Module: Math

Defined in:
math.c

Defined Under Namespace

Classes: DomainError

Constant Summary collapse

PI =

Definition of the mathematical constant PI as a Float number.

DBL2NUM(M_PI)
E =

Definition of the mathematical constant E for Euler's number (e) as a Float number.

DBL2NUM(exp(1.0))

Class Method Summary collapse

Instance Method Summary collapse

Class Method Details

.acos(x) ⇒ Float

Computes the arc cosine of x. Returns 0..PI.

Domain: [-1, 1]

Codomain: [0, PI]

Math.acos(0) == Math::PI/2  #=> true

Returns:


181
182
183
184
185
186
187
188
189
190
# File 'math.c', line 181

static VALUE
math_acos(VALUE unused_obj, VALUE x)
{
    double d;

    d = Get_Double(x);
    /* check for domain error */
    if (d < -1.0 || 1.0 < d) domain_error("acos");
    return DBL2NUM(acos(d));
}

.acosh(x) ⇒ Float

Computes the inverse hyperbolic cosine of x.

Domain: [1, INFINITY)

Codomain: [0, INFINITY)

Math.acosh(1) #=> 0.0

Returns:


340
341
342
343
344
345
346
347
348
349
# File 'math.c', line 340

static VALUE
math_acosh(VALUE unused_obj, VALUE x)
{
    double d;

    d = Get_Double(x);
    /* check for domain error */
    if (d < 1.0) domain_error("acosh");
    return DBL2NUM(acosh(d));
}

.asin(x) ⇒ Float

Computes the arc sine of x. Returns -PI/2..PI/2.

Domain: [-1, -1]

Codomain: [-PI/2, PI/2]

Math.asin(1) == Math::PI/2  #=> true

Returns:


205
206
207
208
209
210
211
212
213
214
# File 'math.c', line 205

static VALUE
math_asin(VALUE unused_obj, VALUE x)
{
    double d;

    d = Get_Double(x);
    /* check for domain error */
    if (d < -1.0 || 1.0 < d) domain_error("asin");
    return DBL2NUM(asin(d));
}

.asinh(x) ⇒ Float

Computes the inverse hyperbolic sine of x.

Domain: (-INFINITY, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.asinh(1) #=> 0.881373587019543

Returns:


365
366
367
368
369
# File 'math.c', line 365

static VALUE
math_asinh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(asinh(Get_Double(x)));
}

.atan(x) ⇒ Float

Computes the arc tangent of x. Returns -PI/2..PI/2.

Domain: (-INFINITY, INFINITY)

Codomain: (-PI/2, PI/2)

Math.atan(0) #=> 0.0

Returns:


229
230
231
232
233
# File 'math.c', line 229

static VALUE
math_atan(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(atan(Get_Double(x)));
}

.atan2(y, x) ⇒ Float

Computes the arc tangent given y and x. Returns a Float in the range -PI..PI. Return value is a angle in radians between the positive x-axis of cartesian plane and the point given by the coordinates (x, y) on it.

Domain: (-INFINITY, INFINITY)

Codomain: [-PI, PI]

Math.atan2(-0.0, -1.0) #=> -3.141592653589793
Math.atan2(-1.0, -1.0) #=> -2.356194490192345
Math.atan2(-1.0, 0.0)  #=> -1.5707963267948966
Math.atan2(-1.0, 1.0)  #=> -0.7853981633974483
Math.atan2(-0.0, 1.0)  #=> -0.0
Math.atan2(0.0, 1.0)   #=> 0.0
Math.atan2(1.0, 1.0)   #=> 0.7853981633974483
Math.atan2(1.0, 0.0)   #=> 1.5707963267948966
Math.atan2(1.0, -1.0)  #=> 2.356194490192345
Math.atan2(0.0, -1.0)  #=> 3.141592653589793
Math.atan2(INFINITY, INFINITY)   #=> 0.7853981633974483
Math.atan2(INFINITY, -INFINITY)  #=> 2.356194490192345
Math.atan2(-INFINITY, INFINITY)  #=> -0.7853981633974483
Math.atan2(-INFINITY, -INFINITY) #=> -2.356194490192345

Returns:


74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# File 'math.c', line 74

static VALUE
math_atan2(VALUE unused_obj, VALUE y, VALUE x)
{
    double dx, dy;
    dx = Get_Double(x);
    dy = Get_Double(y);
    if (dx == 0.0 && dy == 0.0) {
	if (!signbit(dx))
	    return DBL2NUM(dy);
        if (!signbit(dy))
	    return DBL2NUM(M_PI);
	return DBL2NUM(-M_PI);
    }
#ifndef ATAN2_INF_C99
    if (isinf(dx) && isinf(dy)) {
	/* optimization for FLONUM */
	if (dx < 0.0) {
	    const double dz = (3.0 * M_PI / 4.0);
	    return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
	}
	else {
	    const double dz = (M_PI / 4.0);
	    return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
	}
    }
#endif
    return DBL2NUM(atan2(dy, dx));
}

.atanh(x) ⇒ Float

Computes the inverse hyperbolic tangent of x.

Domain: (-1, 1)

Codomain: (-INFINITY, INFINITY)

Math.atanh(1) #=> Infinity

Returns:


385
386
387
388
389
390
391
392
393
394
395
396
397
# File 'math.c', line 385

static VALUE
math_atanh(VALUE unused_obj, VALUE x)
{
    double d;

    d = Get_Double(x);
    /* check for domain error */
    if (d <  -1.0 || +1.0 <  d) domain_error("atanh");
    /* check for pole error */
    if (d == -1.0) return DBL2NUM(-HUGE_VAL);
    if (d == +1.0) return DBL2NUM(+HUGE_VAL);
    return DBL2NUM(atanh(d));
}

.cbrt(x) ⇒ Float

Returns the cube root of x.

Domain: (-INFINITY, INFINITY)

Codomain: (-INFINITY, INFINITY)

-9.upto(9) {|x|
  p [x, Math.cbrt(x), Math.cbrt(x)**3]
}#=> [-9, -2.0800838230519, -9.0]
#   [-8, -2.0, -8.0]
#   [-7, -1.91293118277239, -7.0]
#   [-6, -1.81712059283214, -6.0]
#   [-5, -1.7099759466767, -5.0]
#   [-4, -1.5874010519682, -4.0]
#   [-3, -1.44224957030741, -3.0]
#   [-2, -1.25992104989487, -2.0]
#   [-1, -1.0, -1.0]
#   [0, 0.0, 0.0]
#   [1, 1.0, 1.0]
#   [2, 1.25992104989487, 2.0]
#   [3, 1.44224957030741, 3.0]
#   [4, 1.5874010519682, 4.0]
#   [5, 1.7099759466767, 5.0]
#   [6, 1.81712059283214, 6.0]
#   [7, 1.91293118277239, 7.0]
#   [8, 2.0, 8.0]
#   [9, 2.0800838230519, 9.0]

Returns:


700
701
702
703
704
705
706
707
708
709
710
711
# File 'math.c', line 700

static VALUE
math_cbrt(VALUE unused_obj, VALUE x)
{
    double f = Get_Double(x);
    double r = cbrt(f);
#if defined __GLIBC__
    if (isfinite(r)) {
	r = (2.0 * r + (f / r / r)) / 3.0;
    }
#endif
    return DBL2NUM(r);
}

.cos(x) ⇒ Float

Computes the cosine of x (expressed in radians). Returns a Float in the range -1.0..1.0.

Domain: (-INFINITY, INFINITY)

Codomain: [-1, 1]

Math.cos(Math::PI) #=> -1.0

Returns:


119
120
121
122
123
# File 'math.c', line 119

static VALUE
math_cos(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(cos(Get_Double(x)));
}

.cosh(x) ⇒ Float

Computes the hyperbolic cosine of x (expressed in radians).

Domain: (-INFINITY, INFINITY)

Codomain: [1, INFINITY)

Math.cosh(0) #=> 1.0

Returns:


257
258
259
260
261
# File 'math.c', line 257

static VALUE
math_cosh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(cosh(Get_Double(x)));
}

.erf(x) ⇒ Float

Calculates the error function of x.

Domain: (-INFINITY, INFINITY)

Codomain: (-1, 1)

  Math.erf(0) #=> 0.0

Returns:


780
781
782
783
784
# File 'math.c', line 780

static VALUE
math_erf(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(erf(Get_Double(x)));
}

.erfc(x) ⇒ Float

Calculates the complementary error function of x.

Domain: (-INFINITY, INFINITY)

Codomain: (0, 2)

  Math.erfc(0) #=> 1.0

Returns:


800
801
802
803
804
# File 'math.c', line 800

static VALUE
math_erfc(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(erfc(Get_Double(x)));
}

.exp(x) ⇒ Float

Returns e**x.

Domain: (-INFINITY, INFINITY)

Codomain: (0, INFINITY)

Math.exp(0)       #=> 1.0
Math.exp(1)       #=> 2.718281828459045
Math.exp(1.5)     #=> 4.4816890703380645

Returns:


415
416
417
418
419
# File 'math.c', line 415

static VALUE
math_exp(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(exp(Get_Double(x)));
}

.frexp(x) ⇒ Array

Returns a two-element array containing the normalized fraction (a Float) and exponent (an Integer) of x.

fraction, exponent = Math.frexp(1234)   #=> [0.6025390625, 11]
fraction * 2**exponent                  #=> 1234.0

Returns:


724
725
726
727
728
729
730
731
732
# File 'math.c', line 724

static VALUE
math_frexp(VALUE unused_obj, VALUE x)
{
    double d;
    int exp;

    d = frexp(Get_Double(x), &exp);
    return rb_assoc_new(DBL2NUM(d), INT2NUM(exp));
}

.gamma(x) ⇒ Float

Calculates the gamma function of x.

Note that gamma(n) is same as fact(n-1) for integer n > 0.
However gamma(n) returns float and can be an approximation.

 def fact(n) (1..n).inject(1) {|r,i| r*i } end
 1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] }
 #=> [1, 1.0, 1]
 #   [2, 1.0, 1]
 #   [3, 2.0, 2]
 #   [4, 6.0, 6]
 #   [5, 24.0, 24]
 #   [6, 120.0, 120]
 #   [7, 720.0, 720]
 #   [8, 5040.0, 5040]
 #   [9, 40320.0, 40320]
 #   [10, 362880.0, 362880]
 #   [11, 3628800.0, 3628800]
 #   [12, 39916800.0, 39916800]
 #   [13, 479001600.0, 479001600]
 #   [14, 6227020800.0, 6227020800]
 #   [15, 87178291200.0, 87178291200]
 #   [16, 1307674368000.0, 1307674368000]
 #   [17, 20922789888000.0, 20922789888000]
 #   [18, 355687428096000.0, 355687428096000]
 #   [19, 6.402373705728e+15, 6402373705728000]
 #   [20, 1.21645100408832e+17, 121645100408832000]
 #   [21, 2.43290200817664e+18, 2432902008176640000]
 #   [22, 5.109094217170944e+19, 51090942171709440000]
 #   [23, 1.1240007277776077e+21, 1124000727777607680000]
 #   [24, 2.5852016738885062e+22, 25852016738884976640000]
 #   [25, 6.204484017332391e+23, 620448401733239439360000]
 #   [26, 1.5511210043330954e+25, 15511210043330985984000000]

Returns:


846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
# File 'math.c', line 846

static VALUE
math_gamma(VALUE unused_obj, VALUE x)
{
    static const double fact_table[] = {
        /* fact(0) */ 1.0,
        /* fact(1) */ 1.0,
        /* fact(2) */ 2.0,
        /* fact(3) */ 6.0,
        /* fact(4) */ 24.0,
        /* fact(5) */ 120.0,
        /* fact(6) */ 720.0,
        /* fact(7) */ 5040.0,
        /* fact(8) */ 40320.0,
        /* fact(9) */ 362880.0,
        /* fact(10) */ 3628800.0,
        /* fact(11) */ 39916800.0,
        /* fact(12) */ 479001600.0,
        /* fact(13) */ 6227020800.0,
        /* fact(14) */ 87178291200.0,
        /* fact(15) */ 1307674368000.0,
        /* fact(16) */ 20922789888000.0,
        /* fact(17) */ 355687428096000.0,
        /* fact(18) */ 6402373705728000.0,
        /* fact(19) */ 121645100408832000.0,
        /* fact(20) */ 2432902008176640000.0,
        /* fact(21) */ 51090942171709440000.0,
        /* fact(22) */ 1124000727777607680000.0,
        /* fact(23)=25852016738884976640000 needs 56bit mantissa which is
         * impossible to represent exactly in IEEE 754 double which have
         * 53bit mantissa. */
    };
    enum {NFACT_TABLE = numberof(fact_table)};
    double d;
    d = Get_Double(x);
    /* check for domain error */
    if (isinf(d)) {
	if (signbit(d)) domain_error("gamma");
	return DBL2NUM(HUGE_VAL);
    }
    if (d == 0.0) {
	return signbit(d) ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL);
    }
    if (d == floor(d)) {
	if (d < 0.0) domain_error("gamma");
	if (1.0 <= d && d <= (double)NFACT_TABLE) {
	    return DBL2NUM(fact_table[(int)d - 1]);
	}
    }
    return DBL2NUM(tgamma(d));
}

.hypot(x, y) ⇒ Float

Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with sides x and y.

Math.hypot(3, 4)   #=> 5.0

Returns:


760
761
762
763
764
# File 'math.c', line 760

static VALUE
math_hypot(VALUE unused_obj, VALUE x, VALUE y)
{
    return DBL2NUM(hypot(Get_Double(x), Get_Double(y)));
}

.ldexp(fraction, exponent) ⇒ Float

Returns the value of fraction*(2**exponent).

fraction, exponent = Math.frexp(1234)
Math.ldexp(fraction, exponent)   #=> 1234.0

Returns:


744
745
746
747
748
# File 'math.c', line 744

static VALUE
math_ldexp(VALUE unused_obj, VALUE x, VALUE n)
{
    return DBL2NUM(ldexp(Get_Double(x), NUM2INT(n)));
}

.lgamma(x) ⇒ Array, ...

Calculates the logarithmic gamma of x and the sign of gamma of x.

Math.lgamma(x) is same as
 [Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
but avoid overflow by Math.gamma(x) for large x.

  Math.lgamma(0) #=> [Infinity, 1]

Returns ].

Returns:


911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
# File 'math.c', line 911

static VALUE
math_lgamma(VALUE unused_obj, VALUE x)
{
    double d;
    int sign=1;
    VALUE v;
    d = Get_Double(x);
    /* check for domain error */
    if (isinf(d)) {
	if (signbit(d)) domain_error("lgamma");
	return rb_assoc_new(DBL2NUM(HUGE_VAL), INT2FIX(1));
    }
    if (d == 0.0) {
	VALUE vsign = signbit(d) ? INT2FIX(-1) : INT2FIX(+1);
	return rb_assoc_new(DBL2NUM(HUGE_VAL), vsign);
    }
    v = DBL2NUM(lgamma_r(d, &sign));
    return rb_assoc_new(v, INT2FIX(sign));
}

.log(x) ⇒ Float .log(x, base) ⇒ Float

Returns the logarithm of x. If additional second argument is given, it will be the base of logarithm. Otherwise it is e (for the natural logarithm).

Domain: (0, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.log(0)          #=> -Infinity
Math.log(1)          #=> 0.0
Math.log(Math::E)    #=> 1.0
Math.log(Math::E**3) #=> 3.0
Math.log(12, 3)      #=> 2.2618595071429146

Overloads:


461
462
463
464
465
# File 'math.c', line 461

static VALUE
math_log(int argc, const VALUE *argv, VALUE unused_obj)
{
    return rb_math_log(argc, argv);
}

.log10(x) ⇒ Float

Returns the base 10 logarithm of x.

Domain: (0, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.log10(1)       #=> 0.0
Math.log10(10)      #=> 1.0
Math.log10(10**100) #=> 100.0

Returns:


571
572
573
574
575
576
577
578
579
580
581
582
583
# File 'math.c', line 571

static VALUE
math_log10(VALUE unused_obj, VALUE x)
{
    size_t numbits;
    double d = get_double_rshift(x, &numbits);

    /* check for domain error */
    if (d < 0.0) domain_error("log10");
    /* check for pole error */
    if (d == 0.0) return DBL2NUM(-HUGE_VAL);

    return DBL2NUM(log10(d) + numbits * log10(2)); /* log10(d * 2 ** numbits) */
}

.log2(x) ⇒ Float

Returns the base 2 logarithm of x.

Domain: (0, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.log2(1)      #=> 0.0
Math.log2(2)      #=> 1.0
Math.log2(32768)  #=> 15.0
Math.log2(65536)  #=> 16.0

Returns:


541
542
543
544
545
546
547
548
549
550
551
552
553
# File 'math.c', line 541

static VALUE
math_log2(VALUE unused_obj, VALUE x)
{
    size_t numbits;
    double d = get_double_rshift(x, &numbits);

    /* check for domain error */
    if (d < 0.0) domain_error("log2");
    /* check for pole error */
    if (d == 0.0) return DBL2NUM(-HUGE_VAL);

    return DBL2NUM(log2(d) + numbits); /* log2(d * 2 ** numbits) */
}

.sin(x) ⇒ Float

Computes the sine of x (expressed in radians). Returns a Float in the range -1.0..1.0.

Domain: (-INFINITY, INFINITY)

Codomain: [-1, 1]

Math.sin(Math::PI/2) #=> 1.0

Returns:


140
141
142
143
144
# File 'math.c', line 140

static VALUE
math_sin(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(sin(Get_Double(x)));
}

.sinh(x) ⇒ Float

Computes the hyperbolic sine of x (expressed in radians).

Domain: (-INFINITY, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.sinh(0) #=> 0.0

Returns:


285
286
287
288
289
# File 'math.c', line 285

static VALUE
math_sinh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(sinh(Get_Double(x)));
}

.sqrt(x) ⇒ Float

Returns the non-negative square root of x.

Domain: [0, INFINITY)

Codomain:[0, INFINITY)

0.upto(10) {|x|
  p [x, Math.sqrt(x), Math.sqrt(x)**2]
}#=> [0, 0.0, 0.0]
#   [1, 1.0, 1.0]
#   [2, 1.4142135623731, 2.0]
#   [3, 1.73205080756888, 3.0]
#   [4, 2.0, 4.0]
#   [5, 2.23606797749979, 5.0]
#   [6, 2.44948974278318, 6.0]
#   [7, 2.64575131106459, 7.0]
#   [8, 2.82842712474619, 8.0]
#   [9, 3.0, 9.0]
#   [10, 3.16227766016838, 10.0]

Note that the limited precision of floating point arithmetic might lead to surprising results:

Math.sqrt(10**46).to_i  #=> 99999999999999991611392 (!)

See also BigDecimal#sqrt and Integer.sqrt.

Returns:


620
621
622
623
624
# File 'math.c', line 620

static VALUE
math_sqrt(VALUE unused_obj, VALUE x)
{
    return rb_math_sqrt(x);
}

.tan(x) ⇒ Float

Computes the tangent of x (expressed in radians).

Domain: (-INFINITY, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.tan(0) #=> 0.0

Returns:


161
162
163
164
165
# File 'math.c', line 161

static VALUE
math_tan(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(tan(Get_Double(x)));
}

.tanh(x) ⇒ Float

Computes the hyperbolic tangent of x (expressed in radians).

Domain: (-INFINITY, INFINITY)

Codomain: (-1, 1)

Math.tanh(0) #=> 0.0

Returns:


320
321
322
323
324
# File 'math.c', line 320

static VALUE
math_tanh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(tanh(Get_Double(x)));
}

Instance Method Details

#acos(x) ⇒ Float (private)

Computes the arc cosine of x. Returns 0..PI.

Domain: [-1, 1]

Codomain: [0, PI]

Math.acos(0) == Math::PI/2  #=> true

Returns:


181
182
183
184
185
186
187
188
189
190
# File 'math.c', line 181

static VALUE
math_acos(VALUE unused_obj, VALUE x)
{
    double d;

    d = Get_Double(x);
    /* check for domain error */
    if (d < -1.0 || 1.0 < d) domain_error("acos");
    return DBL2NUM(acos(d));
}

#acosh(x) ⇒ Float (private)

Computes the inverse hyperbolic cosine of x.

Domain: [1, INFINITY)

Codomain: [0, INFINITY)

Math.acosh(1) #=> 0.0

Returns:


340
341
342
343
344
345
346
347
348
349
# File 'math.c', line 340

static VALUE
math_acosh(VALUE unused_obj, VALUE x)
{
    double d;

    d = Get_Double(x);
    /* check for domain error */
    if (d < 1.0) domain_error("acosh");
    return DBL2NUM(acosh(d));
}

#asin(x) ⇒ Float (private)

Computes the arc sine of x. Returns -PI/2..PI/2.

Domain: [-1, -1]

Codomain: [-PI/2, PI/2]

Math.asin(1) == Math::PI/2  #=> true

Returns:


205
206
207
208
209
210
211
212
213
214
# File 'math.c', line 205

static VALUE
math_asin(VALUE unused_obj, VALUE x)
{
    double d;

    d = Get_Double(x);
    /* check for domain error */
    if (d < -1.0 || 1.0 < d) domain_error("asin");
    return DBL2NUM(asin(d));
}

#asinh(x) ⇒ Float (private)

Computes the inverse hyperbolic sine of x.

Domain: (-INFINITY, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.asinh(1) #=> 0.881373587019543

Returns:


365
366
367
368
369
# File 'math.c', line 365

static VALUE
math_asinh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(asinh(Get_Double(x)));
}

#atan(x) ⇒ Float (private)

Computes the arc tangent of x. Returns -PI/2..PI/2.

Domain: (-INFINITY, INFINITY)

Codomain: (-PI/2, PI/2)

Math.atan(0) #=> 0.0

Returns:


229
230
231
232
233
# File 'math.c', line 229

static VALUE
math_atan(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(atan(Get_Double(x)));
}

#atan2(y, x) ⇒ Float (private)

Computes the arc tangent given y and x. Returns a Float in the range -PI..PI. Return value is a angle in radians between the positive x-axis of cartesian plane and the point given by the coordinates (x, y) on it.

Domain: (-INFINITY, INFINITY)

Codomain: [-PI, PI]

Math.atan2(-0.0, -1.0) #=> -3.141592653589793
Math.atan2(-1.0, -1.0) #=> -2.356194490192345
Math.atan2(-1.0, 0.0)  #=> -1.5707963267948966
Math.atan2(-1.0, 1.0)  #=> -0.7853981633974483
Math.atan2(-0.0, 1.0)  #=> -0.0
Math.atan2(0.0, 1.0)   #=> 0.0
Math.atan2(1.0, 1.0)   #=> 0.7853981633974483
Math.atan2(1.0, 0.0)   #=> 1.5707963267948966
Math.atan2(1.0, -1.0)  #=> 2.356194490192345
Math.atan2(0.0, -1.0)  #=> 3.141592653589793
Math.atan2(INFINITY, INFINITY)   #=> 0.7853981633974483
Math.atan2(INFINITY, -INFINITY)  #=> 2.356194490192345
Math.atan2(-INFINITY, INFINITY)  #=> -0.7853981633974483
Math.atan2(-INFINITY, -INFINITY) #=> -2.356194490192345

Returns:


74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# File 'math.c', line 74

static VALUE
math_atan2(VALUE unused_obj, VALUE y, VALUE x)
{
    double dx, dy;
    dx = Get_Double(x);
    dy = Get_Double(y);
    if (dx == 0.0 && dy == 0.0) {
	if (!signbit(dx))
	    return DBL2NUM(dy);
        if (!signbit(dy))
	    return DBL2NUM(M_PI);
	return DBL2NUM(-M_PI);
    }
#ifndef ATAN2_INF_C99
    if (isinf(dx) && isinf(dy)) {
	/* optimization for FLONUM */
	if (dx < 0.0) {
	    const double dz = (3.0 * M_PI / 4.0);
	    return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
	}
	else {
	    const double dz = (M_PI / 4.0);
	    return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
	}
    }
#endif
    return DBL2NUM(atan2(dy, dx));
}

#atanh(x) ⇒ Float (private)

Computes the inverse hyperbolic tangent of x.

Domain: (-1, 1)

Codomain: (-INFINITY, INFINITY)

Math.atanh(1) #=> Infinity

Returns:


385
386
387
388
389
390
391
392
393
394
395
396
397
# File 'math.c', line 385

static VALUE
math_atanh(VALUE unused_obj, VALUE x)
{
    double d;

    d = Get_Double(x);
    /* check for domain error */
    if (d <  -1.0 || +1.0 <  d) domain_error("atanh");
    /* check for pole error */
    if (d == -1.0) return DBL2NUM(-HUGE_VAL);
    if (d == +1.0) return DBL2NUM(+HUGE_VAL);
    return DBL2NUM(atanh(d));
}

#cbrt(x) ⇒ Float (private)

Returns the cube root of x.

Domain: (-INFINITY, INFINITY)

Codomain: (-INFINITY, INFINITY)

-9.upto(9) {|x|
  p [x, Math.cbrt(x), Math.cbrt(x)**3]
}#=> [-9, -2.0800838230519, -9.0]
#   [-8, -2.0, -8.0]
#   [-7, -1.91293118277239, -7.0]
#   [-6, -1.81712059283214, -6.0]
#   [-5, -1.7099759466767, -5.0]
#   [-4, -1.5874010519682, -4.0]
#   [-3, -1.44224957030741, -3.0]
#   [-2, -1.25992104989487, -2.0]
#   [-1, -1.0, -1.0]
#   [0, 0.0, 0.0]
#   [1, 1.0, 1.0]
#   [2, 1.25992104989487, 2.0]
#   [3, 1.44224957030741, 3.0]
#   [4, 1.5874010519682, 4.0]
#   [5, 1.7099759466767, 5.0]
#   [6, 1.81712059283214, 6.0]
#   [7, 1.91293118277239, 7.0]
#   [8, 2.0, 8.0]
#   [9, 2.0800838230519, 9.0]

Returns:


700
701
702
703
704
705
706
707
708
709
710
711
# File 'math.c', line 700

static VALUE
math_cbrt(VALUE unused_obj, VALUE x)
{
    double f = Get_Double(x);
    double r = cbrt(f);
#if defined __GLIBC__
    if (isfinite(r)) {
	r = (2.0 * r + (f / r / r)) / 3.0;
    }
#endif
    return DBL2NUM(r);
}

#cos(x) ⇒ Float (private)

Computes the cosine of x (expressed in radians). Returns a Float in the range -1.0..1.0.

Domain: (-INFINITY, INFINITY)

Codomain: [-1, 1]

Math.cos(Math::PI) #=> -1.0

Returns:


119
120
121
122
123
# File 'math.c', line 119

static VALUE
math_cos(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(cos(Get_Double(x)));
}

#cosh(x) ⇒ Float (private)

Computes the hyperbolic cosine of x (expressed in radians).

Domain: (-INFINITY, INFINITY)

Codomain: [1, INFINITY)

Math.cosh(0) #=> 1.0

Returns:


257
258
259
260
261
# File 'math.c', line 257

static VALUE
math_cosh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(cosh(Get_Double(x)));
}

#erf(x) ⇒ Float (private)

Calculates the error function of x.

Domain: (-INFINITY, INFINITY)

Codomain: (-1, 1)

  Math.erf(0) #=> 0.0

Returns:


780
781
782
783
784
# File 'math.c', line 780

static VALUE
math_erf(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(erf(Get_Double(x)));
}

#erfc(x) ⇒ Float (private)

Calculates the complementary error function of x.

Domain: (-INFINITY, INFINITY)

Codomain: (0, 2)

  Math.erfc(0) #=> 1.0

Returns:


800
801
802
803
804
# File 'math.c', line 800

static VALUE
math_erfc(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(erfc(Get_Double(x)));
}

#exp(x) ⇒ Float (private)

Returns e**x.

Domain: (-INFINITY, INFINITY)

Codomain: (0, INFINITY)

Math.exp(0)       #=> 1.0
Math.exp(1)       #=> 2.718281828459045
Math.exp(1.5)     #=> 4.4816890703380645

Returns:


415
416
417
418
419
# File 'math.c', line 415

static VALUE
math_exp(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(exp(Get_Double(x)));
}

#frexp(x) ⇒ Array (private)

Returns a two-element array containing the normalized fraction (a Float) and exponent (an Integer) of x.

fraction, exponent = Math.frexp(1234)   #=> [0.6025390625, 11]
fraction * 2**exponent                  #=> 1234.0

Returns:


724
725
726
727
728
729
730
731
732
# File 'math.c', line 724

static VALUE
math_frexp(VALUE unused_obj, VALUE x)
{
    double d;
    int exp;

    d = frexp(Get_Double(x), &exp);
    return rb_assoc_new(DBL2NUM(d), INT2NUM(exp));
}

#gamma(x) ⇒ Float (private)

Calculates the gamma function of x.

Note that gamma(n) is same as fact(n-1) for integer n > 0.
However gamma(n) returns float and can be an approximation.

 def fact(n) (1..n).inject(1) {|r,i| r*i } end
 1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] }
 #=> [1, 1.0, 1]
 #   [2, 1.0, 1]
 #   [3, 2.0, 2]
 #   [4, 6.0, 6]
 #   [5, 24.0, 24]
 #   [6, 120.0, 120]
 #   [7, 720.0, 720]
 #   [8, 5040.0, 5040]
 #   [9, 40320.0, 40320]
 #   [10, 362880.0, 362880]
 #   [11, 3628800.0, 3628800]
 #   [12, 39916800.0, 39916800]
 #   [13, 479001600.0, 479001600]
 #   [14, 6227020800.0, 6227020800]
 #   [15, 87178291200.0, 87178291200]
 #   [16, 1307674368000.0, 1307674368000]
 #   [17, 20922789888000.0, 20922789888000]
 #   [18, 355687428096000.0, 355687428096000]
 #   [19, 6.402373705728e+15, 6402373705728000]
 #   [20, 1.21645100408832e+17, 121645100408832000]
 #   [21, 2.43290200817664e+18, 2432902008176640000]
 #   [22, 5.109094217170944e+19, 51090942171709440000]
 #   [23, 1.1240007277776077e+21, 1124000727777607680000]
 #   [24, 2.5852016738885062e+22, 25852016738884976640000]
 #   [25, 6.204484017332391e+23, 620448401733239439360000]
 #   [26, 1.5511210043330954e+25, 15511210043330985984000000]

Returns:


846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
# File 'math.c', line 846

static VALUE
math_gamma(VALUE unused_obj, VALUE x)
{
    static const double fact_table[] = {
        /* fact(0) */ 1.0,
        /* fact(1) */ 1.0,
        /* fact(2) */ 2.0,
        /* fact(3) */ 6.0,
        /* fact(4) */ 24.0,
        /* fact(5) */ 120.0,
        /* fact(6) */ 720.0,
        /* fact(7) */ 5040.0,
        /* fact(8) */ 40320.0,
        /* fact(9) */ 362880.0,
        /* fact(10) */ 3628800.0,
        /* fact(11) */ 39916800.0,
        /* fact(12) */ 479001600.0,
        /* fact(13) */ 6227020800.0,
        /* fact(14) */ 87178291200.0,
        /* fact(15) */ 1307674368000.0,
        /* fact(16) */ 20922789888000.0,
        /* fact(17) */ 355687428096000.0,
        /* fact(18) */ 6402373705728000.0,
        /* fact(19) */ 121645100408832000.0,
        /* fact(20) */ 2432902008176640000.0,
        /* fact(21) */ 51090942171709440000.0,
        /* fact(22) */ 1124000727777607680000.0,
        /* fact(23)=25852016738884976640000 needs 56bit mantissa which is
         * impossible to represent exactly in IEEE 754 double which have
         * 53bit mantissa. */
    };
    enum {NFACT_TABLE = numberof(fact_table)};
    double d;
    d = Get_Double(x);
    /* check for domain error */
    if (isinf(d)) {
	if (signbit(d)) domain_error("gamma");
	return DBL2NUM(HUGE_VAL);
    }
    if (d == 0.0) {
	return signbit(d) ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL);
    }
    if (d == floor(d)) {
	if (d < 0.0) domain_error("gamma");
	if (1.0 <= d && d <= (double)NFACT_TABLE) {
	    return DBL2NUM(fact_table[(int)d - 1]);
	}
    }
    return DBL2NUM(tgamma(d));
}

#hypot(x, y) ⇒ Float (private)

Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with sides x and y.

Math.hypot(3, 4)   #=> 5.0

Returns:


760
761
762
763
764
# File 'math.c', line 760

static VALUE
math_hypot(VALUE unused_obj, VALUE x, VALUE y)
{
    return DBL2NUM(hypot(Get_Double(x), Get_Double(y)));
}

#ldexp(fraction, exponent) ⇒ Float (private)

Returns the value of fraction*(2**exponent).

fraction, exponent = Math.frexp(1234)
Math.ldexp(fraction, exponent)   #=> 1234.0

Returns:


744
745
746
747
748
# File 'math.c', line 744

static VALUE
math_ldexp(VALUE unused_obj, VALUE x, VALUE n)
{
    return DBL2NUM(ldexp(Get_Double(x), NUM2INT(n)));
}

#lgamma(x) ⇒ Array, ... (private)

Calculates the logarithmic gamma of x and the sign of gamma of x.

Math.lgamma(x) is same as
 [Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
but avoid overflow by Math.gamma(x) for large x.

  Math.lgamma(0) #=> [Infinity, 1]

Returns ].

Returns:


911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
# File 'math.c', line 911

static VALUE
math_lgamma(VALUE unused_obj, VALUE x)
{
    double d;
    int sign=1;
    VALUE v;
    d = Get_Double(x);
    /* check for domain error */
    if (isinf(d)) {
	if (signbit(d)) domain_error("lgamma");
	return rb_assoc_new(DBL2NUM(HUGE_VAL), INT2FIX(1));
    }
    if (d == 0.0) {
	VALUE vsign = signbit(d) ? INT2FIX(-1) : INT2FIX(+1);
	return rb_assoc_new(DBL2NUM(HUGE_VAL), vsign);
    }
    v = DBL2NUM(lgamma_r(d, &sign));
    return rb_assoc_new(v, INT2FIX(sign));
}

#log(x) ⇒ Float (private) #log(x, base) ⇒ Float (private)

Returns the logarithm of x. If additional second argument is given, it will be the base of logarithm. Otherwise it is e (for the natural logarithm).

Domain: (0, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.log(0)          #=> -Infinity
Math.log(1)          #=> 0.0
Math.log(Math::E)    #=> 1.0
Math.log(Math::E**3) #=> 3.0
Math.log(12, 3)      #=> 2.2618595071429146

Overloads:


461
462
463
464
465
# File 'math.c', line 461

static VALUE
math_log(int argc, const VALUE *argv, VALUE unused_obj)
{
    return rb_math_log(argc, argv);
}

#log10(x) ⇒ Float (private)

Returns the base 10 logarithm of x.

Domain: (0, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.log10(1)       #=> 0.0
Math.log10(10)      #=> 1.0
Math.log10(10**100) #=> 100.0

Returns:


571
572
573
574
575
576
577
578
579
580
581
582
583
# File 'math.c', line 571

static VALUE
math_log10(VALUE unused_obj, VALUE x)
{
    size_t numbits;
    double d = get_double_rshift(x, &numbits);

    /* check for domain error */
    if (d < 0.0) domain_error("log10");
    /* check for pole error */
    if (d == 0.0) return DBL2NUM(-HUGE_VAL);

    return DBL2NUM(log10(d) + numbits * log10(2)); /* log10(d * 2 ** numbits) */
}

#log2(x) ⇒ Float (private)

Returns the base 2 logarithm of x.

Domain: (0, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.log2(1)      #=> 0.0
Math.log2(2)      #=> 1.0
Math.log2(32768)  #=> 15.0
Math.log2(65536)  #=> 16.0

Returns:


541
542
543
544
545
546
547
548
549
550
551
552
553
# File 'math.c', line 541

static VALUE
math_log2(VALUE unused_obj, VALUE x)
{
    size_t numbits;
    double d = get_double_rshift(x, &numbits);

    /* check for domain error */
    if (d < 0.0) domain_error("log2");
    /* check for pole error */
    if (d == 0.0) return DBL2NUM(-HUGE_VAL);

    return DBL2NUM(log2(d) + numbits); /* log2(d * 2 ** numbits) */
}

#sin(x) ⇒ Float (private)

Computes the sine of x (expressed in radians). Returns a Float in the range -1.0..1.0.

Domain: (-INFINITY, INFINITY)

Codomain: [-1, 1]

Math.sin(Math::PI/2) #=> 1.0

Returns:


140
141
142
143
144
# File 'math.c', line 140

static VALUE
math_sin(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(sin(Get_Double(x)));
}

#sinh(x) ⇒ Float (private)

Computes the hyperbolic sine of x (expressed in radians).

Domain: (-INFINITY, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.sinh(0) #=> 0.0

Returns:


285
286
287
288
289
# File 'math.c', line 285

static VALUE
math_sinh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(sinh(Get_Double(x)));
}

#sqrt(x) ⇒ Float (private)

Returns the non-negative square root of x.

Domain: [0, INFINITY)

Codomain:[0, INFINITY)

0.upto(10) {|x|
  p [x, Math.sqrt(x), Math.sqrt(x)**2]
}#=> [0, 0.0, 0.0]
#   [1, 1.0, 1.0]
#   [2, 1.4142135623731, 2.0]
#   [3, 1.73205080756888, 3.0]
#   [4, 2.0, 4.0]
#   [5, 2.23606797749979, 5.0]
#   [6, 2.44948974278318, 6.0]
#   [7, 2.64575131106459, 7.0]
#   [8, 2.82842712474619, 8.0]
#   [9, 3.0, 9.0]
#   [10, 3.16227766016838, 10.0]

Note that the limited precision of floating point arithmetic might lead to surprising results:

Math.sqrt(10**46).to_i  #=> 99999999999999991611392 (!)

See also BigDecimal#sqrt and Integer.sqrt.

Returns:


620
621
622
623
624
# File 'math.c', line 620

static VALUE
math_sqrt(VALUE unused_obj, VALUE x)
{
    return rb_math_sqrt(x);
}

#tan(x) ⇒ Float (private)

Computes the tangent of x (expressed in radians).

Domain: (-INFINITY, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.tan(0) #=> 0.0

Returns:


161
162
163
164
165
# File 'math.c', line 161

static VALUE
math_tan(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(tan(Get_Double(x)));
}

#tanh(x) ⇒ Float (private)

Computes the hyperbolic tangent of x (expressed in radians).

Domain: (-INFINITY, INFINITY)

Codomain: (-1, 1)

Math.tanh(0) #=> 0.0

Returns:


320
321
322
323
324
# File 'math.c', line 320

static VALUE
math_tanh(VALUE unused_obj, VALUE x)
{
    return DBL2NUM(tanh(Get_Double(x)));
}