept an argument splat (*args) but not explicit keywords or a keyword splat. It marks the method such that if the method is called with keyword arguments, the final hash argument is marked with a special flag such that if it is the final element of a normal argument splat to another method call, and that method call does not include explicit keywords or a keyword splat, the final element is interpreted as keywords. In other words, keywords will be passed through the method to other methods.

This should only be used for methods that delegate keywords to another method, and only for backwards compatibility with Ruby versions before 2.7.

This method will probably be removed at some point, as it exists only for backwards compatibility. As it does not exist in Ruby versions before 2.7, check that the module responds to this method before calling it. Also, be aware that if this method is removed, the behavior of the method will change so that it does not pass through keywords.

module Mod
  def foo(meth, *args, &block)
    send(:"do_#{meth}", *args, &block)
  end
  ruby2_keywords(:foo) if respond_to?(:ruby2_keywords, true)
end

Returns:

  • (nil)


2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
# File 'vm_method.c', line 2170

static VALUE
rb_mod_ruby2_keywords(int argc, VALUE *argv, VALUE module)
{
    int i;
    VALUE origin_class = RCLASS_ORIGIN(module);

    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    rb_check_frozen(module);

    for (i = 0; i < argc; i++) {
        VALUE v = argv[i];
        ID name = rb_check_id(&v);
        rb_method_entry_t *me;
        VALUE defined_class;

        if (!name) {
            rb_print_undef_str(module, v);
        }

        me = search_method(origin_class, name, &defined_class);
        if (!me && RB_TYPE_P(module, T_MODULE)) {
            me = search_method(rb_cObject, name, &defined_class);
        }

        if (UNDEFINED_METHOD_ENTRY_P(me) ||
            UNDEFINED_REFINED_METHOD_P(me->def)) {
            rb_print_undef(module, name, METHOD_VISI_UNDEF);
        }

        if (module == defined_class || origin_class == defined_class) {
            switch (me->def->type) {
              case VM_METHOD_TYPE_ISEQ:
                if (me->def->body.iseq.iseqptr->body->param.flags.has_rest &&
                        !me->def->body.iseq.iseqptr->body->param.flags.has_kw &&
                        !me->def->body.iseq.iseqptr->body->param.flags.has_kwrest) {
                    me->def->body.iseq.iseqptr->body->param.flags.ruby2_keywords = 1;
                    rb_clear_method_cache(module, name);
                }
                else {
                    rb_warn("Skipping set of ruby2_keywords flag for %s (method accepts keywords or method does not accept argument splat)", rb_id2name(name));
                }
                break;
              case VM_METHOD_TYPE_BMETHOD: {
                VALUE procval = me->def->body.bmethod.proc;
                if (vm_block_handler_type(procval) == block_handler_type_proc) {
                    procval = vm_proc_to_block_handler(VM_BH_TO_PROC(procval));
                }

                if (vm_block_handler_type(procval) == block_handler_type_iseq) {
                    const struct rb_captured_block *captured = VM_BH_TO_ISEQ_BLOCK(procval);
                    const rb_iseq_t *iseq = rb_iseq_check(captured->code.iseq);
                    if (iseq->body->param.flags.has_rest &&
                            !iseq->body->param.flags.has_kw &&
                            !iseq->body->param.flags.has_kwrest) {
                        iseq->body->param.flags.ruby2_keywords = 1;
                        rb_clear_method_cache(module, name);
                    }
                    else {
                        rb_warn("Skipping set of ruby2_keywords flag for %s (method accepts keywords or method does not accept argument splat)", rb_id2name(name));
                    }
                    break;
                }
              }
              /* fallthrough */
              default:
                rb_warn("Skipping set of ruby2_keywords flag for %s (method not defined in Ruby)", rb_id2name(name));
                break;
            }
        }
        else {
            rb_warn("Skipping set of ruby2_keywords flag for %s (can only set in method defining module)", rb_id2name(name));
        }
    }
    return Qnil;
}

#singleton_class?Boolean

Returns true if mod is a singleton class or false if it is an ordinary class or module.

class C
end
C.singleton_class?                  #=> false
C.singleton_class.singleton_class?  #=> true

Returns:

  • (Boolean)


3040
3041
3042
3043
3044
3045
3046
# File 'object.c', line 3040

static VALUE
rb_mod_singleton_p(VALUE klass)
{
    if (RB_TYPE_P(klass, T_CLASS) && FL_TEST(klass, FL_SINGLETON))
	return Qtrue;
    return Qfalse;
}

#to_sString Also known as: inspect

Returns a string representing this module or class. For basic classes and modules, this is the name. For singletons, we show information on the thing we’re attached to as well.

Returns:



1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
# File 'object.c', line 1677

static VALUE
rb_mod_to_s(VALUE klass)
{
    ID id_defined_at;
    VALUE refined_class, defined_at;

    if (FL_TEST(klass, FL_SINGLETON)) {
	VALUE s = rb_usascii_str_new2("#<Class:");
	VALUE v = rb_ivar_get(klass, id__attached__);

	if (CLASS_OR_MODULE_P(v)) {
	    rb_str_append(s, rb_inspect(v));
	}
	else {
	    rb_str_append(s, rb_any_to_s(v));
	}
	rb_str_cat2(s, ">");

	return s;
    }
    refined_class = rb_refinement_module_get_refined_class(klass);
    if (!NIL_P(refined_class)) {
	VALUE s = rb_usascii_str_new2("#<refinement:");

	rb_str_concat(s, rb_inspect(refined_class));
	rb_str_cat2(s, "@");
	CONST_ID(id_defined_at, "__defined_at__");
	defined_at = rb_attr_get(klass, id_defined_at);
	rb_str_concat(s, rb_inspect(defined_at));
	rb_str_cat2(s, ">");
	return s;
    }
    return rb_class_name(klass);
}

#undef_method(symbol) ⇒ self #undef_method(string) ⇒ self

Prevents the current class from responding to calls to the named method. Contrast this with remove_method, which deletes the method from the particular class; Ruby will still search superclasses and mixed-in modules for a possible receiver. String arguments are converted to symbols.

class Parent
  def hello
    puts "In parent"
  end
end
class Child < Parent
  def hello
    puts "In child"
  end
end

c = Child.new
c.hello

class Child
  remove_method :hello  # remove from child, still in parent
end
c.hello

class Child
  undef_method :hello   # prevent any calls to 'hello'
end
c.hello

produces:

In child
In parent
prog.rb:23: undefined method `hello' for #<Child:0x401b3bb4> (NoMethodError)

Overloads:

  • #undef_method(symbol) ⇒ self

    Returns:

    • (self)
  • #undef_method(string) ⇒ self

    Returns:

    • (self)


1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
# File 'vm_method.c', line 1610

static VALUE
rb_mod_undef_method(int argc, VALUE *argv, VALUE mod)
{
    int i;
    for (i = 0; i < argc; i++) {
	VALUE v = argv[i];
	ID id = rb_check_id(&v);
	if (!id) {
	    rb_method_name_error(mod, v);
	}
	rb_undef(mod, id);
    }
    return mod;
}

#usingself (private)

Import class refinements from module into the current class or module definition.

Returns:

  • (self)


1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
# File 'eval.c', line 1627

static VALUE
mod_using(VALUE self, VALUE module)
{
    rb_control_frame_t *prev_cfp = previous_frame(GET_EC());

    if (prev_frame_func()) {
	rb_raise(rb_eRuntimeError,
		 "Module#using is not permitted in methods");
    }
    if (prev_cfp && prev_cfp->self != self) {
	rb_raise(rb_eRuntimeError, "Module#using is not called on self");
    }
    if (rb_block_given_p()) {
	ignored_block(module, "Module#");
    }
    rb_using_module(rb_vm_cref_replace_with_duplicated_cref(), module);
    return self;
}