Method: Array#product
- Defined in:
- array.c
#product(*other_arrays) ⇒ Object #product(*other_arrays) {|combination| ... } ⇒ self
Computes all combinations of elements from all the arrays, including both self
and other_arrays
:
-
The number of combinations is the product of the sizes of all the arrays, including both
self
andother_arrays
. -
The order of the returned combinations is indeterminate.
With no block given, returns the combinations as an array of arrays:
p = [0, 1].product([2, 3])
# => [[0, 2], [0, 3], [1, 2], [1, 3]]
p.size # => 4
p = [0, 1].product([2, 3], [4, 5])
# => [[0, 2, 4], [0, 2, 5], [0, 3, 4], [0, 3, 5], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3,...
p.size # => 8
If self
or any argument is empty, returns an empty array:
[].product([2, 3], [4, 5]) # => []
[0, 1].product([2, 3], []) # => []
If no argument is given, returns an array of 1-element arrays, each containing an element of self
:
a.product # => [[0], [1], [2]]
With a block given, calls the block with each combination; returns self
:
p = []
[0, 1].product([2, 3]) {|combination| p.push(combination) }
p # => [[0, 2], [0, 3], [1, 2], [1, 3]]
If self
or any argument is empty, does not call the block:
[].product([2, 3], [4, 5]) {|combination| fail 'Cannot happen' }
# => []
[0, 1].product([2, 3], []) {|combination| fail 'Cannot happen' }
# => [0, 1]
If no argument is given, calls the block with each element of self
as a 1-element array:
p = []
[0, 1].product {|combination| p.push(combination) }
p # => [[0], [1]]
Related: see Methods for Combining.
7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 |
# File 'array.c', line 7532
static VALUE
rb_ary_product(int argc, VALUE *argv, VALUE ary)
{
int n = argc+1; /* How many arrays we're operating on */
volatile VALUE t0 = rb_ary_hidden_new(n);
volatile VALUE t1 = Qundef;
VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */
int *counters = ALLOCV_N(int, t1, n); /* The current position in each one */
VALUE result = Qnil; /* The array we'll be returning, when no block given */
long i,j;
long resultlen = 1;
RBASIC_CLEAR_CLASS(t0);
/* initialize the arrays of arrays */
ARY_SET_LEN(t0, n);
arrays[0] = ary;
for (i = 1; i < n; i++) arrays[i] = Qnil;
for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]);
/* initialize the counters for the arrays */
for (i = 0; i < n; i++) counters[i] = 0;
/* Otherwise, allocate and fill in an array of results */
if (rb_block_given_p()) {
/* Make defensive copies of arrays; exit if any is empty */
for (i = 0; i < n; i++) {
if (RARRAY_LEN(arrays[i]) == 0) goto done;
arrays[i] = ary_make_shared_copy(arrays[i]);
}
}
else {
/* Compute the length of the result array; return [] if any is empty */
for (i = 0; i < n; i++) {
long k = RARRAY_LEN(arrays[i]);
if (k == 0) {
result = rb_ary_new2(0);
goto done;
}
if (MUL_OVERFLOW_LONG_P(resultlen, k))
rb_raise(rb_eRangeError, "too big to product");
resultlen *= k;
}
result = rb_ary_new2(resultlen);
}
for (;;) {
int m;
/* fill in one subarray */
VALUE subarray = rb_ary_new2(n);
for (j = 0; j < n; j++) {
rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j]));
}
/* put it on the result array */
if (NIL_P(result)) {
FL_SET(t0, RARRAY_SHARED_ROOT_FLAG);
rb_yield(subarray);
if (!FL_TEST(t0, RARRAY_SHARED_ROOT_FLAG)) {
rb_raise(rb_eRuntimeError, "product reentered");
}
else {
FL_UNSET(t0, RARRAY_SHARED_ROOT_FLAG);
}
}
else {
rb_ary_push(result, subarray);
}
/*
* Increment the last counter. If it overflows, reset to 0
* and increment the one before it.
*/
m = n-1;
counters[m]++;
while (counters[m] == RARRAY_LEN(arrays[m])) {
counters[m] = 0;
/* If the first counter overflows, we are done */
if (--m < 0) goto done;
counters[m]++;
}
}
done:
ALLOCV_END(t1);
return NIL_P(result) ? ary : result;
}
|